JPH06290442A - Magnetic tape - Google Patents

Magnetic tape

Info

Publication number
JPH06290442A
JPH06290442A JP24053892A JP24053892A JPH06290442A JP H06290442 A JPH06290442 A JP H06290442A JP 24053892 A JP24053892 A JP 24053892A JP 24053892 A JP24053892 A JP 24053892A JP H06290442 A JPH06290442 A JP H06290442A
Authority
JP
Japan
Prior art keywords
tape
magnetic
recording
coercive force
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24053892A
Other languages
Japanese (ja)
Inventor
Nobuyuki Aoki
延之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24053892A priority Critical patent/JPH06290442A/en
Publication of JPH06290442A publication Critical patent/JPH06290442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic tape capable of using for the tape, etc., for receding digital data. CONSTITUTION:In the magnetic tape where a direction of easy magnetization is in the longitudinal direction of the tape, the squareness ratio of the direction of easy magnetization is 0.5 or above and 0.8 or below. Further, this tape is constituted of a magnetic layer where the ratio between remanence coersive force in the direction of orienting the tape and the remanence coersive force in the direction orthogonally intersecting with the direction of orienting the tape satisfies 1<Hr(TD)/Hr(MD)<1.5 and 0.8<Hr(PD)/Hr(MD)<1.2 in the sectional direction of the tape surface and in the sectional direction of the tape thickness respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、記録波長サブミクロン
領域での高記録密度化を達成可能ならしめる高性能な磁
気テープに関するものであり、特にデジタルレコーディ
ングに対応したデータストレージ用やデジタルVTR用
磁気テープに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance magnetic tape capable of achieving a high recording density in the recording wavelength submicron region, and particularly for data storage corresponding to digital recording and digital VTR. It concerns magnetic tape.

【0002】[0002]

【従来の技術】従来、一般的には磁気テ−プの特性向上
に対しては高保磁力化、磁性粉粒子の超微粒子化や高充
填率化、磁気テープ表面の超平滑化などの試みが実施さ
れてきた。例えば、酸化鉄系テ−プでは低ノイズ・高密
度充填を達成したSVHSテ−プが登場し、さらに高磁
気エネルギーを有するメタルテープが8mmVTR用と
して実用化されてきた。さらに、業界においては低周波
数から中高周波数領域に渡って高出力であって、輝度信
号、カラー信号、オーディオ信号特性に富む重層磁性層
からなるVTRテープ、あるいはオーディオテープが開
発され、既に市場に展開されている。また、現在の磁気
記録は、一般に記録媒体の面内方向の磁化を用いる方式
のため、高記録密度化を図ろうとすると記録媒体内の減
磁界が増加するために一定以上の高記録密度を得る事は
困難である。このような、記録密度の限界を越えるため
に、近年、記録媒体の表面と垂直な方向の磁化を用いる
垂直磁気記録方式が提案されている。この垂直磁気記録
方式では、高記録密度において、記録媒体中の減磁界が
少なくなる特性が有り、本質的に高密度記録に適した記
録方式と言える。垂直磁気記録方式に用いる記録媒体に
は、Co−Cr蒸着膜等の連続膜と、六角板状のバリウ
ムフェライト微粒子等を樹脂中に分散した塗布膜があ
る。しかしながら、垂直記録媒体の場合にはその特徴で
ある垂直磁化成分による短波長再生出力の向上は期待で
きるものの、それが引き起こす再生波形の歪みがピーク
シフトやジッターの原因となりデジタルVTRの世界で
は致命的な問題点となる。最近では塗布型のコストメリ
ットと耐久性等の実用性の点から、塗布膜タイプの垂直
磁気記録媒体や斜め配向テープが注目され、後者の場合
には既にハイバンド8mmVTR用テープとして市場展
開されている。また、バリウムフェライト磁性粉体は、
板状形状でしかも板面に垂直方向に磁化容易軸を有する
ことから前述したような高記録密度化可能な垂直磁気記
録方式に適した材料として脚光を浴びてきた。その一方
では、バリウムフェライト磁性粉は0.1μmを切るよ
うな超微粒子であり、その板厚が粒子径の1/3〜1/
10であることから従来と同様の長手配向媒体としても
充分に高記録密度を達成できる可能性も秘めており、そ
の動向が注目されている。さらに、最近の動向としてデ
ジタルデータレコーディング用磁気テープには従来の酸
化クロムテープの改善テープやDAT用メタルテープ、
あるいはハイバンド8mmVTR用塗布型メタルテープ
を積極的に採用しようとする動きも活発となってきてい
る。
2. Description of the Related Art Generally, attempts have been made to improve the characteristics of magnetic tapes by increasing the coercive force, making the magnetic powder particles ultrafine, increasing the packing ratio, and making the surface of the magnetic tape smooth. Has been implemented. For example, in the case of iron oxide tape, SVHS tape that has achieved low noise and high density packing has appeared, and metal tape having high magnetic energy has been put to practical use for 8 mm VTR. Further, in the industry, a VTR tape or an audio tape having a multi-layered magnetic layer, which has a high output over a low frequency range to a middle and high frequency range and is rich in luminance signal, color signal, and audio signal characteristics, has been developed and already put on the market. Has been done. In addition, current magnetic recording is generally a method of using in-plane magnetization of a recording medium. Therefore, if an attempt is made to increase the recording density, the demagnetizing field in the recording medium increases, and a high recording density above a certain level is obtained. Things are difficult. In order to exceed such a recording density limit, a perpendicular magnetic recording system has recently been proposed which uses magnetization in a direction perpendicular to the surface of the recording medium. This perpendicular magnetic recording system has a characteristic that the demagnetizing field in the recording medium is reduced at high recording density, and can be said to be essentially a recording system suitable for high-density recording. Recording media used in the perpendicular magnetic recording system include continuous films such as Co—Cr vapor deposition films and coating films in which hexagonal plate-shaped barium ferrite fine particles are dispersed in a resin. However, in the case of a perpendicular recording medium, although the improvement in the short wavelength reproduction output due to the perpendicular magnetization component, which is a characteristic of the perpendicular recording medium, can be expected, the distortion of the reproduced waveform caused by it causes peak shift and jitter, which is fatal in the world of digital VTR. It becomes a problem. Recently, coating film type perpendicular magnetic recording media and obliquely oriented tapes have been attracting attention from the viewpoint of coating type cost merit and practicality such as durability. In the latter case, they have already been marketed as high band 8mm VTR tapes. There is. Also, barium ferrite magnetic powder is
Since it has a plate-like shape and has an easy axis of magnetization in the direction perpendicular to the plate surface, it has been spotlighted as a material suitable for the perpendicular magnetic recording method capable of achieving high recording density as described above. On the other hand, barium ferrite magnetic powder is ultrafine particles that cut below 0.1 μm, and its plate thickness is 1/3 to 1/1 of the particle diameter.
Since it is 10, there is a possibility that a sufficiently high recording density can be achieved even with a longitudinally oriented medium similar to the conventional one, and its trend is drawing attention. Furthermore, as a recent trend, for magnetic tapes for digital data recording, improved tapes of conventional chromium oxide tapes, metal tapes for DAT,
Alternatively, there is an active movement to actively adopt a coated metal tape for high band 8 mm VTR.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現在の
塗布型の磁気記録媒体、特にテープ状媒体の開発におい
て、先行技術で開示されたように板状形状で一軸異方性
を有するバリウムフェライト磁性粉を垂直配向した媒体
はより一層の高記録密度化や高性能化には寄与するもの
の実用上テープが持つ垂直磁化成分により再生波形が大
きなアンダーシュートをもつような非対称性な再生波形
になってしまう欠点があった。また、長波長領域での出
力は既存の長手記録媒体と比較すると小さい点は否めな
いこと、長手方向の磁化成分を上げるために行われてき
た配向度の向上は板状形状磁性粉であるバリウムフェラ
イト磁性粉同志の凝集性の激増を引き起こし本来バリウ
ムフェライト磁性粉が有している超微粒子の特徴が消失
してノイズの増大を誘発する欠点をもっていた。したが
って、前記従来の長手記録媒体のテ−プ特性向上を満た
しながら、互換をも満たすオールマイティな磁気テ−プ
は存在しなかったし、バリウムフェライト磁性粉などの
ヘキサゴナルフェライト磁性粉を用いた塗布型媒体の場
合、従来のAV機器との互換を満たした上で、更により
高性能な磁気記録媒体とするには単に垂直配向媒体を作
製しただけでは長波長から短波長まで高出力の磁気記録
媒体を実現できなかった。
However, in the development of current coating type magnetic recording media, particularly tape-shaped media, barium ferrite magnetic powder having a plate-like shape and having uniaxial anisotropy as disclosed in the prior art. Although the perpendicularly-oriented medium contributes to higher recording density and higher performance, the perpendicular magnetization component of the tape in practice causes the reproduction waveform to become an asymmetric reproduction waveform with a large undershoot. There was a flaw. In addition, the output in the long wavelength region is undeniably small compared to existing longitudinal recording media, and the improvement in the degree of orientation that has been made to increase the magnetization component in the longitudinal direction is barium, which is a plate-shaped magnetic powder. The ferrite magnetic powder has a drawback that it causes a drastic increase in cohesiveness between the two and causes the characteristics of the ultrafine particles originally possessed by the barium ferrite magnetic powder to disappear, causing an increase in noise. Therefore, there is no almighty magnetic tape which satisfies compatibility while improving the tape characteristics of the conventional longitudinal recording medium, and coating using hexagonal ferrite magnetic powder such as barium ferrite magnetic powder. In the case of type media, magnetic recording of high output from long wavelength to short wavelength is achieved by simply producing perpendicularly oriented media in order to achieve higher performance magnetic recording media while satisfying compatibility with conventional AV equipment. The medium could not be realized.

【0004】[0004]

【課題を解決するための手段】本発明の磁気テ−プは、
上記課題を解決するために非磁性ベースフィルムのいず
れか一方の面上に分散塗布されたヘキサゴナルフェライ
ト磁性粉粒子と樹脂バインダーより構成され、磁化容易
方向がテープ長手方向である磁気テープにおいて、磁化
容易方向の角型比が0.5以上0.8以下であって、か
つテープ配向方向のレマネンス保磁力とテープ配向方向
とそれに直交する方向のレマネンス保磁力の比率がテー
プ面内長手方向及びテープ厚み方向それぞれにおいて 1<Hr(TD)/Hr(MD)<1.5 (1)及び 0.8<Hr(PD)/Hr(MD)<1.2 (2) を満たす構成とした磁気テープである。また、本発明の
ヘキサゴナルフェライト磁性粉粒子は、より好ましくは
バリウムフェライト置換体であることが望ましいが、マ
グネトプランバイト構造に属するものであれば何等差し
支えない。さらに好ましくは鉄元素の一部がコバルトと
亜鉛とニオブ金属元素の組合せにすることである。
The magnetic tape of the present invention comprises:
In order to solve the above problems, in a magnetic tape comprising hexagonal ferrite magnetic powder particles dispersed and coated on one surface of the non-magnetic base film and a resin binder, and the easy magnetization direction is the tape longitudinal direction, the easy magnetization Direction squareness ratio is 0.5 or more and 0.8 or less, and the ratio of the remanence coercive force in the tape orientation direction and the remanence coercive force in the tape orientation direction and the direction orthogonal to the tape orientation direction is the tape longitudinal direction and the tape thickness. A magnetic tape configured to satisfy 1 <Hr (TD) / Hr (MD) <1.5 (1) and 0.8 <Hr (PD) / Hr (MD) <1.2 (2) in each direction. is there. Further, the hexagonal ferrite magnetic powder particles of the present invention are more preferably a barium ferrite substitution product, but there is no problem as long as they belong to the magnetoplumbite structure. More preferably, part of the iron element is a combination of cobalt, zinc and niobium metal elements.

【0005】[0005]

【作用】本発明は、マグネトプランバイト型ヘキサゴナ
ルフェライト磁性粉体固有の磁気特性、特にマイクロマ
グネティクスの観点から検討した結果見いだされたもの
である。これにより従来の面内長手記録媒体を凌駕する
記録密度特性が得られることは勿論のこと、従来より既
存のテープをさらに高記録密度化することが可能となり
新しいデジタル記録にマッチしたテープの企画をするこ
とができる。さらに、本発明によれば、従来バリウムフ
ェライト磁性粉を用いた配向媒体で見られたような媒体
ノイズの増大の発生が、何等デジタル記録再生に問題に
ならないように改善することが可能である。これは、本
発明のような磁気テープにおいてテープの磁気特性を3
次元的に適正化すること、すなわちテ−プのレマネンス
保磁力の比率をテープ配向方向とそれに直交する方向に
おいてテープ面内長手方向と厚み方向でそれぞれレマネ
ンス保磁力を規定することによりヘキサゴナルフェライ
ト磁性粉粒子特有の磁化反転が反転領域において急峻と
なる効果と、かつテープ配向方向に直行する方向の有効
残留磁化成分が増大することから結果的に高出力値が得
られる。ここでレマネンス保磁力は磁性粉粒子の磁化が
不可逆的に反転する際の磁場の強さを示す。テープ配向
方向のレマネンス保磁力の値は記録再生可能な範囲に限
定されるが近年の磁気ヘッドの急速な進歩により高保磁
力のものでも充分にヘッド飽和することなく記録再生で
きるようになった。テープ磁化容易方向の角型比が0.
5より小さいと有効な残留磁化成分が小さくなり、0.
8以上になると磁気的凝集の度合が激しくなり出力増大
以上にノイズ増大が発生するためこの範囲が望ましい。
本発明の磁気テープにおいては保磁力については何等限
定するものではなく磁気記録の原理に基づき記録再生が
可能であれば差し支えない。好ましくはレマネンス保磁
力が75.5KA/m以上160KA/m以下とするも
のである。一方、テープの飽和磁束密度については小さ
い場合には必要とする再生出力を得ることができず、か
つ本発明の場合には各方向の角形比はそれほど高くなく
ても構わないので、可能な限り高い磁性粉粒子の充填密
度が必要となり、少なくとも170mT以上を確保する
必要がある。また、本発明の構成においては粒子の配向
方向が3次元的に等方的となるため板状形状磁性粉同志
の粒子間相互作用が強く作用することによるノイズ成分
の増大は逆に小さくすることが可能となる。以上に述べ
てきたように、本発明ではヘキサゴナルフェライト磁性
粉粒子の特徴を生かし、塗布型の磁気テープの物性をコ
ントロールすることにより、従来の塗布型で得られてき
た量産性、走行性、安定性を確保しつつ、従来既存テー
プをより一層高記録密度化、高性能化できる磁気テ−プ
を供給することが出来る。
The present invention has been found as a result of an examination from the viewpoint of magnetic properties peculiar to the magnetoplumbite-type hexagonal ferrite magnetic powder, particularly from the viewpoint of micromagnetics. As a result, it is possible to obtain recording density characteristics that surpass conventional longitudinal recording media, and it is possible to increase the recording density of existing tapes from the past, and to plan tapes that match new digital recording. can do. Further, according to the present invention, it is possible to improve the occurrence of the increase in medium noise, which has been conventionally observed in the orientation medium using barium ferrite magnetic powder, without causing any problem in digital recording and reproduction. This means that the magnetic characteristics of the magnetic tape of the present invention are 3
Dimensionally optimized, that is, the ratio of the remanence coercive force of the tape is defined in the longitudinal direction and the thickness direction of the tape in the tape orientation direction and the direction orthogonal to the tape orientation direction. A high output value is obtained as a result of the effect that the magnetization reversal peculiar to particles becomes steep in the reversal region and the effective remanent magnetization component in the direction orthogonal to the tape orientation direction increases. Here, the remanence coercive force indicates the strength of the magnetic field when the magnetization of the magnetic powder particles is irreversibly reversed. Although the value of the remanence coercive force in the tape orientation direction is limited to the range in which recording and reproduction are possible, the rapid progress of magnetic heads in recent years has made it possible to record and reproduce even with high coercive force without sufficient head saturation. The squareness ratio in the easy magnetization direction of the tape is 0.
When it is less than 5, the effective remanent magnetization component becomes small, and 0.
If it is 8 or more, the degree of magnetic agglomeration becomes severe and noise increases more than the output increases, so this range is desirable.
In the magnetic tape of the present invention, the coercive force is not limited in any way, and any recording / reproducing can be performed based on the principle of magnetic recording. The remanence coercive force is preferably 75.5 KA / m or more and 160 KA / m or less. On the other hand, when the saturation magnetic flux density of the tape is small, the required reproduction output cannot be obtained, and in the case of the present invention, the squareness ratio in each direction does not have to be so high. A high packing density of magnetic powder particles is required, and it is necessary to secure at least 170 mT or more. Further, in the constitution of the present invention, since the orientation directions of the particles are three-dimensionally isotropic, the increase of the noise component due to the strong interaction between the particles of the plate-shaped magnetic powders should be reduced. Is possible. As described above, in the present invention, by utilizing the characteristics of the hexagonal ferrite magnetic powder particles and controlling the physical properties of the coating type magnetic tape, the mass productivity, the running property, and the stability obtained by the conventional coating type are stable. It is possible to supply a magnetic tape capable of further increasing the recording density and the performance of the existing tape, while ensuring the performance.

【0006】[0006]

【実施例】以下、本発明の磁気テープの一実施例につい
て説明する。
EXAMPLE An example of the magnetic tape of the present invention will be described below.

【0007】非磁性ベースフィルムとして厚さ10μm
のポリエチレンテレフタレートフィルムの一面に下記に
示した磁性塗料をノズル式コーターにより塗布し、未乾
燥状態で磁場配向処理を施し、温度80度の雰囲気中に
2分間通して乾燥し、(実施例1)の磁気テープを作製
した。まず、ベースフィルムに塗布する磁性塗料用材料
として以下の材料を用いて塗料化を行った。 バリウムフェライト−−−−−100重量部 塩化ビニル系樹脂−−−−−−− 6重量部 ポリウレタン樹脂−−−−−− 5重量部 アルファ−アルミナ−−−−−− 2重量部 ステアリン酸−−−−−−−− 3重量部 ステアリン酸ブチル−−−−−− 1重量部 カーボンブラック−−−−−− 1重量部 MIBK−−−−−−−−−−−81重量部 トルエン−−−−−−−−−−−81重量部 シクロヘキサノン−−−−−−−50重量部 上記材料を混合した後、ニーダー、ミキサー、サンドミ
ルにて一定時間分散した。なお、用いたバリウムフェラ
イト磁性粉粒子の粒径は0.045μm、板状比3.
5、保磁力80KA/mで置換元素(CoーZnーNbの
組合せ)により保磁力を制御したものを用いた。混合分
散、希釈された磁性塗料をダイ型ノズル式コーターを用
い、塗工速度約100m/min にて塗布し、まずテープ
走行方向に対して厚み方向及び幅方向の2方向にそれぞ
れ対向するように設置した同磁極対向の永久磁石間を通
し、続いて同極対向のソレノイド磁石配向装置間を通過
させることによりテ−プ長尺方向に対して等方的に磁性
粉粒子を配向させた。その後、得られた塗膜を乾燥硬化
した後磁性層塗布面と反対側に0.7μmのバックコー
ト層を付与し、(実施例1)の磁気テープを作製した。
(実施例1)において、磁性層は2.0μmとした。こ
こで膜厚については、何等規制されることはなく、記録
長さに対応して変えてもかまわないが実用上2〜3μm
程度が好ましい。一方、磁性層は複数個存在しても良
く、上下両磁性層の保磁力がバランス良く設定すること
が望ましく、本実施例においては記録感度向上を目的と
して上下両層のHcを分布を持たないようにし、上層の
磁化容易軸を膜厚方向にした場合には低Hcでも充分な
記録が行えることから上層の膜厚と両磁性層の保磁力構
成により制御すれば良い。
Thickness of 10 μm as non-magnetic base film
The magnetic coating shown below was applied to one surface of the polyethylene terephthalate film of 1. by a nozzle type coater, magnetic field orientation treatment was applied in an undried state, and dried in an atmosphere of 80 ° C. for 2 minutes (Example 1). Magnetic tape was manufactured. First, the following materials were used as a coating material for the magnetic coating material applied to the base film to form a coating material. Barium ferrite --- 100 parts by weight Vinyl chloride resin ------- 6 parts by weight Polyurethane resin --- 5 parts by weight Alpha-alumina ----- 2 parts by weight Stearic acid- ------------- 3 parts by weight Butyl stearate -------- 1 part by weight Carbon black -------- 1 part by weight MIBK ----------- 81 parts by weight Toluene- ---------- 81 parts by weight Cyclohexanone ----------- 50 parts by weight After mixing the above materials, they were dispersed for a certain period of time with a kneader, a mixer and a sand mill. The barium ferrite magnetic powder particles used had a particle size of 0.045 μm and a plate ratio of 3.
5, a coercive force of 80 KA / m and a coercive force controlled by a substitution element (a combination of Co--Zn--Nb) was used. Apply the mixed, dispersed and diluted magnetic paint at a coating speed of about 100 m / min using a die-type nozzle coater. First, face the tape running direction in two directions, the thickness direction and the width direction. The magnetic powder particles were oriented isotropically in the longitudinal direction of the tape by passing through the installed permanent magnets facing the same pole and then passing between the solenoid magnet aligning devices facing the same pole. After that, the obtained coating film was dried and cured, and then a 0.7 μm back coat layer was provided on the side opposite to the magnetic layer coated surface to prepare a magnetic tape of (Example 1).
In Example 1, the magnetic layer had a thickness of 2.0 μm. Here, the film thickness is not regulated at all and may be changed according to the recording length, but it is practically 2 to 3 μm.
A degree is preferable. On the other hand, a plurality of magnetic layers may be present, and it is desirable to set the coercive forces of the upper and lower magnetic layers in a well-balanced manner. In this embodiment, Hc of both upper and lower layers is not distributed for the purpose of improving recording sensitivity. In this way, when the easy axis of magnetization of the upper layer is set in the film thickness direction, sufficient recording can be performed even at low Hc, and therefore it may be controlled by the film thickness of the upper layer and the coercive force configuration of both magnetic layers.

【0008】(実施例2) (実施例1)において、磁性層の塗料化に用いたヘキサ
ゴナルフェライト磁性粉粒子をHcが95KA/mのバ
リウムフェライトに過剰にスピネル層を付与した粒子径
0.049μm、板状比3.1のものとした以外は同じ
塗料化フォーマットにより、磁気テ−プを作製した。そ
の際、磁性層、及びバックコート層の膜厚はそれぞれ
2.5μm、0.6μmとし、(実施例2)の磁気テー
プを得た。
(Example 2) In Example 1, the hexagonal ferrite magnetic powder particles used for coating the magnetic layer were prepared by adding excessive spinel layer to barium ferrite with Hc of 95 KA / m. A magnetic tape was produced in the same paint format except that the plate ratio was 3.1. At that time, the thicknesses of the magnetic layer and the back coat layer were 2.5 μm and 0.6 μm, respectively, to obtain the magnetic tape of (Example 2).

【0009】(比較例1)磁性層に板状比が5でスピネ
ル層を過剰に付与した構造のバリウムフェライト置換板
状磁性粉とした以外は(実施例1)と同様にし、塗料化
は(実施例1)に従い、ニーダー及びグラインドミルを
用いて混合分散を行って、磁性塗料を作製した後、所定
量の潤滑剤と硬化剤を撹はん添加した後、ベースフィル
ム上に、前記磁性塗料をダイ型ノズル式コーターを用い
て、塗工速度約100m/min にて塗布し、2.5μm
塗布し、塗布した直後の磁場配向をすることなく磁性塗
膜を作製し、充分に乾燥硬化後に(実施例1)と同様に
0.7μmのバックコート層を付与し(比較例1)の塗
布膜を得た。
(Comparative Example 1) A barium ferrite-substituted plate-like magnetic powder having a plate ratio of 5 and an excessive spinel layer added to the magnetic layer was used in the same manner as in (Example 1) except that it was made into a paint ( According to Example 1), a magnetic coating was prepared by mixing and dispersing with a kneader and a grind mill, and then a predetermined amount of a lubricant and a curing agent were added with stirring, and then the magnetic coating was formed on the base film. Was applied at a coating speed of about 100 m / min using a die-type nozzle coater to obtain 2.5 μm
After coating, a magnetic coating film was prepared without magnetic field orientation immediately after coating, and after sufficient drying and curing, a 0.7 μm back coat layer was applied in the same manner as in Example 1 (Comparative Example 1). A film was obtained.

【0010】(比較例2)磁性層には保磁力65KA/
m、板状比6のバリウムフェライト磁性粉粒子を用い、
総樹脂量を18重量部とした以外は(実施例1)と同様
のフォーマットに従って、(実施例1)と同様にして磁
気テ−プを作製し、磁性層を2.5μm塗布し、直ちに
塗布した直後の磁場配向を塗布膜の進行方向と同一方向
に磁束を発する対向ソレノイド磁石中を通過させて、い
わゆる面内長手配向の磁性塗膜を作製し、乾燥硬化の
後、0.8μmのバックコート層を付与し、(比較例
2)の塗布膜を得た。
(Comparative Example 2) The magnetic layer has a coercive force of 65 KA /
m, using barium ferrite magnetic powder particles with a plate ratio of 6,
A magnetic tape was produced in the same manner as in (Example 1) according to the same format as in (Example 1) except that the total amount of resin was 18 parts by weight, and a magnetic layer of 2.5 μm was applied and immediately applied. Immediately after passing the magnetic field orientation through an opposing solenoid magnet that emits magnetic flux in the same direction as the direction of travel of the coating film, a so-called in-plane longitudinal orientation magnetic coating film is produced, and after drying and curing, 0.8 μm A back coat layer was applied to obtain a coating film of (Comparative Example 2).

【0011】(比較例3)市販のHi8VTR用MPテ
ープ(富士写真フィルム製)を(比較例3)とした。
(Comparative Example 3) A commercially available MP tape for Hi8VTR (manufactured by Fuji Photo Film Co., Ltd.) was used as (Comparative Example 3).

【0012】得られた塗膜は8mm幅にスリットし、改
造型Hi8VTRデッキを用いて電磁変換特性を測定し
た。電磁変換特性の評価は、前記デッキにギャップ長
0.19μm、トラック幅10μmの超構造窒化膜積層
タイプヘッドを搭載し、テ−プ・ヘッド間の相対速度
3.8m/secで自己録再し、記録周波数10MHzの
RF出力で代表させた。また、C/Nは、10MHz±
0.1MHzでRBW30KHzで測定評価した。テー
プの角型比、レマネンス保磁力についてはデジタル式振
動試料型磁力測定器(DMS社Model1660)を
用いて評価した。テープの表面性については非接触光学
式の3次元表面粗さ計(WYKO社製)を用いて自乗平
均粗さでもって測定、評価したが全てのサンプルについ
て同等レベルの値を示していた。 以上の測定結果は、
それぞれ(表1)に示し、RF相対出力及びC/Nは
(比較例3)を0dBとし、相対値として示した。
The obtained coating film was slit into a width of 8 mm, and the electromagnetic conversion characteristics were measured using a modified Hi8VTR deck. The electromagnetic conversion characteristics were evaluated by mounting a superstructure nitride film laminated type head with a gap length of 0.19 μm and a track width of 10 μm on the deck and recording / reproducing at a relative speed of 3.8 m / sec between the tape and the head. The RF output at a recording frequency of 10 MHz is representative. C / N is 10MHz ±
It was measured and evaluated at RBW 30 KHz at 0.1 MHz. The squareness ratio and remanence coercive force of the tape were evaluated using a digital vibration sample type magnetometer (Model 1660 manufactured by DMS). The surface property of the tape was measured and evaluated with a root-mean-square roughness using a non-contact optical type three-dimensional surface roughness meter (manufactured by WYKO), but all samples showed the same level value. The above measurement results are
Each is shown in (Table 1), and RF relative output and C / N are shown as relative values with (Comparative Example 3) being 0 dB.

【0013】[0013]

【表1】 [Table 1]

【0014】なお、(表1)において、Sqは配向方向
の角型比、Hr(TD)/Hr(MD),Hr(PD)/Hr
(MD)は配向方向とそれに直交する方向とのレマネンス
保磁力の比率をそれぞれ示している。MDが配向方向,
TDはテープ幅方向,PDはテープ厚み方向をそれぞれ
示している。 (実施例1)、(実施例2)から、本発
明のように磁気テープの物性を(1)式および(2)式
を満足するような構成にすることにより高再生出力、低
ノイズ化が達成されることがわかる。その結果、(表
1)に示したように本発明で開示したテープ構成の効果
は明らかである。一方、(比較例1)の場合には磁性層
中への磁性粉充填率が不十分であり充分な再生出力を得
られなかった。(比較例2)においては、ヘキサゴナル
フェライト磁性粉粒子を用いたテープの場合、再生出力
は比較的向上するもののそれを遥かに上回るノイズの増
大が生じてしまった。すなわち、(比較例1)、(比較
例2)はRF出力、C/Nのいずれかにおいて劣り、磁
気テ−プの特性として総合的なバランスがとれていない
ことがわかった。以上の結果からわかるように、本発明
を用いた実施例は、これを用いない比較例のサンプルに
比べて短波長領域での出力向上と低ノイズ化などを高い
レベルで両立させることが可能となった。なお、実施例
においては複数個の磁性層を有する場合、最上層が本発
明の条件を満たしていればそれ以下の層については酸化
鉄系、メタル合金系、窒化鉄等の針状形状強磁性粉体あ
るいはバリウムフェライトなどの板状強磁性粉体との組
合せで行っても差し支えなく、何等これらに限定される
ものではない。
In Table 1, Sq is the squareness ratio in the orientation direction, Hr (TD) / Hr (MD), Hr (PD) / Hr.
(MD) indicates the ratio of the remanence coercive force between the orientation direction and the direction orthogonal thereto. MD is the orientation direction,
TD indicates the tape width direction, and PD indicates the tape thickness direction. From (Embodiment 1) and (Embodiment 2), by making the physical properties of the magnetic tape satisfy the expressions (1) and (2) as in the present invention, high reproduction output and low noise can be achieved. I see that it will be achieved. As a result, as shown in (Table 1), the effect of the tape structure disclosed in the present invention is clear. On the other hand, in the case of (Comparative Example 1), the filling rate of the magnetic powder in the magnetic layer was insufficient, and a sufficient reproduction output could not be obtained. In (Comparative Example 2), in the case of the tape using the hexagonal ferrite magnetic powder particles, the reproduction output was comparatively improved, but the noise was much higher than that. That is, it was found that (Comparative Example 1) and (Comparative Example 2) were inferior in either RF output or C / N, and the magnetic tape characteristics were not balanced as a whole. As can be seen from the above results, the example using the present invention can achieve a high level of both output improvement and noise reduction in the short wavelength region as compared with the sample of the comparative example which does not use this. became. In the examples, in the case of having a plurality of magnetic layers, if the uppermost layer satisfies the conditions of the present invention, the layers below it are needle-shaped ferromagnetisms such as iron oxides, metal alloys, and iron nitrides. It may be carried out in combination with a powder or a plate-like ferromagnetic powder such as barium ferrite, and is not limited to these.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、磁性粉
粒子、媒体の構成を最適化することによりバランスのと
れた再生出力を高いレベルで実現するとともに、低ノイ
ズ化の点においても良好な磁気テープが得られる。した
がって、本発明は従来磁気テ−プとの互換を満たすにと
どまらず、今後のデジタル記録に対しても十分に対応可
能で、かつより一層高密度記録に適する磁気記録媒体を
提供できるものであり、非常に有用な発明である。
As described above, according to the present invention, by optimizing the configurations of the magnetic powder particles and the medium, a balanced reproduction output can be realized at a high level, and the noise can be reduced. A good magnetic tape can be obtained. Therefore, the present invention can provide a magnetic recording medium which is not only compatible with the conventional magnetic tape but also sufficiently compatible with future digital recording and which is suitable for higher density recording. , A very useful invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性ベースフィルムのいずれか一方の面
上に分散塗布されたヘキサゴナルフェライト磁性粉粒子
と樹脂バインダーより構成され、磁化容易方向がテープ
長手方向である磁気テープにおいて、磁化容易方向の角
型比が0.5以上0.8以下であって、かつテープ配向
方向のレマネンス保磁力とテープ配向方向とそれに直交
する方向のレマネンス保磁力の比率がテープ面内長手方
向及びテープ厚み方向それぞれにおいて次式 1<Hr(TD)/Hr(MD)<1.5 (1)及び 0.8<Hr(PD)/Hr(MD)<1.2 (2) を満たすことを特徴とした磁気テープ。
1. A magnetic tape comprising hexagonal ferrite magnetic powder particles dispersed and coated on one surface of a non-magnetic base film and a resin binder, wherein the easy magnetization direction is the longitudinal direction of the tape. The squareness ratio is 0.5 or more and 0.8 or less, and the ratios of the remanence coercive force in the tape orientation direction and the remanence coercive force in the tape orientation direction and the direction orthogonal to the tape orientation direction are respectively in the tape longitudinal direction and the tape thickness direction. In the following, the following equations 1 <Hr (TD) / Hr (MD) <1.5 (1) and 0.8 <Hr (PD) / Hr (MD) <1.2 (2) tape.
JP24053892A 1992-09-09 1992-09-09 Magnetic tape Pending JPH06290442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24053892A JPH06290442A (en) 1992-09-09 1992-09-09 Magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24053892A JPH06290442A (en) 1992-09-09 1992-09-09 Magnetic tape

Publications (1)

Publication Number Publication Date
JPH06290442A true JPH06290442A (en) 1994-10-18

Family

ID=17061027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24053892A Pending JPH06290442A (en) 1992-09-09 1992-09-09 Magnetic tape

Country Status (1)

Country Link
JP (1) JPH06290442A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241135A (en) * 1986-04-14 1987-10-21 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241135A (en) * 1986-04-14 1987-10-21 Matsushita Electric Ind Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2644322B2 (en) Magnetic recording media
JPH04123312A (en) Magnetic recording medium for master
KR930004444B1 (en) Magnetic recording medium
JPH06290442A (en) Magnetic tape
JPH0562152A (en) Magnetic tape
JPH06131649A (en) Magnetic tape
JP2561455B2 (en) Magnetic recording / reproducing device
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JP2000030238A (en) Magnetic recording medium, magnetic powder and magnetic recording medium in which transfer magnetic field is recorded
JPH0349025A (en) Magnetic recording medium
JPH0349024A (en) Magnetic recording medium
Speliotis Overwrite modulation in Ba‐ferrite particulate media
JP3057528B2 (en) Obliquely oriented magnetic recording media
JPH04360019A (en) Magnetic tape
JPH04360020A (en) Magnetic tape
JPH05307744A (en) Magnetic tape
JPH0362313A (en) Magnetic recording medium and its production
JPH0562167A (en) Magnetic recording medium and its manufacture
JPH02165414A (en) Magnetic recording medium
JPH06290449A (en) Magnetic recording medium
JPH0773445A (en) Magnetic recording medium and recording method
JPH06131655A (en) Magnetic tape
JPH04125812A (en) Magnetic tape
JPH0466048B2 (en)
JPH06279712A (en) Production of magnetic coating material and magnetic recording medium