JP2954816B2 - Method for producing sintered R-Fe-B magnet by injection molding method - Google Patents

Method for producing sintered R-Fe-B magnet by injection molding method

Info

Publication number
JP2954816B2
JP2954816B2 JP5180647A JP18064793A JP2954816B2 JP 2954816 B2 JP2954816 B2 JP 2954816B2 JP 5180647 A JP5180647 A JP 5180647A JP 18064793 A JP18064793 A JP 18064793A JP 2954816 B2 JP2954816 B2 JP 2954816B2
Authority
JP
Japan
Prior art keywords
powder
injection molding
binder
phase
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5180647A
Other languages
Japanese (ja)
Other versions
JPH06168811A (en
Inventor
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5180647A priority Critical patent/JP2954816B2/en
Publication of JPH06168811A publication Critical patent/JPH06168811A/en
Application granted granted Critical
Publication of JP2954816B2 publication Critical patent/JP2954816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、射出成形法によるR
−Fe−B系焼結異方性永久磁石を製造する方法に係
り、微細結晶化したR−Fe−B系合金微粉末の表面に
樹脂を被覆した後、所定温度によりゾル・ゲル反応を起
こすバインダーとしてメチルセルロース及び/又は寒天
と水との混練物となし射出成形し、脱バインダー処理後
に焼結することにより、焼結体中の炭素と酸素の残留を
抑制し、磁気特性の劣化防止とともに、射出成形時の成
形性を向上させ、三次元的に複雑な形状の焼結磁石が得
られる射出成形法によるR−Fe−B系焼結磁石の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for producing an Fe-B based sintered anisotropic permanent magnet, in which a resin is coated on the surface of finely crystallized R-Fe-B based alloy fine powder, and then a sol-gel reaction is caused at a predetermined temperature. By injection molding without kneaded material of methyl cellulose and / or agar and water as a binder, and by sintering after debinding, the residual carbon and oxygen in the sintered body are suppressed, and deterioration of magnetic properties is prevented, The present invention relates to a method for producing an R—Fe—B based sintered magnet by an injection molding method that improves moldability during injection molding and provides a sintered magnet having a three-dimensionally complicated shape.

【0002】[0002]

【従来の技術】今日、家電製品を初めコンピュータの周
辺機器や自動車等用途に用いられる小型モーターやアク
チュエータ等には、小型化、軽量化とともに高性能化が
求められており、その磁石材料も小型化、軽量化、薄肉
化からさらに磁石材料表面の所定位置に凹凸を設けた
り、貫通孔を設ける等、三次元的に複雑な形状製品が要
求されている。高性能永久磁石として、R−Fe−B系
焼結永久磁石が提案(USP4,770,223、特開
昭59−46008号公報、特公昭61−34242号
公報)され、また、R−Fe−B系ボンド磁石も提案
(USP4,902,361)されている。
2. Description of the Related Art Today, small motors and actuators used for home appliances, computer peripherals, automobiles, and other applications are required to be compact, lightweight, and high-performance. There is a demand for a three-dimensionally complex shaped product, such as providing irregularities at predetermined positions on the surface of the magnet material and providing through holes in addition to the reduction in weight, weight, and thickness. As a high performance permanent magnet, an R-Fe-B sintered permanent magnet has been proposed (US Pat. No. 4,770,223, JP-A-59-46008, and JP-B-61-34242). B-based bonded magnets have also been proposed (US Pat. No. 4,902,361).

【0003】上記R−Fe−B系焼結永久磁石及びR−
Fe−B系ボンド磁石ともに、通常、製造工程中に磁場
中のプレス成形を含むことから、単純形状の成形品しか
得られなかった。しかし、最近の種々形状の要求に対応
するために、従来から多くの技術分野において採用され
ている射出成形法を、上記R−Fe−B系焼結永久磁石
の製造方法に採用することが検討されている。例えば、
R−Fe−B系合金鋳塊を粉砕して得られた合金粉末と
ポリエチレン、ポリスチレン等の熱可塑性樹脂を含有す
るバインダーを混練して射出成形し、脱バインダー後に
焼結するR−Fe−B系焼結永久磁石の製造方法(特開
昭61−220315号公報、特開昭64−28302
号公報、特開昭64−28303号公報)が提案されて
いる。又、バインダーとしてパラフィン系ワックスを用
いた射出成形法を採用したR−Fe−B系焼結永久磁石
の製造方法(特開昭64−28302号公報)が提案さ
れている。
[0003] The above R-Fe-B sintered permanent magnet and R-
Since both Fe-B based bonded magnets usually include press forming in a magnetic field during the manufacturing process, only molded products having a simple shape were obtained. However, in order to respond to recent demands for various shapes, it has been studied to adopt an injection molding method which has been conventionally adopted in many technical fields for the method of manufacturing the R-Fe-B based sintered permanent magnet. Have been. For example,
An R-Fe-B alloy powder obtained by pulverizing an ingot of an R-Fe-B alloy and a binder containing a thermoplastic resin such as polyethylene or polystyrene are kneaded, injection-molded, and sintered after debinding. For producing sintered sintered permanent magnets (JP-A-61-220315, JP-A-64-28302)
JP-A-64-28303). Also, there has been proposed a method of manufacturing an R-Fe-B sintered permanent magnet employing an injection molding method using a paraffin wax as a binder (Japanese Patent Application Laid-Open No. 64-28302).

【0004】[0004]

【発明が解決しようとする課題】しかし、一般に、希土
類元素(R)を含有する金属間化合物はO、H、C、N
等の元素と反応し易く、上記の射出成形法で使用されて
いる熱可塑性樹脂やパラフィン系ワックス等のバインダ
ーをR−Fe−B系合金粉末に添加混合した場合、一般
的にバインダー中の炭素と酸素の含有量がRとの反応に
より増加するために、射出成形、脱バインダー後、及び
焼結後でもかなりの炭素と酸素が残留し、特に永久磁石
の場合磁気特性の劣化を招き、射出成形法による複雑形
状品の磁石部品への応用の妨げになっている。また、従
来の射出成形法で使用されている上記のバインダーは、
合金粉末と混合した後、射出成形機内でバインダーの融
点、すなわち100℃〜200℃程度まで加熱してバイ
ンダーを溶解させていたが、R−Fe−B系永久磁石の
キュリー温度(Tc)は300℃〜350℃程度である
ことから、磁場中配向させる際にキュリー温度近くまで
加熱すると配向が困難になり、また配向に大きな着磁電
流を必要とする問題があった。
However, in general, intermetallic compounds containing a rare earth element (R) are O, H, C, N
When a binder such as a thermoplastic resin or a paraffin wax used in the above-mentioned injection molding method is added to and mixed with the R-Fe-B alloy powder, the carbon in the binder is generally used. Since the content of oxygen and oxygen increases by the reaction with R, considerable carbon and oxygen remain even after injection molding, debinding, and after sintering. This hinders the application of complex shaped articles to magnet parts by molding methods. In addition, the binder used in the conventional injection molding method,
After being mixed with the alloy powder, the binder was melted by heating to the melting point of the binder in the injection molding machine, that is, about 100 ° C. to 200 ° C., but the Curie temperature (Tc) of the R—Fe—B permanent magnet is 300 Since the temperature is in the range of about ° C to about 350 ° C, there is a problem in that if the material is heated to a temperature close to the Curie temperature when it is oriented in a magnetic field, the orientation becomes difficult and a large magnetizing current is required for the orientation.

【0005】そこで、溶解温度が低いバインダーを検討
すると、従来、Co系スーパーアロイ粉末を対象とした
圧縮成形用のバインダーとして、対象合金粉末に対し
て、1.5〜3.5wt%のメチルセルロースとさらに
所定量の添加物であるグリセリンとほう酸を混合した組
成が提案(USP4,113,480)され、また、Y
23−ZrO2やアルミナ粉末を対象とした射出成形用
のバインダーとして、対象合金粉末に対して10〜50
wt%のアガロースや寒天にさらに脱イオン水とグリコ
ールを加えた混合物が提案(USP4,734,23
7)され、さらに、工具用合金粉末の射出成形用のバイ
ンダーとして、特殊組成からなり、対象合金粉末に対し
て0.5〜2.5wt%のメチルセルロースに水、グリ
セリン等の可塑剤、ワックスエマルジョン等の滑剤、離
型剤を添加した組成が提案(特開昭62−37302号
公報)されている。
[0005] Therefore, when a binder having a low melting temperature is examined, 1.5 to 3.5 wt% of methylcellulose with respect to a target alloy powder has been conventionally used as a binder for compression molding of a Co-based superalloy powder. Further, a composition in which glycerin and boric acid, which are predetermined amounts of additives, are mixed has been proposed (US Pat. No. 4,113,480).
As a binder for injection molding of 2 O 3 —ZrO 2 or alumina powder, 10-50
A mixture in which deionized water and glycol are further added to wt% agarose or agar is proposed (US Pat. No. 4,734,23).
7) Further, as a binder for injection molding of alloy powder for tools, a special composition, 0.5 to 2.5 wt% of methyl cellulose with respect to the target alloy powder, water, a plasticizer such as glycerin, and a wax emulsion (Japanese Patent Laid-Open No. Sho 62-37302) has been proposed.

【0006】しかし、上述のメチルセルロースや寒天を
主体とするバインダーは、所定の流動性と成形体強度を
確保するためいずれも対象合金粉末に対して、上記のよ
うに比較的多量に使用するもので、しかも種々のバイン
ダー添加剤の添加、例えばグリセリン等の可塑剤をメチ
ルセルロースと同量程度添加することが不可欠であるた
め、やはり、射出成形、脱脂した後、焼結後でもかなり
の炭素と酸素が残留し、特にこの発明の対象とするR−
Fe−B系焼結永久磁石の場合、磁気特性の劣化を招
き、射出成形法による複雑形状品の磁石部品への応用の
妨げとなっている。
However, the above-mentioned binder mainly composed of methylcellulose or agar is used in a relatively large amount as described above with respect to the target alloy powder in order to secure a predetermined fluidity and strength of the compact. In addition, since it is essential to add various binder additives, for example, a plasticizer such as glycerin in the same amount as methylcellulose, after injection molding, degreasing, and even after sintering, considerable carbon and oxygen remain. Residues, particularly R-
In the case of the Fe-B based sintered permanent magnet, the magnetic properties are degraded, which hinders the application of the injection molding method to a magnet part having a complicated shape.

【0007】この発明は、射出成形にて成形し、これを
焼結するR−Fe−B系焼結永久磁石の製造方法におい
て、R成分とバインダーとの反応や、成形体中に残留す
る炭素および酸素による磁気特性の劣化を防止し、磁場
中での射出成形時に大きな着磁電流を必要とせず、射出
成形性を向上させて複雑な形状、特に小型製品のR−F
e−B系焼結異方性磁石が得られる射出成形法によるR
−Fe−B系焼結磁石の製造方法の提供を目的としてい
る。
The present invention relates to a method for producing an R—Fe—B sintered permanent magnet formed by injection molding and sintering the same. And prevents deterioration of magnetic properties due to oxygen, does not require a large magnetizing current at the time of injection molding in a magnetic field, improves injection moldability, and improves the R-F of complex shapes, especially small products.
R by injection molding to obtain an eB sintered anisotropic magnet
-It is an object of the present invention to provide a method for producing an Fe-B based sintered magnet.

【0008】[0008]

【課題を解決するための手段】発明者らは、射出成形時
の金型温度を100℃以下にでき、R−Fe−B系合金
粉末中のR成分とバインダーとの反応を抑制でき、残留
する炭素および酸素量を低減できるバインダーとして寒
天及び/またはメチルセルロースを選定した。さらにR
−Fe−B系合金粉末への適用を検討した結果、所定の
平均粒度からなるR−Fe−B系合金粉末であれば、水
分を多量に含む割りには、メチルセルロース量を0.5
wt%以下としても、十分な流動性と成形体強度を得る
ことができることを知見し、また、寒天の場合も4.0
wt%以下の少量でも同様な作用効果を得ることができ
ることを知見した。これら所定量以下のメチルセルロー
スや寒天だけでなく、必要に応じて使用する滑剤も0.
30wt%以下と極少量でよいことを知見し、さらにバ
インダーとして寒天とメチルセルロースを複合使用して
も同様の作用、効果が得られることを知見した。すなわ
ち、発明者らは、R−Fe−B系合金粉末中のR成分と
バインダーとの反応を抑制でき、成形体中に残留する炭
素および酸素量を低減できる方法を目的に種々検討した
結果、従来の射出成形法で一般的に使用されている熱可
塑性のバインダーの代わりに、R−Fe−B系合金粉末
にバインダーとして、所定温度によりゾル・ゲル変態を
起こすメチルセルロースまたは寒天あるいはそれらを複
合したものと水、さらに少量の滑剤を使用することによ
り、バインダーの大部分が水分であるにもかかわらず、
十分な粘弾性を得ることができるため、総バインダー中
の炭素量を大幅に低減できること、射出成形時の成形性
を向上させるとともに射出成形時に100℃以下で金型
内でゲル化させて硬化させ、所定の形状に成形可能であ
ること、さらに脱水処理、またそれに続く脱バインダー
処理により、成形体中に残留するほぼ全ての酸素及び炭
素を除去することができること、引き続く焼結後に得ら
れる焼結体における残留酸素量・炭素量を大幅に減少で
き、優れた磁気特性を有する3次元的に複雑な形状の焼
結磁石が得られることを知見した。
Means for Solving the Problems The inventors can reduce the temperature of the mold during injection molding to 100 ° C. or less, suppress the reaction between the R component in the R—Fe—B-based alloy powder and the binder, and maintain the residual temperature. Agar and / or methylcellulose were selected as binders capable of reducing the amount of carbon and oxygen to be produced. Further R
As a result of examining the application to Fe-B-based alloy powder, it was found that if the R-Fe-B-based alloy powder has a predetermined average particle size, the amount of methylcellulose should be 0.5 for a large amount of water.
It was found that sufficient fluidity and strength of the molded body could be obtained even when the content was not more than wt%, and 4.0 was also used for agar.
It has been found that a similar effect can be obtained even with a small amount of not more than wt%. Not only the methylcellulose and agar below the predetermined amount but also the lubricant used as required may be used.
It was found that a very small amount of 30 wt% or less was sufficient, and it was further found that the same action and effect could be obtained even when agar and methyl cellulose were used in combination as a binder. That is, the inventors have conducted various studies for the purpose of a method capable of suppressing the reaction between the R component in the R-Fe-B-based alloy powder and the binder and reducing the amounts of carbon and oxygen remaining in the compact, Instead of the thermoplastic binder generally used in the conventional injection molding method, methylcellulose or agar, or a composite thereof, which undergoes sol-gel transformation at a predetermined temperature, is used as a binder in an R-Fe-B alloy powder. By using things and water, and even a small amount of lubricant, despite the fact that most of the binder is moisture,
Since sufficient viscoelasticity can be obtained, the amount of carbon in the total binder can be significantly reduced, and the moldability during injection molding is improved, and at the time of injection molding, gelation is performed in a mold at 100 ° C. or lower to cure. That it can be formed into a predetermined shape, that dehydration treatment and subsequent debinding treatment can remove almost all oxygen and carbon remaining in the molded body, and that sintering obtained after subsequent sintering It has been found that the amount of residual oxygen and carbon in the body can be significantly reduced, and a three-dimensionally complex sintered magnet having excellent magnetic properties can be obtained.

【0009】また、発明者らは、バインダー中に多量の
水分が含まれることを考慮し、R−Fe−B系合金粉末
の表面を樹脂被覆したのち、上記のバインダーを混合す
ることにより、水と合金粉末中のR成分との反応を抑制
し、混練後の各工程における合金粉末の酸化を防止で
き、得られる焼結体中の残留酸素量を低減できること、
射出成形時の成形性がさらに向上して3次元的に複雑な
形状の焼結磁石が得られること、さらに脱バインダー処
理で被覆した樹脂のほぼ全てが除去できるので、焼結体
中の残留炭素量を増加させることがないことを知見し
た。さらに発明者らは、R−Fe−B系磁性粉中のR成
分とバインダーとの反応を抑制でき、残留する炭素及び
酸素量を低減できる方法を目的に種々検討した結果、従
来の射出成形法で一般的に使用されている所要の単一組
成のR−Fe−B合金原料粉末の代わりに、R2Fe14
B相を主相とする平均粒径1〜5μmの主相系合金粉末
と、R3Co相を含むCo又はFeとRとの金属間化合
物相に一部R2(FeCo)14B相等を含みかつ希土類
金属含有量が多く、極力有機バインダーとの反応を抑え
るように主相系合金より平均粒径の大きい平均粒径8〜
40μmの液相系化合物粉末の2種類の原料を所定の割
合で配合した原料を混合して、バインダー添加、混練、
射出成形、脱バインダー、焼結することにより、R−F
e−B焼結体中の残留酸素量と炭素量を大幅に減少で
き、射出成形時の成形性を向上させ、3次元的に複雑な
形状の焼結磁石が得られることを知見した。また、さら
に発明者らは、磁性粉末粒子のR成分とバインダーとの
反応を極力抑え、安定した磁気特性が得られる方法を種
々検討した結果、特に主相系合金粉末及び液相系化合物
粉末からなるR−Fe−B系合金粉末を用いる場合、該
合金粉末にさらに所定量の遷移金属粉の微粉末を混合し
て、不活性雰囲気中でメカノフュージョン処理により磁
性粉末粒子の表面を微粉末の遷移金属粉で被覆した後、
熱処理により表面拡散させて被膜を緻密でしかも均一に
することにより、該被膜によって、磁性粉末粒子のR成
分とバインダーとを完全に隔離し、バインダー混練、射
出成形、脱バインダー、焼結の途中工程で磁性粉末粒子
のR成分とバインダーとの反応を防止できることを知見
し、この発明を完成した。
Further, the inventors consider that a large amount of water is contained in the binder, coat the surface of the R-Fe-B-based alloy powder with a resin, and then mix the above-mentioned binder to obtain water. And the reaction with the R component in the alloy powder can be suppressed, oxidation of the alloy powder in each step after kneading can be prevented, and the amount of residual oxygen in the obtained sintered body can be reduced.
Since the moldability during injection molding is further improved, a sintered magnet having a three-dimensionally complicated shape can be obtained, and almost all of the resin coated by the binder removal treatment can be removed. It was found that the amount was not increased. Furthermore, the present inventors have conducted various studies for the purpose of suppressing the reaction between the R component in the R-Fe-B-based magnetic powder and the binder and reducing the amount of residual carbon and oxygen. in the place of R-Fe-B alloy raw material powder of the required single composition that is generally used, R 2 Fe 14
A main phase alloy powder having an average particle diameter of 1 to 5 μm having a B phase as a main phase, and a part of R 2 (FeCo) 14 B phase or the like as an intermetallic compound phase of Co or Fe and R including an R 3 Co phase. Containing a large amount of rare earth metal, and having an average particle diameter of 8 to larger than the main phase alloy so as to minimize the reaction with the organic binder.
A raw material obtained by mixing two types of raw materials of a liquid phase compound powder of 40 μm in a predetermined ratio is mixed, and a binder is added, kneaded,
By injection molding, debinding, and sintering, R-F
It has been found that the amount of residual oxygen and the amount of carbon in the e-B sintered body can be significantly reduced, the formability during injection molding can be improved, and a sintered magnet having a three-dimensionally complicated shape can be obtained. Further, the inventors further studied various methods for suppressing the reaction between the R component of the magnetic powder particles and the binder as much as possible and obtaining stable magnetic properties. As a result, particularly from the main phase alloy powder and the liquid phase compound powder, When an R-Fe-B-based alloy powder is used, a predetermined amount of a fine powder of a transition metal powder is further mixed with the alloy powder, and the surface of the magnetic powder particles is reduced by mechanofusion treatment in an inert atmosphere. After coating with transition metal powder,
The surface is diffused by heat treatment to make the coating dense and uniform, so that the coating completely separates the R component of the magnetic powder particles from the binder, and the process of kneading the binder, injection molding, debinding, and sintering is performed. Have found that the reaction between the R component of the magnetic powder particles and the binder can be prevented, and have completed the present invention.

【0010】すなわち、この発明は、R(但しRはYを
含む希土類元素のうち少なくとも1種)11原子%〜1
3原子%、B4原子%〜12原子%、残部Fe及び不可
避的不純物からなるR2Fe14B相を主相とする平均粒
径1〜5μmの主相系合金粉末と、R3Co相を含むC
o又はFeとRとの金属間化合物相に一部R2(FeC
o)14B相等を含み、R(但しRはYを含む希土類元素
のうち少なくとも1種)13原子%〜45原子%、B1
2原子%以下、残部Co(但しCoの1部あるいは大部
分をFeにて置換できる)及び不可避的不純物からなる
平均粒径8〜40μmの液相系化合物粉末の2種類の原
料粉末を配合混合した原料粉末を用い、バインダー添
加、混練後、射出成形を行うことを特徴とする射出成形
法によるR−Fe−B系焼結磁石の製造方法である。
That is, the present invention relates to a method for producing a compound comprising R (where R is at least one kind of rare earth element containing Y) of 11 atomic% to 1 atomic%.
A main phase-based alloy powder having an average particle diameter of 1 to 5 μm having a main phase of R 2 Fe 14 B phase composed of 3 atomic%, B 4 atomic% to 12 atomic%, balance Fe and unavoidable impurities, and R 3 Co phase Including C
o or a part of R 2 (FeC
o) 13 atomic% to 45 atomic% containing 14 B phase or the like, and R (where R is at least one of rare earth elements including Y);
Mixing and mixing two kinds of raw material powders of 2 atomic% or less, the balance Co (however, part or most of Co can be replaced by Fe), and liquid phase compound powder having an average particle size of 8 to 40 μm consisting of unavoidable impurities A method for producing an R-Fe-B sintered magnet by an injection molding method, which comprises adding a binder, kneading, and then performing injection molding using the obtained raw material powder.

【0011】また、この発明は、上記の構成において、
主相系合金粉末及び/又は液相系化合物粉末の表面に樹
脂あるいは遷移金属を被覆したことを特徴とする射出成
形法による焼結異方性磁石の製造方法を提案するもので
ある。さらに、この発明は、上記の構成において、主相
系合金粉末と液相系化合物粉末を配合した原料粉末に、
所定温度によりゾル・ゲル反応を起こす有機バインダー
としてメチルセルロース及び/又は寒天と水を加えて磁
場中で射出成形により成形体となし、該成形体を脱バイ
ンダー後に焼結して、焼結体が含有する炭素量を130
0ppm以下、酸素量10000ppm以下にすること
を特徴とし、好ましくは焼結体が含有する炭素量を10
00ppm以下、酸素量を9000ppm以下、最も好
ましくは焼結体が含有する炭素量を800ppm以下、
酸素量を8000ppm以下にすることを特徴とする射
出成形法によるR−Fe−B系焼結磁石の製造方法であ
る。
[0011] Further, according to the present invention, in the above structure,
The present invention proposes a method for producing a sintered anisotropic magnet by injection molding, wherein a surface of a main phase alloy powder and / or a liquid phase compound powder is coated with a resin or a transition metal. Further, the present invention, in the above configuration, the raw material powder blended with the main phase alloy powder and the liquid phase compound powder,
Methylcellulose and / or agar and water are added as an organic binder that causes a sol-gel reaction at a predetermined temperature, and a molded body is formed by injection molding in a magnetic field, and the molded body is sintered after debinding and contains a sintered body. 130 carbon
0 ppm or less, and the oxygen content is 10000 ppm or less, and preferably the carbon content of the sintered body is 10 ppm or less.
00 ppm or less, oxygen content of 9000 ppm or less, most preferably 800 ppm or less of carbon content contained in the sintered body,
This is a method for producing an R-Fe-B-based sintered magnet by injection molding, characterized in that the oxygen content is 8000 ppm or less.

【0012】この発明は、R−Fe−B系合金粉末とし
て、R(但しRはYを含む希土類元素のうち少なくとも
1種)11原子%〜13原子%、B4原子%〜12原子
%、残部Fe及び不可避的不純物からなるR2Fe14
相を主相とする平均粒径1〜5μmの主相系合金粉末
と、R3Co相を含むCo又はFeとRとの金属間化合
物相に一部R2(FeCo)14B相等を含み、R(但し
RはYを含む希土類元素のうち少なくとも1種)13原
子%〜45原子%、B12原子%以下、残部Co(但し
Coの1部あるいは大部分をFeにて置換できる)及び
不可避的不純物からなる平均粒径8〜40μmの液相系
化合物粉末を所定の割合で配合混合し、混合後の平均粒
度が20μm程度以下の範囲にある合金粉末を用いるこ
とを特徴とする。これらの合金粉末を用い2種類の原料
の平均粒度を変えると同時に、希土類元素の酸化物の発
生を見込んで予め過剰のR成分を添加することにより、
過剰の液相系化合物粉末の添加により焼結時の液相の発
現を充分にすることが可能で、R成分とバインダーとの
反応による磁気特性の劣化を防止することができる。
According to the present invention, as an R-Fe-B alloy powder, R (where R is at least one of rare earth elements including Y) 11 at% to 13 at%, B 4 at% to 12 at%, the balance R 2 Fe 14 B composed of Fe and unavoidable impurities
Main phase alloy powder having an average particle diameter of 1 to 5 μm having a main phase as a main phase, and an intermetallic compound phase of Co or Fe and R including an R 3 Co phase partially including an R 2 (FeCo) 14 B phase and the like , R (where R is at least one of the rare earth elements including Y) 13 atomic% to 45 atomic%, B 12 atomic% or less, the balance Co (however, part or most of Co can be replaced by Fe) and inevitable Liquid phase compound powder having an average particle size of 8 to 40 μm, which is composed of chemical impurities, is mixed and mixed at a predetermined ratio, and an alloy powder having an average particle size after mixing in the range of about 20 μm or less is used. By using these alloy powders and changing the average particle size of the two types of raw materials, and by adding an excess R component in advance in consideration of the generation of rare earth element oxides,
The addition of an excessive amount of the liquid phase compound powder makes it possible to sufficiently develop a liquid phase at the time of sintering, and it is possible to prevent deterioration of magnetic properties due to the reaction between the R component and the binder.

【0013】上記の配合合金粉末において、主相系合金
粉末を得るには、Rが11原子%未満では合金溶製時に
晶出するα−Fe相が増加し、13原子%を超えると、
Rリッチ相が増加し、主相とRリッチ相を均一に分散さ
せることが困難なため、Rは11原子%〜13原子%の
範囲とする。また、Bは、4原子%未満では、高い保磁
力(iHc)が得られず、12原子%を超えると、残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られないため、Bは4原子%〜12原子%の範囲とす
る。さらに、残部はFe及び不可避的不純物からなり、
Feは75原子%〜85原子%の範囲が好ましい、Fe
は75原子%未満では相対的に希土類元素がリッチとな
り、Rリッチ相が増加し、85原子%を超えると相対的
に希土類元素が少なくなり、残留Fe部が増加し不均一
な合金粉末となる。主相系合金粉末中のCoは、R2
14B主相中のFeと置換されて保磁力を低下させるた
め、Coは10原子%以下が好ましい。ただし、上述の
CoでFeの一部を置換した場合、Feは62原子%〜
85原子%の範囲である。主相系合金粉末は、含有酸素
量の低減および組織の均一性からも、Rリッチ相が全く
ないことが望ましいが、全体の4wt%以下であれば、
含有酸素量の低減を大きく損なうことがない。
In the above compounded alloy powder, in order to obtain a main phase alloy powder, when R is less than 11 at%, the α-Fe phase crystallized during alloy melting increases, and when R exceeds 13 at%,
Since the R-rich phase increases and it is difficult to uniformly disperse the main phase and the R-rich phase, R is set in the range of 11 atomic% to 13 atomic%. If B is less than 4 atomic%, a high coercive force (iHc) cannot be obtained, and if it exceeds 12 atomic%, the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. B is in the range of 4 to 12 atomic%. Further, the balance consists of Fe and inevitable impurities,
Fe is preferably in a range of 75 atomic% to 85 atomic%.
When the content is less than 75 at%, the rare earth element becomes relatively rich and the R-rich phase increases, and when it exceeds 85 at%, the rare earth element becomes relatively small, the residual Fe portion increases, and the alloy powder becomes non-uniform. . Co in the main phase alloy powder is R 2 F
Co is preferably at most 10 atomic% in order to reduce the coercive force by being replaced by Fe in the e 14 B main phase. However, when a part of Fe is substituted by the above-mentioned Co, the content of Fe is 62 atomic% or more.
The range is 85 atomic%. It is desirable that the main phase-based alloy powder has no R-rich phase at all from the viewpoint of reduction of oxygen content and uniformity of the structure.
The reduction in the oxygen content is not significantly impaired.

【0014】R3Co相を含むCo又はFeとRとの金
属間化合物相(但しCoの1部あるいは大部分をFeに
て置換できる)からなる液相系化合物粉末は、R3Co
相あるいはR3Co相のCoの一部Feで置換された相
とからなり、中心相が、RCo5、R2Co7、RCo3
RCo2、R2Co3、R2Fe17、RFe2、Nd2
17、Nd5Co19、Dy6Fe2、DyFe等、及び前
記金属間化合物相とR2(FeCo)14B、R1.11(F
eCo)44等のいずれかからなる合金粉末である。液
相系化合物粉末の組成は、前述の如く、目的組成の希土
類元素の種類とその量に応じて、金属間化合物の含有希
土類元素比率を変化させる。しかし、Rが13原子%未
満では、主相系原料と配合して磁石を製造する際に、焼
結時の液相の発現が十分でなく、また45原子%を超え
ると含有酸素量の増加を招き好ましくない。また、Co
は、液相系化合物粉末において、1原子%以上必要で好
ましくは3〜20原子%であり、残部はFeで置換でき
る。さらに、Bは12原子%を超えるとR2(FeC
o)14B相以外にB−rich相やFe−B化合物等が
余剰に存在することとなるので好ましくない。さらに、
主相系合金粉末および/またはR3Co相を含むCo又
はFeとRとの金属間化合物相及びR2(FeCo)14
B相等からなる液相系化合物粉末に、Cu、S、Ni、
Ti、Si、V、Nb、Ta、Cr、Mo、W、Mn、
Al、Sb、Ge、Sn、Zr、Hf、Ca、Mg、S
r、Ba、Be、のうち少なくとも1種を添加含有させ
ることにより、得られる永久磁石の高保磁力化、高耐食
性化、温度特性の改善が可能になる。これらの添加元素
は通常合計量で10at%以下が望ましく、添加元素に
応じて合計量を5at%以下、3at%以下等適宜選定
することが望ましい。
A liquid phase compound powder composed of an intermetallic compound phase of Co or Fe and R containing an R 3 Co phase (a part or most of Co can be replaced by Fe) is R 3 Co.
Phase or a phase in which Co of the R 3 Co phase is partially substituted with Fe, and the central phase is RCo 5 , R 2 Co 7 , RCo 3 ,
RCo 2 , R 2 Co 3 , R 2 Fe 17 , RFe 2, Nd 2 C
o 17 , Nd 5 Co 19 , Dy 6 Fe 2 , DyFe, etc., and the intermetallic compound phase and R 2 (FeCo) 14 B, R 1.11 (F
eCo) 4 B 4 or any other alloy powder. As described above, the composition of the liquid phase compound powder changes the ratio of the rare earth element contained in the intermetallic compound according to the type and amount of the rare earth element of the target composition. However, when R is less than 13 atomic%, the liquid phase is not sufficiently developed during sintering when a magnet is produced by blending with the main phase raw material, and when it exceeds 45 atomic%, the oxygen content increases. Is not preferred. Also, Co
Is 1 atomic% or more and preferably 3 to 20 atomic% in the liquid phase compound powder, and the remainder can be replaced by Fe. Further, when B exceeds 12 atomic%, R 2 (FeC
o) In addition to the 14 B phase, a B-rich phase, an Fe-B compound and the like are present in excess, which is not preferable. further,
Intermetallic compound phase of Co or Fe and R containing main phase alloy powder and / or R 3 Co phase and R 2 (FeCo) 14
Cu, S, Ni,
Ti, Si, V, Nb, Ta, Cr, Mo, W, Mn,
Al, Sb, Ge, Sn, Zr, Hf, Ca, Mg, S
By adding and including at least one of r, Ba, and Be, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained permanent magnet. Usually, the total amount of these additive elements is desirably 10 at% or less, and the total amount is desirably appropriately selected such as 5 at% or less, 3 at% or less according to the additive elements.

【0015】上記の配合合金粉末において、主相系合金
粉末の平均粒度が1μm未満では合金粉末の表面積が増
大するため、混練物とするためのバインダー添加量を合
金粉末との容積比で、1:1.2に増加させる必要があ
り、射出成形後の焼結品の焼結密度が95%程度と低下
するため好ましくなく、また、5μmを超える平均粒径
では粒径が大きすぎて焼結密度が95%程度で飽和し、
該密度の向上が望めないため、平均粒度は1〜5μmの
範囲が好ましい。
In the above-mentioned compounded alloy powder, if the average particle size of the main phase alloy powder is less than 1 μm, the surface area of the alloy powder is increased. : It is necessary to increase the sintering density to 1.2, which is not preferable because the sintering density of the sintered product after injection molding is reduced to about 95%, and the average particle size exceeding 5 μm is too large for sintering. Saturates at about 95% density,
Since no improvement in the density can be expected, the average particle size is preferably in the range of 1 to 5 μm.

【0016】一方、液相系化合物粉末の平均粒度は、8
μm未満ではバインダーとの反応が単一組成の合金粉末
(1〜10μmの平均粒度)と同程度であり、主成分系
粉末への添加の効果がほとんど見られない。また液相系
化合物粉末の平均粒度が、40μmを超えるとバインダ
ーとの反応はかなり抑制されるが、逆に焼結時の焼結性
が悪化し、焼結密度が低下すると同時に保磁力が低下す
るので、液相系の合金粉末の平均粒径は8〜40μmが
好ましい。また、主相系合金粉末と液相系化合物粉末
は、70〜99:30〜1の比率で配合することがで
き、さらに70〜97:30〜3が好ましく、磁石特性
に応じた複数種組成の合金粉末を得ることができる。こ
のような比率で配合することによって、平均粒度1〜5
μmの主成分系合金粉末と、平均粒度8〜40μmの液
相系合金粉末とからなる混合粉末の全体としての平均粒
度が先の単一組成の合金粉末と同程度の平均粒度20μ
m程度以下、好ましくは10μm程度以下の合金粉末と
なる。
On the other hand, the average particle size of the liquid phase compound powder is 8
If it is less than μm, the reaction with the binder is almost the same as that of the alloy powder having a single composition (average particle size of 1 to 10 μm), and the effect of addition to the main component-based powder is hardly observed. When the average particle size of the liquid phase compound powder exceeds 40 μm, the reaction with the binder is considerably suppressed, but on the contrary, the sinterability during sintering deteriorates, the sintering density decreases, and simultaneously the coercive force decreases. Therefore, the average particle size of the liquid phase alloy powder is preferably 8 to 40 μm. Further, the main phase-based alloy powder and the liquid phase-based compound powder can be blended in a ratio of 70 to 99:30 to 1, preferably 70 to 97:30 to 3, and more than one composition depending on the magnetic properties. Can be obtained. By blending in such a ratio, the average particle size is 1 to 5
The average particle size of the mixed powder composed of the main component-based alloy powder of μm and the liquid phase alloy powder having the average particle size of 8 to 40 μm is 20 μm, which is the same as that of the alloy powder of the single composition.
m or less, preferably about 10 μm or less.

【0017】上述のR−Fe−B系合金粉末の製造方法
としては、溶解・粉化法、超急冷法、直接還元拡散法、
水素含有崩壊法、アトマイズ法等の公知の方法を適宜選
定し、所要平均粒度の合金粉末を得ることができる。い
ずれのR−Fe−B系合金粉末を用いても、平均粒度を
それぞれ好ましい範囲とすることにより、一般的な射出
成形用の遷移金属粉末、例えばFe基合金粉末やCo基
合金粉末等の場合よりも、平均粒度が数分の1から10
分の1程度となり、該遷移金属粉末を射出成形する際に
用いるバインダーの添加量よりも、大幅にバインダーの
添加量を低減することができる。
The method for producing the above-mentioned R-Fe-B alloy powder includes a melting / pulverizing method, a super-quenching method, a direct reduction diffusion method,
A known method such as a hydrogen-containing disintegration method or an atomizing method can be appropriately selected to obtain an alloy powder having a required average particle size. Regardless of which R-Fe-B-based alloy powder is used, by setting the average particle size to a preferable range, a transition metal powder for general injection molding, such as an Fe-based alloy powder or a Co-based alloy powder, may be used. Than average particle size from a fraction to 10
That is, the amount of the binder can be significantly reduced as compared with the amount of the binder used when injection-molding the transition metal powder.

【0018】樹脂被覆 この発明において、上述の合金粉末、すなわち主相系合
金粉末および/または液相系化合物粉末に樹脂を被覆す
ることは、バインダー混練後の水とのR元素の反応、成
形時のゲル化段階及び射出成形後の脱水処理時の水との
R元素の反応を抑え、残留酸素量の安定化及び低減化を
図るために有効である。R−Fe−B系合金粉末に被覆
する樹脂としては、ポリメチルメタクリレート(PMM
A)、ポリメチルアクリレート(PMA)等のメタクリ
ル樹脂、ポリプロピレン、ポリスチレン、ポリ酢酸ビニ
ル、ポリ塩化ビニル、ポリエチレン、ポリアクリロニト
リル等の熱可塑性樹脂の単独または複合したものを用い
ることが好ましい。樹脂の添加量は、合金粉末に対して
0.30wt%以下が好ましい、これは樹脂の被覆膜厚
が50Å〜200Åに相当し、0.30wt%を超える
と被覆樹脂からの残留酸素量が増加するために好ましく
ない。被覆の方法は、通称メカノフュージョンシステム
あるいはハイブリダイゼーションシステムと呼ばれる方
法やボールミルを用いる方法であり、被覆用樹脂粉末の
粒径としては1000Å〜5000Å位が好ましい。こ
のように樹脂被覆した合金粉末は、残留酸素量の点で比
較的安定であるために、射出成形時のリサイクルが可能
であるという利点がある。また樹脂被覆した合金粉末で
は、混練時に滑剤を添加しなくても射出成形できる利点
もある。
Resin Coating In the present invention, coating the above-mentioned alloy powder, that is, the main phase alloy powder and / or the liquid phase compound powder, with a resin is performed by the reaction of the R element with water after kneading the binder, and the molding at the time of molding. This is effective for suppressing the reaction of the R element with water during the gelation step and the dehydration treatment after injection molding, and stabilizing and reducing the amount of residual oxygen. Polymethyl methacrylate (PMM) is used as the resin for coating the R-Fe-B alloy powder.
A), methacrylic resins such as polymethyl acrylate (PMA), and thermoplastic resins such as polypropylene, polystyrene, polyvinyl acetate, polyvinyl chloride, polyethylene, and polyacrylonitrile, alone or in combination, are preferably used. The amount of the resin added is preferably 0.30% by weight or less based on the alloy powder. This corresponds to a resin coating thickness of 50 ° to 200 °, and if it exceeds 0.30% by weight, the amount of residual oxygen from the coating resin is reduced. It is not preferable to increase. The coating method is a method commonly called a mechanofusion system or a hybridization system, or a method using a ball mill. The particle size of the resin powder for coating is preferably about 1,000 to 5,000. Since the alloy powder coated with the resin is relatively stable in the amount of residual oxygen, there is an advantage that the alloy powder can be recycled at the time of injection molding. The resin-coated alloy powder also has an advantage that injection molding can be performed without adding a lubricant during kneading.

【0019】また、磁性粉末粒子のR成分とバインダー
との反応を極力抑えるために、上述した主相系合金粉末
及び液相系化合物粉末からなるR−Fe−B系合金粉末
を用いる場合、該合金粉末にさらに所定量の遷移金属粉
の微粉末を混合して、不活性雰囲気中でメカノフュージ
ョン処理により磁性粉末粒子の表面を微粉末の遷移金属
粉で被覆した後、熱処理により表面拡散させて被膜を緻
密でしかも均一にし、該被膜によって磁性粉末粒子のR
成分とバインダーとを完全に隔離した原料粉末を利用す
ることができる。この被覆用の遷移金属としては、希土
類元素を除く遷移金属であり、なかでもFe,Ni,C
u等が好ましく、特にR−Fe−B系の磁性粉末中に最
も多く含有されているFe元素は、磁性粉末の成分を前
もって調整しておけば、添加量の制約がなく、また展延
性に富むためにメカノフュージョン処理中に磁性粉末粒
子の周囲に比較的均一な被膜を形成しやすく、しかも比
較的入手しやすいために最も好ましい。また遷移金属粉
は、バインダーと反応して炭化物、酸化物等の化合物を
形成しても、真空中もしくは一時的な水素流気により比
較的低温で簡単に脱酸素、脱炭素されるので、R−Fe
−B系の射出成形による焼結磁石用合金粉末の被覆には
好都合である。さらに、付着又は被覆用遷移金属粉の平
均粒径は0.02μm未満では遷移金属粉自体が非常に
活性化して酸化物になってしまい、金属特有の展延性に
乏しくなり、1μmを超えるとメカノフュージョンによ
る被覆処理時に磁性粉末粒子への遷移金属微粉末の付着
が不十分になり、被覆膜に欠陥が発生しやすくなるた
め、0.02μm〜1μmが好ましい。上記の遷移金属
からなる被膜を有する磁性粉末粒子の表面に、さらに先
に説明した樹脂被覆を施すことによって、磁性粉末粒子
中のR成分とバインダーや水との反応を一層低減するこ
とができ、磁気特性の優れたR−Fe−B系焼結磁石を
得ることが可能となる。
In order to minimize the reaction between the R component of the magnetic powder particles and the binder, when the R-Fe-B-based alloy powder composed of the main phase-based alloy powder and the liquid phase-based compound powder is used, A predetermined amount of transition metal powder is further mixed with the alloy powder, and the surface of the magnetic powder particles is coated with the fine transition metal powder by mechanofusion treatment in an inert atmosphere, and then the surface is diffused by heat treatment. The coating is made dense and uniform, and the R
Raw material powder in which the components and the binder are completely separated can be used. The transition metal for the coating is a transition metal excluding rare earth elements, and among them, Fe, Ni, C
u and the like are preferable, and particularly, the Fe element most contained in the R-Fe-B-based magnetic powder has no restriction on the addition amount if the components of the magnetic powder are adjusted in advance, and also has an excellent spreadability. It is most preferable because it is easy to form a relatively uniform coating around the magnetic powder particles during the mechanofusion treatment due to the richness and it is relatively easy to obtain. Even if the transition metal powder reacts with the binder to form compounds such as carbides and oxides, it is easily deoxygenated and decarbonized at a relatively low temperature in a vacuum or by a temporary hydrogen flow. -Fe
-It is convenient for coating of alloy powder for sintered magnets by injection molding of B type. Further, if the average particle size of the transition metal powder for adhesion or coating is less than 0.02 μm, the transition metal powder itself is very activated and becomes an oxide, and the spreadability peculiar to the metal is poor. The thickness is preferably 0.02 μm to 1 μm because the transition metal fine powder is insufficiently adhered to the magnetic powder particles at the time of coating treatment by fusion, and defects are easily generated in the coating film. By applying the resin coating described above to the surface of the magnetic powder particles having the coating of the transition metal, the reaction between the R component in the magnetic powder particles and the binder or water can be further reduced, It is possible to obtain an R-Fe-B based sintered magnet having excellent magnetic properties.

【0020】バインダー成分 この発明において、射出成形用のバインダーには、所定
温度によりゾル・ゲル変態を起こすメチルセルロースま
たは寒天あるいはそれらを複合したものに水を添加した
ものを用いる。バインダーとして、メチルセルロースを
単独で用いる場合の含有量は、0.05wt%未満では
成形時の強度が著しく低下し、また0.50wt%を越
えると、残留炭素量と酸素量が増加して保磁力が下がり
磁気特性が劣化するので、0.05wt%〜0.50w
t%の含有量がこれらの点で好ましい。さらに0.1w
t%〜0.45wt%が望ましく、0.15wt%〜
0.4wt%が最も望ましい。寒天を単独で用いる場合
の含有量は、0.2wt%未満では成形時の強度が著し
く低下し、また4.0wt%を越えると、残留炭素量と
酸素量が増加して保磁力が下がり、磁気特性が劣化する
ので、0.2wt%〜4.0wt%の含有量がこれらの
点で好ましい。さらに、0.5wt%〜3.5wt%が
望ましく、0.5wt%〜2.5wt%が最も望まし
い。またメチルセルロースと寒天を複合して用いる場合
は、0.2wt%未満になると成形時の強度が著しく低
下するとともに成形金型と成形体との離型性が悪化する
ため好ましくなく、また、4.0wt%を超えると焼結
後の焼結密度が低下するとともに残留炭素量と酸素量が
増加して得られる磁石の特性が劣化し好ましくないた
め、0.2wt%〜4.0wt%が好ましい。ただし、
メチルセルロースの含有量は、上記メチルセルロースを
単独で含有する場合の範囲を超えて含有することは望ま
しくなく、又、合計の含有量も3.5wt%以下、2.
5wt%以下が望ましい。
Binder Component In the present invention, a binder obtained by adding water to methylcellulose or agar or a composite thereof, which undergoes sol-gel transformation at a predetermined temperature, is used as a binder for injection molding. When methylcellulose is used alone as a binder, the content at the time of less than 0.05% by weight significantly decreases the strength at the time of molding, and when it exceeds 0.50% by weight, the residual carbon content and the oxygen content increase to increase the coercive force. And the magnetic characteristics deteriorate, so that 0.05 wt% to 0.50 w
A content of t% is preferred in these respects. 0.1w
t% to 0.45 wt% is desirable, and 0.15 wt% to
0.4 wt% is most desirable. If the content of agar alone is less than 0.2 wt%, the strength at the time of molding is significantly reduced, and if it exceeds 4.0 wt%, the residual carbon content and the oxygen content are increased and the coercive force is reduced, Since magnetic properties deteriorate, a content of 0.2 wt% to 4.0 wt% is preferable in these respects. Furthermore, 0.5 wt% to 3.5 wt% is desirable, and 0.5 wt% to 2.5 wt% is most desirable. When methyl cellulose and agar are used in combination, if the content is less than 0.2 wt%, the strength at the time of molding is remarkably reduced, and the releasability between the molding die and the molded body is deteriorated. If it exceeds 0 wt%, the sintered density after sintering will decrease and the residual carbon content and oxygen content will increase, resulting in deterioration of the properties of the magnet, which is undesirable. Therefore, 0.2 wt% to 4.0 wt% is preferable. However,
It is not desirable that the content of methylcellulose exceeds the range in the case where the above-mentioned methylcellulose is contained alone, and the total content is 3.5 wt% or less.
5 wt% or less is desirable.

【0021】この発明において、バインダーとしてメチ
ルセルロースおよび/または寒天とともに水を使用する
ことを特徴とするが、Rとの反応を抑制するために、脱
酸素処理した純水を使用することが望ましい。メチルセ
ルロースを単独で用いる場合の水の含有量は6wt%未
満では成形時の流動性が悪くなり、ショート・ショット
が発生しやすくなり、16wt%を越えると実質総バイ
ンダー量が増加するために、焼結後の焼結密度が低下す
ると同時に残留酸素量が増加し、磁気特性が劣化するの
で、6〜16wt%が最も好ましい。寒天を単独で用い
る場合の水の含有量は8wt%未満では成形時の流動性
が悪くなり、ショート・ショットが発生しやすくなり、
18wt%を越えると実質総バインダー量が増加するた
めに、焼結後の焼結密度が低下すると同時に残留酸素量
が増加し、磁気特性が劣化するので、8〜18wt%が
最も好ましい。またメチルセルロースと寒天を複合して
用いる場合は、メチルセルロースと寒天の割合を考慮し
て6〜18wt%の範囲から適宜選定される。
The present invention is characterized in that water is used together with methylcellulose and / or agar as a binder. In order to suppress the reaction with R, it is desirable to use deoxygenated pure water. When methylcellulose alone is used, if the water content is less than 6 wt%, the fluidity at the time of molding deteriorates, and short shots are liable to occur. Since the residual oxygen amount increases at the same time as the sintered density after sintering decreases, and the magnetic characteristics deteriorate, the content of 6 to 16 wt% is most preferable. If the content of water in the case of using agar alone is less than 8 wt%, the fluidity during molding is deteriorated, and short shots are liable to occur,
If it exceeds 18 wt%, the total amount of the binder increases, so that the sintered density decreases after sintering, the residual oxygen amount increases, and the magnetic properties deteriorate, so that 8 to 18 wt% is most preferable. When methyl cellulose and agar are used in combination, the ratio is appropriately selected from the range of 6 to 18 wt% in consideration of the ratio of methyl cellulose and agar.

【0022】また上述したバインダーにグリセリン、ワ
ックスエマルジョン、ステアリン酸、水溶性アクリル樹
脂等の滑剤のうち少なくとも1種を添加することも有効
であり、添加含有量は、バインダーがメチルセルロース
及び寒天である場合、ともに0.10wt%未満では成
形体の密度が不均一になりやすく、特にメチルセルロー
スを単独で用いる場合は0.30wt%を越えると、成
形体の強度が低下するので、0.10wt%〜0.30
wt%が最も好ましく、また、寒天を単独で用いる場合
も1.0wt%を越えると、同様に成形体の強度が低下
するので、0.10wt%〜1.0wt%が最も好まし
い。バインダーにメチルセルロースと寒天を複合して用
いる場合は、メチルセルロースと寒天の割合を考慮し
て、0.1wt%〜1.0wt%の範囲から適宜選定さ
れる。
It is also effective to add at least one kind of lubricant such as glycerin, wax emulsion, stearic acid, or water-soluble acrylic resin to the above-mentioned binder. If both are less than 0.10 wt%, the density of the molded body tends to be non-uniform. Particularly, when methyl cellulose alone is used, if it exceeds 0.30 wt%, the strength of the molded body is reduced. .30
wt% is most preferred, and when agar is used alone, if it exceeds 1.0 wt%, the strength of the molded body is similarly reduced. Therefore, 0.10 wt% to 1.0 wt% is most preferred. When methylcellulose and agar are used in combination as the binder, the ratio is appropriately selected from the range of 0.1 wt% to 1.0 wt% in consideration of the ratio of methylcellulose and agar.

【0023】射出成形条件 射出条件はバインダーの添加量に応じて変動するが、メ
チルセルロースを単独で用いる場合は、金型温度は70
℃〜90℃が好ましく、70℃未満では成形後の取出時
に固化が不十分で変形する恐れがあり、また90℃を超
えると混練物の流動性が悪くなる。また、寒天を単独で
用いる場合は金型温度は10℃〜30℃が好ましく、1
0℃未満では流動性が悪くなり、30℃を超えると成形
後の取出時に固化が不十分で変形する恐れがある。ま
た、射出温度は、メチルセルロースを単独で用いる場合
は0〜40℃が好ましく、0℃未満では混練物が凍って
しまい流動性が低下し、また40℃を超えると流動性が
不充分となりショート・ショットが発生しやすくなるた
め好ましくない。また、寒天を単独で用いる場合は、射
出温度は75〜95℃が好ましく、75℃未満では流動
性が不十分となりショート・ショットが発生しやすくな
り、また95℃を超えると成形体中に水の蒸発による気
泡が発生し、焼結後の焼結体中にボイドが発生する原因
となり、また、水の蒸発により、混練物の流動性が低下
し、該混練物が成形機内で詰まってしまう可能性がある
ため好ましくない。また、射出成形圧力は、30kg/
cm2未満ではウエルドが発生し成形密度が不均一にな
り、焼結後に曲がりやうねりが発生し、また、メチルセ
ルロースを単独で用いる場合は50kg/cm2を超え
ると、ばりが発生して好ましくないため、30〜50k
g/cm2が好ましく、また、寒天を単独で用いる場合
は70kg/cm2を超えると同様にばりが発生して好
ましくないため、圧力は30〜70kg/cm2が好ま
しい。従って、メチルセルロースと寒天を複合して用い
る場合は、メチルセルロースと寒天の割合を考慮して、
金型温度や射出温度及び射出成形圧力等を上記の範囲か
ら適宜選定するとよい。焼結異方性磁石を得るための磁
場中射出成形時の磁場が10kOe未満では配向が不十
分なため、10kOe以上の磁場中射出成形が好まし
い。
Injection molding conditions Injection conditions vary according to the amount of binder added.
C. to 90.degree. C. is preferable. If the temperature is lower than 70.degree. C., solidification may be insufficient at the time of removal after molding, which may cause deformation. If it exceeds 90.degree. When agar is used alone, the mold temperature is preferably from 10 ° C. to 30 ° C.
If the temperature is lower than 0 ° C., the fluidity is deteriorated. If the temperature is higher than 30 ° C., the solidification is insufficient at the time of removal after molding, which may cause deformation. The injection temperature is preferably from 0 to 40 ° C when methylcellulose is used alone. If the temperature is lower than 0 ° C, the kneaded material freezes and the fluidity decreases. If the temperature exceeds 40 ° C, the fluidity becomes insufficient and short-circuiting occurs. This is not preferable because shots are likely to occur. When agar is used alone, the injection temperature is preferably from 75 to 95 ° C. If the temperature is lower than 75 ° C, the fluidity is insufficient and short shots are likely to occur. The evaporation of water causes bubbles to occur, causing voids in the sintered body after sintering. In addition, due to the evaporation of water, the fluidity of the kneaded material is reduced, and the kneaded material is clogged in the molding machine. It is not preferable because there is a possibility. The injection molding pressure is 30 kg /
If it is less than 2 cm 2 , welding occurs and the molding density becomes non-uniform, bending or swelling occurs after sintering. Also, if methyl cellulose is used alone, if it exceeds 50 kg / cm 2 , burring will occur, which is not preferable. For 30-50k
g / cm 2 is preferred, also, since the burrs as well as the case of using agar alone exceeds 70 kg / cm 2 is not preferable occurs, the pressure is preferably 30~70kg / cm 2. Therefore, when using a combination of methylcellulose and agar, considering the ratio of methylcellulose and agar,
The mold temperature, injection temperature, injection molding pressure and the like may be appropriately selected from the above ranges. If the magnetic field at the time of injection molding in a magnetic field for obtaining a sintered anisotropic magnet is less than 10 kOe, orientation is insufficient, so that injection molding in a magnetic field of 10 kOe or more is preferable.

【0024】脱バインダー処理 脱バインダー処理の前工程として脱水処理を行うが、脱
バインダー処理とともに処理方法は特に限定しない。例
えば、脱水処理を昇温乾燥方法で行う場合、昇温温度は
選定した純水の添加量に応じて変動するが、少なくとも
20℃〜100℃までの昇温速度を30〜60℃/hr
にする必要があり、30℃/hr未満では処理品が酸化
する恐れがあり、60℃/hrを超えると水の急激な気
化蒸発のため、処理品にひび、割れを生じるため好まし
くない。特に処理品が小物である場合は、少なくとも2
0℃〜100℃までの昇温速度を45〜55℃/hrに
するとよく、脱水処理がより簡素化できる。また、10
0℃までの昇温中に水のほとんどが蒸発してしまうた
め、100℃を超える温度域での脱水処理は不要であ
る。引き続いて脱バインダー処理するが、昇温速度は、
100〜200℃/hrで脱バインダー処理できるの
で、通常の有機バインダーの場合よりも大幅に処理時間
を短縮できる利点がある。また、脱水処理を低温から高
温まで連続して行い、またR−Fe−B系合金粉末の酸
化を抑えるためには、脱水雰囲気を1×10-3Torr
以下の真空中で行うことが好ましい。なお、脱水処理後
は、引き続いて昇温加熱して焼結を行うことが好まし
く、500℃を超えてからの昇温速度は任意に選定すれ
ばよく、例えば100〜300℃/hrなど、焼結に際
して取られる公知の昇温方法を採用できる。
Debinding Treatment A dehydration treatment is performed as a pre-step of the debinding treatment, but the treatment method is not particularly limited together with the debinding treatment. For example, when the dehydration treatment is performed by a heating and drying method, the heating temperature varies depending on the amount of pure water selected, but at least the heating rate from 20 ° C to 100 ° C is 30 to 60 ° C / hr.
If the temperature is lower than 30 ° C./hr, the processed product may be oxidized. If the temperature is higher than 60 ° C./hr, the processed product may be cracked or cracked due to rapid vaporization and evaporation of water. In particular, if the processed product is small, at least 2
The rate of temperature rise from 0 ° C to 100 ° C is preferably 45 to 55 ° C / hr, and the dehydration treatment can be further simplified. Also, 10
Since most of the water evaporates during the temperature rise to 0 ° C., dehydration treatment in a temperature range exceeding 100 ° C. is unnecessary. Subsequently, the binder is removed, but the heating rate is
Since the binder can be removed at a temperature of 100 to 200 ° C./hr, there is an advantage that the processing time can be significantly shortened as compared with the case of a normal organic binder. Further, in order to perform the dehydration treatment continuously from a low temperature to a high temperature and to suppress the oxidation of the R-Fe-B-based alloy powder, the dehydration atmosphere is set to 1 × 10 −3 Torr.
It is preferable to carry out in the following vacuum. After the dehydration treatment, it is preferable to perform sintering by heating and heating continuously, and the heating rate after exceeding 500 ° C. may be arbitrarily selected. For example, the sintering may be performed at 100 to 300 ° C./hr. A well-known method of raising the temperature which is taken at the time of knotting can be adopted.

【0025】脱バインダー処理後の成形品の焼結並びに
焼結後の熱処理条件は、選定した合金粉末組成に応じて
適宜選定されるが、従来公知のFe−B−R系焼結永久
磁石の製造条件と同様でよい。好ましい焼結並びに焼結
後の熱処理条件としては、1000〜1180℃、1〜
2時間保持する焼結工程、450〜800℃、1〜8時
間保持する時効処理工程が好ましい。
The sintering of the molded article after the binder removal treatment and the heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder composition. It may be the same as the manufacturing conditions. Preferred sintering and heat treatment conditions after sintering are as follows:
A sintering step of holding for 2 hours and an aging step of holding at 450 to 800 ° C. for 1 to 8 hours are preferable.

【0026】この発明において、焼結体が含有する炭素
量と酸素量の上限を炭素量1300ppm以下、酸素量
を10000ppm以下、さらに炭素量を1000pp
m以下、酸素量を9000ppmを以下、特に最適条件
下においては炭素量を800ppm以下、酸素量を80
00ppm以下とすることができ、優れた磁気特性を有
する焼結磁石を得ることができる。従って、各条件によ
り、最大エネルギー積にて、4MGOe以上、10MG
Oe以上、15MGOe以上が得られ、特に好ましい条
件においては20MGOe以上が得られる。
In the present invention, the upper limit of the amount of carbon and oxygen contained in the sintered body is 1300 ppm or less for carbon, 10000 ppm or less for oxygen, and 1000 pp for carbon.
m, an oxygen content of 9000 ppm or less, particularly under optimum conditions, a carbon content of 800 ppm or less and an oxygen content of 80 ppm or less.
The content can be reduced to 00 ppm or less, and a sintered magnet having excellent magnetic properties can be obtained. Therefore, depending on each condition, at the maximum energy product, 4MGOe or more, 10MG
Oe or more and 15 MGOe or more are obtained, and under particularly preferable conditions, 20 MGOe or more is obtained.

【0027】[0027]

【作用】この発明の特徴である寒天は、一般に良く知ら
れているように、水の中で95℃前後に加熱すると溶解
して粘性のあるゾル状物質となり、約40℃以下に冷却
すると弾性のあるゲル状物質となって固化する。一方、
メチルセルロースは、水に溶解した後約50℃前後に加
熱すると溶解して粘性のあるゾル状物質となり、さらに
70℃以上に加熱すると弾性のあるゲル状物質となり、
一度ゲル化すると温度の変化にかかわらずゲル状態を維
持し、寒天バインダーとは温度に対して正反対にゾル・
ゲル反応を起こす。この両者の性質を利用すると、寒天
バインダーを主成分として考えると、メチルセルロース
の少量の添加により80℃前後の温度ではゾル状態の粘
度を向上させることができる。従って、メチルセルロー
スの僅かの添加により、通常の寒天バインダーの添加量
(約3wt%)の数分の1に減らすことが可能になる。
このように水分を多量に含む割りには、僅かの寒天バイ
ンダー量で粘弾性が発生するために、射出成形用のバイ
ンダーとしては総バインダー中の炭素含有量を大幅に減
らすことができるのである。また、脱脂時には100℃
までに総バインダー中の約99%の水分が蒸発除去され
るので、R−Fe−B粉末が活性になる温度では、すで
に大量の水分に起因する酸素が抜けた状態であるため
に、R−Fe−B合金粉末の酸化が大幅の抑えられる利
点がある。さらには、射出成形時の金型温度を100℃
以下にでき、磁場中での射出成形時に大きな着磁電流を
必要とせず、射出成形性を向上させて複雑な形状、特に
小型製品のR−Fe−B系焼結異方性磁石が得られる。
主相系合金粉末と液相系化合物粉末の2種類の原料の平
均粒度を変えると同時に、希土類元素の酸化物の発生を
見込んで予め過剰のR成分を添加することにより、過剰
の液相系化合物粉末の添加により焼結時の液相の発現を
充分にすることが可能で、R成分とバインダーとの反応
による磁気特性の劣化を防止することができる。
As is generally well known, agar, which is a feature of the present invention, dissolves into a viscous sol-like substance when heated to about 95 ° C. in water, and becomes elastic when cooled to about 40 ° C. or less. It becomes a viscous gel-like substance and solidifies. on the other hand,
Methylcellulose, when dissolved in water, is heated to about 50 ° C. to dissolve into a viscous sol-like substance, and further heated to 70 ° C. or higher to become an elastic gel-like substance,
Once gelled, the gel state is maintained regardless of the temperature change, and the sol
Causes a gel reaction. Utilizing both properties, when the agar binder is considered as a main component, the viscosity in the sol state can be improved at a temperature of about 80 ° C. by adding a small amount of methylcellulose. Therefore, the slight addition of methylcellulose makes it possible to reduce the addition amount of the usual agar binder (about 3 wt%) to a fraction.
In spite of such a large amount of water, viscoelasticity is generated with a small amount of agar binder, so that the carbon content in the total binder as a binder for injection molding can be significantly reduced. Also, 100 ° C at the time of degreasing
By the time, about 99% of the water in the total binder is removed by evaporation. At a temperature at which the R-Fe-B powder becomes active, since oxygen due to a large amount of water has already been released, R- There is an advantage that oxidation of the Fe-B alloy powder can be largely suppressed. Furthermore, the mold temperature during injection molding is set to 100 ° C.
It does not require a large magnetizing current at the time of injection molding in a magnetic field, improves injection moldability, and obtains an R-Fe-B sintered anisotropic magnet of a complicated shape, especially a small product. .
By changing the average particle size of the two types of raw materials, the main phase alloy powder and the liquid phase compound powder, and simultaneously adding an excess R component in anticipation of the generation of oxides of rare earth elements, the excess liquid phase By adding the compound powder, it is possible to sufficiently develop a liquid phase at the time of sintering, and it is possible to prevent the magnetic properties from deteriorating due to the reaction between the R component and the binder.

【0028】[0028]

【実施例】【Example】

実施例1 RとしてNd11.5原子%とPr0.2原子%、B
7.0原子%、残部はFeおよび不可避的不純物からな
る合金塊をArガス中で高周波加熱溶解して作成したボ
タン状溶製合金を粗粉砕した後、ジョークラッシャーな
どにより平均粒径約15μmに粗粉砕し、更にジェット
ミル粉砕により微粉砕して得た平均粒度3μmの主相原
料粉末と、Nd19.7原子%とPr0.8原子%、D
y1.1原子%、Co15.0原子%、B4.5原子
%、残部はFeからなる合金塊をArガス中で高周波加
熱溶解して作成したボタン状溶製合金をジョークラッシ
ャーなどにより平均粒径約14μmに粗粉砕した液相原
料粉末を重量比76:24の割合で配合し混合した。こ
の混合粉の分析値は、Nd13.4原子%とPr0.3
4原子%、Dy0.26原子%、Co3.6原子%、B
6.4原子%、残部はFeからなるものであった。上記
混合粉を用いて、表1に示す種類及び添加量のバインダ
ー、水、添加物を添加して室温で混練し、得られた混練
ペレットを表1に示す射出温度、金型温度に設定保持し
て20mm×20mm×3mmの板に磁場中(15kO
e)で射出成形した。なお、添加物にはグリセリンを使
用した。得られた成形体を、真空中で室温から100℃
まで昇温速度50℃/Hで昇温し、この温度で1時間保
持し完全脱水した後、500℃まで昇温速度100℃/
Hで昇温し脱バインダーを行った。更に加熱して110
0℃で1時間保持して焼結した。焼結完了後にArガス
を導入して7℃/分の速度で800℃まで冷却し、その
後100℃/時間で冷却して550℃、2時間保持する
時効処理を施した。得られた焼結体にはワレ、ヒビ、変
形等は全く見られなかった。この工程によって得られた
Nd−Fe−B焼結合金の特性を表2に示す。
Example 1 11.5 atomic% of Nd and 0.2 atomic% of Pr as R, B
A button-shaped ingot alloy produced by subjecting an alloy lump composed of 7.0 atomic% and the remainder to Fe and unavoidable impurities by high-frequency heating and melting in Ar gas is roughly pulverized and then reduced to an average particle size of about 15 μm by a jaw crusher or the like. The main phase raw material powder having an average particle size of 3 μm obtained by coarsely pulverizing and then finely pulverizing by jet mill pulverization, 19.7 atomic% of Nd and 0.8 atomic% of Pr, D
y1.1 at%, Co 15.0 at%, B 4.5 at%, the balance is a button-shaped smelting alloy produced by high-frequency heating and melting an alloy lump made of Fe in Ar gas using a jaw crusher or the like. The liquid phase raw material powder roughly crushed to about 14 μm was mixed and mixed at a weight ratio of 76:24. The analysis value of this mixed powder was Nd 13.4 atomic% and Pr 0.3
4 atomic%, Dy 0.26 atomic%, Co 3.6 atomic%, B
6.4 atomic%, with the balance being Fe. Using the above mixed powder, binders, water and additives of the types and amounts shown in Table 1 were added and kneaded at room temperature, and the obtained kneaded pellets were set and maintained at the injection temperature and mold temperature shown in Table 1. To a 20 mm x 20 mm x 3 mm plate in a magnetic field (15 kO
Injection molding was performed in e). Glycerin was used as an additive. The obtained molded body is heated in a vacuum from room temperature to 100 ° C.
The temperature was raised at a heating rate of 50 ° C./H until the temperature was maintained at this temperature for 1 hour to completely dehydrate.
The temperature was raised with H to remove the binder. Further heating 110
It was kept at 0 ° C. for 1 hour and sintered. After the completion of sintering, Ar gas was introduced to cool to 800 ° C. at a rate of 7 ° C./min, and then aging treatment was performed at 100 ° C./hour to hold at 550 ° C. for 2 hours. No cracks, cracks, deformation, etc. were observed in the obtained sintered body. Table 2 shows the characteristics of the Nd—Fe—B sintered alloy obtained by this step.

【0029】比較例 上記実施例と最終焼結体の成分が同一になるように各元
素のインゴットを秤量し、Arガス中で高周波加熱溶解
して作成したボタン状溶製合金を粗粉砕した後、ジョー
クラッシャーなどにより平均粒径約15μmに粗粉砕
し、更にジェットミル粉砕により微粉砕して得た平均粒
度3μmの原料粉末を得た。得られた原料粉末はNd1
3.3原子%とPr0.31原子%、Dy0.28原子
%、Co3.4原子%、B6.5原子%、残部はFeか
らなるものであった。この原料粉末と、バインダーとし
てアクリル系バインダーを容積比1:1で配合し、16
0℃で10分間加熱混練して射出成形用混練物となした
後、45℃に加熱した金型内に磁場強さ15kOe中で
射出成形して、長さ10mm×幅10mm×高さ5mm
の平板状の射出成形体を得た。射出成形体を3×10-4
Torrの真空中で350℃まで6℃/時間の昇温速度
で昇温する脱バインダー処理した後、実施例1と同一条
件で焼結、熱処理して焼結異方性磁石を得た。(比較例
1) また、実施例の試料No.1、No.2、No.3の混
合粉からなる合金粉末を上記の単一組成からなる合金粉
末に代える以外は実施例と全く同一条件により、実施例
の試料No.1に対応する比較例2、試料No.2に対
応する比較例3、試料No.3に対応する比較例4の磁
石を得た。得られた比較例磁石1〜4の磁石特性並びに
残留酸素量、残留炭素量の測定結果を実施例とともに表
2に示す。
Comparative Example After ingots of the respective elements were weighed so that the components of the final sintered body were the same as those of the above-mentioned example, and then melted by high-frequency heating in Ar gas, a button-shaped ingot alloy was roughly pulverized. The raw material powder having an average particle size of 3 μm was obtained by coarsely pulverizing to an average particle size of about 15 μm with a jaw crusher and the like, and then finely pulverizing by jet mill pulverization. The obtained raw material powder is Nd1
3.3 at%, Pr 0.31 at%, Dy 0.28 at%, Co 3.4 at%, B 6.5 at%, and the balance Fe. This raw material powder and an acrylic binder as a binder were blended at a volume ratio of 1: 1 to obtain a mixture.
After heating and kneading at 0 ° C. for 10 minutes to form a kneaded product for injection molding, injection molding was performed in a mold heated to 45 ° C. in a magnetic field strength of 15 kOe, and a length of 10 mm × width of 10 mm × height of 5 mm
Was obtained. 3 × 10 -4 injection molding
After debinding treatment in which the temperature was raised to 350 ° C. at a rate of 6 ° C./hour in a vacuum of Torr, sintering and heat treatment were performed under the same conditions as in Example 1 to obtain a sintered anisotropic magnet. (Comparative Example 1) Further, the sample No. 1, No. 2, No. Sample No. 3 of the example was produced under the same conditions as in the example except that the alloy powder composed of the mixed powder of Example 3 was replaced with the alloy powder composed of the single composition. Comparative Example 2, Sample No. 1 corresponding to Comparative Example 3, Sample No. 2 corresponding to Comparative Example 4 corresponding to No. 3 was obtained. Table 2 shows the measurement results of the magnet characteristics, the residual oxygen amount, and the residual carbon amount of the obtained comparative example magnets 1 to 4 together with the examples.

【0030】表2から明らかなように、従来のアクリル
系バインダーを用いた比較例1に対して、実施例の方が
残留酸素量、残留炭素量が大幅に減少しており、磁気特
性が格段にすぐれていることがわかる。また、比較例の
単一の組成のR−Fe−B系磁性粉を用いた場合より
も、この発明による平均粒径3μmの主成分系原料粉末
と平均粒径15μmの液相系原料粉末を混合した混合粉
を用いた方が、残留酸素量および残留炭素量は同程度な
がら、磁気特性がかなりすぐれていることがわかる。こ
れは希土類元素の消耗分を補うように、予め液相系原料
粉末を添加しているために、液相焼結が良好に進展した
ものと思われる。またR量の多い液相系化合物粉末の粒
径が大きいために、Rと水との酸化反応がかなり抑えら
れたこと、またバインダーのほとんどが水のために、主
成分系と液相系の合金粉末が活性になる温度では、すで
に水分が蒸発してなくなっていることなども磁気特性向
上の要因になっていると思われる。
As is apparent from Table 2, the amount of residual oxygen and the amount of residual carbon are significantly reduced in the example, and the magnetic characteristics are remarkably reduced, as compared with the comparative example 1 using the conventional acrylic binder. It turns out that it is excellent. Further, compared with the case of using the R-Fe-B-based magnetic powder having a single composition of the comparative example, the main component-based powder having an average particle diameter of 3 μm and the liquid phase-based powder having an average particle diameter of 15 μm according to the present invention were used. It can be seen that the magnetic characteristics are considerably better when the mixed powder is used, while the residual oxygen content and the residual carbon content are almost the same. This is presumably because liquid-phase sintering has progressed favorably because the liquid-phase raw material powder has been added in advance so as to compensate for the consumption of the rare earth element. The large particle size of the liquid phase compound powder having a large amount of R significantly suppressed the oxidation reaction between R and water. Most of the binder was water. At a temperature at which the alloy powder becomes active, the fact that water has already evaporated and disappears is also considered to be a factor in improving magnetic properties.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】実施例2 実施例1で得た混合粉末300gに、疎水性の平均粒径
0.15μmのポリメチルメタクリレート(PMMA)
を0.20wt%添加し、メカノフュージョンシステム
の容器内に投入し、温度を70℃に保持し、容器の回転
数を最高1800rpmで10分間保持して樹脂被覆
(膜厚約100Å)を行った微粉末の合金粉末を用い、
表3に示す種類及び添加量のバインダー、水、添加物を
添加して室温で混練し、得られた混練ペレットを表3に
示す射出温度、金型温度に設定保持して20mm×20
mm×3mmの板に磁場中(15kOe)で射出成形し
た。なお、添加物にはグリセリンを使用した。得られた
成形体を、真空中で室温から100℃まで昇温速度50
℃/Hで昇温し、この温度で1時間保持し完全脱水した
後、500℃まで昇温速度100℃/Hで昇温し脱バイ
ンダーを行った。更に加熱して1100℃で1時間保持
して焼結した。焼結完了後にArガスを導入して7℃/
分の速度で800℃まで冷却し、その後100℃/時間
で冷却して550℃、2時間保持する時効処理を施し
た。得られた焼結体にはワレ、ヒビ、変形等は全く見ら
れなかった。この工程によって得られたNd−Fe−B
焼結合金の特性を表4に示す。混合粉末の表面に樹脂を
被覆した本実施例による磁石と、表面に樹脂を被覆しな
い実施例1による磁石とは、磁石特性、残留酸素量、残
量炭素量はほぼ同程度であるが、本実施例による磁石は
表面に樹脂を被覆しているために、焼結前の成形体及び
混練物の状態では酸素に対して非常に安定であり、それ
らを数時放置した後においてもその含有酸素量はほとん
ど増加しなかった。これに対し、実施例1による樹脂を
被覆しない磁石は、成形体及び混練物の状態で数時間放
置するとその含有酸素量が急激に増加し、焼結後の磁石
特性も著しく低下していた。
Example 2 300 g of the mixed powder obtained in Example 1 was added to polymethyl methacrylate (PMMA) having a hydrophobic average particle size of 0.15 μm.
Was added into a container of a mechanofusion system, the temperature was maintained at 70 ° C., and the rotation speed of the container was maintained at a maximum of 1,800 rpm for 10 minutes to perform resin coating (film thickness: about 100 °). Using alloy powder of fine powder,
Binders, water and additives of the types and amounts shown in Table 3 were added and kneaded at room temperature. The obtained kneaded pellets were set at the injection temperature and mold temperature shown in Table 3 and maintained at 20 mm × 20.
The plate was injection molded in a magnetic field (15 kOe) on a 3 mm × 3 mm plate. Glycerin was used as an additive. The obtained molded body is heated in a vacuum from room temperature to 100 ° C. at a heating rate of 50 ° C.
After the temperature was raised at a rate of 100 ° C./H, the temperature was maintained for 1 hour to completely dehydrate, and then the temperature was raised to 500 ° C. at a rate of 100 ° C./H to remove the binder. It was further heated and held at 1100 ° C. for 1 hour for sintering. After sintering is completed, Ar gas is introduced and 7 ° C /
It was cooled to 800 ° C. at a rate of 1 minute, then cooled at 100 ° C./hour and subjected to an aging treatment at 550 ° C. for 2 hours. No cracks, cracks, deformation, etc. were observed in the obtained sintered body. Nd-Fe-B obtained by this process
Table 4 shows the properties of the sintered alloy. Although the magnet according to the present embodiment in which the surface of the mixed powder is coated with the resin and the magnet according to the embodiment 1 in which the surface is not coated with the resin have substantially the same magnet characteristics, residual oxygen amount, and residual carbon amount, Since the surface of the magnet according to the embodiment is coated with a resin, it is very stable against oxygen in the state of a molded body and a kneaded material before sintering, and even after leaving them for several hours, the oxygen content thereof is reduced. The amount hardly increased. On the other hand, when the magnet without resin coating according to Example 1 was left for several hours in the state of the molded body and the kneaded material, the oxygen content thereof increased sharply, and the magnet properties after sintering were significantly reduced.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】実施例3 実施例1で得た混合粉末に平均粒径0.02μmの微粉
末の鉄粉を7.0wt%添加し混合した混合粉をメカノ
フュージョン装置(ホソカワミクロン社製AM−20F
V)の容器内に投入し、アルゴンガスを封入した後、運
転中アームヘッドの温度が50℃以下になるように水冷
制御を行ないながら、回転数700rpmで3時間保持
してFe粉を被覆した合金粉末を作成した。この混合粉
と、表5に示す種類及び添加量のバインダー、水、添加
物を添加して室温で混練し、得られた混練ペレットを表
5に示す射出温度、金型温度に設定保持して20mm×
20mm×3mmの板に磁場中(15kOe)で射出成
形した。なお、添加物にはグリセリンを使用した。得ら
れた成形体を、真空中で室温から100℃まで昇温速度
50℃/Hで昇温し、この温度で1時間保持し完全脱水
した後、500℃まで昇温速度100℃/Hで昇温し脱
バインダーを行った。更に加熱して1100℃で1時間
保持して焼結した。焼結完了後にArガスを導入して7
℃/分の速度で800℃まで冷却し、その後100℃/
時間で冷却して550℃、2時間保持する時効処理を施
した。得られた焼結体にはワレ、ヒビ、変形等は全く見
られなかった。この工程によって得られたNd−Fe−
B焼結合金の特性を表6に示す。混合粉末の表面に鉄粉
を被覆した本実施例による磁石と、表面に鉄粉を被覆し
ない実施例1による磁石とは、磁石特性、残留酸素量、
残留炭素量はほぼ同程度であるが、本実施例による磁石
は表面に鉄粉を被覆しているために、焼結前の成形体及
び混練物の状態では酸素に対して非常に安定であり、そ
れらを数時間放置した後においてもその含有酸素量は殆
ど増加しなかった。これに対し、実施例1による鉄粉を
被覆しない磁石は、成形体及び混練物の状態で数時間放
置するとその含有酸素量が急激に増加し、焼結後の磁石
特性も著しく低下していた。
Example 3 A mixed powder obtained by adding 7.0 wt% of a fine iron powder having an average particle size of 0.02 μm to the mixed powder obtained in Example 1 and mixing the resultant was mixed with a mechanofusion device (AM-20F manufactured by Hosokawa Micron Corporation).
V), the vessel was charged with argon gas, and the Fe powder was coated by maintaining the arm head temperature at 50 ° C. or less during operation for 3 hours at 700 rpm while performing water cooling control. An alloy powder was prepared. The mixed powder, the binder, water, and additives of the types and amounts shown in Table 5 were added and kneaded at room temperature. The obtained kneaded pellets were set and maintained at the injection temperature and mold temperature shown in Table 5. 20mm ×
Injection molding was performed on a 20 mm × 3 mm plate in a magnetic field (15 kOe). Glycerin was used as an additive. The obtained molded body is heated in a vacuum from room temperature to 100 ° C. at a heating rate of 50 ° C./H, kept at this temperature for 1 hour and completely dehydrated, and then heated to 500 ° C. at a heating rate of 100 ° C./H. The temperature was raised to remove the binder. It was further heated and held at 1100 ° C. for 1 hour for sintering. After sintering is completed, Ar gas is
Cooled to 800 ° C. at a rate of 100 ° C./min.
An aging treatment of cooling at 550 ° C. for 2 hours was performed. No cracks, cracks, deformation, etc. were observed in the obtained sintered body. The Nd-Fe- obtained by this process
Table 6 shows the properties of the sintered B alloy. The magnet according to the present embodiment in which the surface of the mixed powder is coated with the iron powder and the magnet according to the embodiment 1 in which the surface is not coated with the iron powder have the following characteristics:
Although the residual carbon content is almost the same, the magnet according to the present embodiment is very stable against oxygen in the state of the molded body and the kneaded material before sintering because the surface is coated with iron powder. Even after leaving them for several hours, their oxygen content hardly increased. On the other hand, when the magnet not coated with iron powder according to Example 1 was left in the state of a compact and a kneaded material for several hours, the oxygen content increased sharply, and the magnet properties after sintering were significantly reduced. .

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【発明の効果】この発明は、R2Fe14B相を主相を有
する平均粒径1〜5μmの主成分系合金粉末と、R3
o相を含むCo又はFeとRとの金属間化合物相に一部
2(FeCo)14B相等を含み、極力有機バインダー
との反応を抑えるように、主成分系合金より平均粒径の
大きい平均粒径8〜40μmの希土類金属含有量の多い
液相系化合物粉末の2種類の原料を所定の割合で配合し
た後、メチルセルロース及び/又はバインダーと純水を
添加混練して、これを所要形状に射出成形することによ
り、射出成形時の成形性が向上して三次元的に複雑な形
状の焼結磁石を得ることができ、また得られた成形体を
特定昇温速度の脱水、脱バインダー処理することによ
り、脱バインダー時間が数時間に短縮されると同時に、
希土類元素の酸化物の発生を見込んで予め過剰のR成分
を添加することにより、処理時の希土類元素(R)との
反応を著しく抑制し、特に残留酸素量を低減して、磁気
特性の劣化を防止することができ、複雑な形状で磁気特
性のすぐれた焼結異方性磁石を得ることができる。ま
た、射出成形時の金型温度を100℃以下にでき、磁場
中での射出成形時に大きな着磁電流を必要とせず、複雑
な形状で磁気特性のすぐれた焼結異方性磁石を得ること
ができる。さらに、粉末表面に樹脂または遷移金属を被
覆することにより、焼結前の工程中における酸素量の増
加を抑制することができる。
According to the present invention, a main component-based alloy powder having a main phase of R 2 Fe 14 B and having an average particle size of 1 to 5 μm, and R 3 C
The intermetallic compound phase of Co or Fe and R including the o phase partially includes the R 2 (FeCo) 14 B phase and the like, and has an average particle size larger than that of the main component alloy so as to minimize the reaction with the organic binder. After mixing two kinds of raw materials of a liquid phase compound powder having a large rare earth metal content with an average particle diameter of 8 to 40 μm at a predetermined ratio, methyl cellulose and / or a binder and pure water are added and kneaded, and the mixture is formed into a desired shape. By injection molding, the moldability during injection molding is improved, and a sintered magnet having a three-dimensionally complicated shape can be obtained, and the obtained molded body is dehydrated and debindered at a specific heating rate. By processing, the binder removal time is reduced to several hours,
By adding an excess amount of the R component in advance in anticipation of the generation of the oxide of the rare earth element, the reaction with the rare earth element (R) during the treatment is remarkably suppressed, and in particular, the residual oxygen amount is reduced, and the magnetic properties are deteriorated. And a sintered anisotropic magnet having a complicated shape and excellent magnetic properties can be obtained. In addition, it is possible to obtain a sintered anisotropic magnet having a complicated shape and excellent magnetic properties without requiring a large magnetizing current at the time of injection molding in a magnetic field because the mold temperature during injection molding can be kept at 100 ° C. or less. Can be. Furthermore, by coating the surface of the powder with a resin or a transition metal, an increase in the amount of oxygen during the step before sintering can be suppressed.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち
少なくとも1種)11原子%〜13原子%、B4原子%
〜12原子%、残部Fe及び不可避的不純物からなるR
2Fe14B相を主相とする平均粒径1〜5μmの主相系
合金粉末と、R3Co相を含むCo又はFeとRとの金
属間化合物相に一部R2(FeCo)14B相等を含み、
R(但しRはYを含む希土類元素のうち少なくとも1
種)13原子%〜45原子%、B12原子%以下、残部
Co(但しCoの1部あるいは大部分をFeにて置換で
きる)及び不可避的不純物からなる平均粒径8〜40μ
mの液相系化合物粉末の2種類の原料粉末を配合混合し
た原料粉末を用い、バインダー添加、混練後、射出成形
を行うことを特徴とする射出成形法によるR−Fe−B
系焼結磁石の製造方法。
1. R (where R is at least one of rare earth elements including Y) 11 to 13 at%, B 4 at%
Up to 12 atomic%, the balance being Fe and unavoidable impurities
A main phase alloy powder having an average particle diameter of 1 to 5 μm having a main phase of 2 Fe 14 B phase, and a part of R 2 (FeCo) 14 in an intermetallic compound phase of Co or Fe and R including an R 3 Co phase Including phase B,
R (where R is at least one of the rare earth elements including Y
Seed) 13 atomic% to 45 atomic%, B 12 atomic% or less, average particle size of 8 to 40 μm consisting of Co (but Co can be partially or largely replaced by Fe) and unavoidable impurities
R-Fe-B by an injection molding method, wherein a raw material powder obtained by mixing and mixing two types of raw material powders of a liquid phase compound powder of m is added, kneaded, and then injection-molded.
Method for manufacturing sintered magnets.
【請求項2】 主相系合金粉末及び/又は液相系化合物
粉末の表面に樹脂を被覆したことを特徴とする請求項1
に記載の射出成形法による焼結異方性磁石の製造方法。
2. The resin according to claim 1, wherein the surface of the main phase alloy powder and / or the liquid phase compound powder is coated with a resin.
A method for producing a sintered anisotropic magnet by the injection molding method described in 1 above.
【請求項3】 主相系合金粉末及び/又は液相系化合物
粉末の表面に遷移金属を被覆したことを特徴とする請求
項1に記載の射出成形法による焼結異方性磁石の製造方
法。
3. The method for producing a sintered anisotropic magnet by injection molding according to claim 1, wherein the surface of the main phase alloy powder and / or the liquid phase compound powder is coated with a transition metal. .
【請求項4】 主相系合金粉末と液相系化合物粉末を配
合した原料粉末に、所定温度によりゾル・ゲル反応を起
こす有機バインダーとしてメチルセルロース及び/又は
寒天と水を加えて磁場中で射出成形により成形体とな
し、該成形体を脱バインダー後に焼結して、焼結体が含
有する炭素量を1300ppm以下、酸素量10000
ppm以下となしたことを特徴とする請求項1、請求項
2または請求項3に記載の射出成形法によるR−Fe−
B系焼結磁石の製造方法。
4. An injection molding in a magnetic field by adding methylcellulose and / or agar and water as an organic binder causing a sol-gel reaction at a predetermined temperature to a raw material powder in which a main phase alloy powder and a liquid phase compound powder are blended, and injection molding in a magnetic field. The sintered body is sintered after removing the binder to reduce the carbon content of the sintered body to 1300 ppm or less and the oxygen content of 10,000.
4. The R-Fe- by injection molding method according to claim 1, wherein the R-Fe-
A method for producing a B-based sintered magnet.
JP5180647A 1992-06-24 1993-06-24 Method for producing sintered R-Fe-B magnet by injection molding method Expired - Lifetime JP2954816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5180647A JP2954816B2 (en) 1992-06-24 1993-06-24 Method for producing sintered R-Fe-B magnet by injection molding method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP19172892 1992-06-24
JP4-289421 1992-10-01
JP4-191728 1992-10-01
JP28942092 1992-10-01
JP28942192 1992-10-01
JP4-289420 1992-10-01
JP5180647A JP2954816B2 (en) 1992-06-24 1993-06-24 Method for producing sintered R-Fe-B magnet by injection molding method

Publications (2)

Publication Number Publication Date
JPH06168811A JPH06168811A (en) 1994-06-14
JP2954816B2 true JP2954816B2 (en) 1999-09-27

Family

ID=27474941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5180647A Expired - Lifetime JP2954816B2 (en) 1992-06-24 1993-06-24 Method for producing sintered R-Fe-B magnet by injection molding method

Country Status (1)

Country Link
JP (1) JP2954816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117198672A (en) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 Manufacturing process method of injection molding neodymium-iron-boron magnet

Also Published As

Publication number Publication date
JPH06168811A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
US5427734A (en) Process for preparing R-Fe-B type sintered magnets employing the injection molding method
JP2010114200A (en) Method of manufacturing rare-earth magnet
JP6476640B2 (en) R-T-B sintered magnet
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3393018B2 (en) Method for producing thin R-Fe-B sintered magnet
JP4698867B2 (en) Method for producing granulated powder of R-Fe-B alloy and method for producing sintered R-Fe-B alloy
EP0576282B1 (en) A process for preparing R-Fe-B type sintered magnets employing the injection molding method
JP3229435B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP2960629B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP2954816B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP3059188B2 (en) Method of manufacturing permanent magnet and permanent magnet
KR102632582B1 (en) Manufacturing method of sintered magnet
JP3174443B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH06168810A (en) Manufacture of r-fe-b series sintering magnet by injection molding
JP3338590B2 (en) Method for producing R-Fe-B based sintered magnet by injection molding method
JP4650218B2 (en) Method for producing rare earth magnet powder
JPH06290922A (en) Manufacture of r-fe-b sintered magnet by injection molding method
JPH0677028A (en) Manufacture of r-fe-b base sintered magnet by injection molding process
JP6421551B2 (en) R-T-B sintered magnet
JP3351554B2 (en) Manufacturing method of sintered anisotropic magnet
JPH0677029A (en) Manufacture of r-fe-b base sintered magnet by injection molding process
JP2823076B2 (en) Warm magnet
JP3078633B2 (en) Manufacturing method of sintered anisotropic magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 14

EXPY Cancellation because of completion of term