JPH0628992A - Transmission type electron microscope aperture and its manufacture - Google Patents

Transmission type electron microscope aperture and its manufacture

Info

Publication number
JPH0628992A
JPH0628992A JP4206232A JP20623292A JPH0628992A JP H0628992 A JPH0628992 A JP H0628992A JP 4206232 A JP4206232 A JP 4206232A JP 20623292 A JP20623292 A JP 20623292A JP H0628992 A JPH0628992 A JP H0628992A
Authority
JP
Japan
Prior art keywords
electron beam
aperture
opening
electron microscope
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4206232A
Other languages
Japanese (ja)
Inventor
Chiaki Sasaoka
千秋 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4206232A priority Critical patent/JPH0628992A/en
Publication of JPH0628992A publication Critical patent/JPH0628992A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a transmission electron microscope aperture high in accuracy and in the freedom of an opening part shape. CONSTITUTION:This aperture is provided with at least two layers of a supporting layer 101, ensuring mechanical strength, and an electron beam preventing layer 103 preventing the transmission of an electron beam, and an opening part 104, etc., transmitting an electron beam, is provided on the electron beam preventing layer 103 and the supporting layer 101. Since the thickness of the electron beam preventing layer can be thinned by this two-layer structure, improving the work accuracy of the opening part. The opening part of the supporting layer can be formed in self alignment by using a material, which can not be etched with an etching agent for the supporting layer, for the electron beam preventing layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透過電子顕微鏡用アパ
ーチャおよびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aperture for a transmission electron microscope and a method for manufacturing the aperture.

【0002】[0002]

【従来の技術】透過電子顕微鏡(TEM)法は、金属や
半導体などの原子レベルでの構造観察が可能であり、半
導体超格子界面の評価などには不可欠な観察法である。
通常は、すべての回折スポットから像を構成する明視野
像の観察が行われるが、特定の回折スポットだけを選
び、これらのスポットで像を構成する観察法もしばしば
用いられる。GaAs−AlAs超格子界面の観察を例
にとると、Ga原子とAl原子の散乱能の違いをよく反
映する回折線のみで像を構成することにより、より鮮明
な界面の像を得ることができる(N.Ikarashiほか、マテ
リアル・リサーチ・ソサエティ・シンポジウム・プロシ
ーディング,第183巻,187ページ,1990年[Materials
Research Society Symposium Proceedings 183(199
0)])。このような観察を行う際は、特定の回折電子線
だけを選別するため、試料の後ろにアパーチャが挿入さ
れる。アパーチャは、金属の薄片に小孔を開けたもの
で、小孔の大きさは使用加速電圧にもよるが、直径数十
μm程度である。
2. Description of the Related Art The transmission electron microscope (TEM) method allows observation of the structure of metals and semiconductors at the atomic level, and is an indispensable observation method for evaluation of semiconductor superlattice interfaces.
Normally, a bright field image forming an image is observed from all diffraction spots, but an observation method of selecting only a specific diffraction spot and forming an image with these spots is also often used. Taking the observation of the GaAs-AlAs superlattice interface as an example, a clearer image of the interface can be obtained by constructing the image only with diffraction lines that well reflect the difference in the scattering ability of Ga atoms and Al atoms. (N.Ikarashi et al., Material Research Society Symposium Proceedings, Volume 183, p. 187, 1990 [Materials
Research Society Symposium Proceedings 183 (199
0)]). When performing such an observation, an aperture is inserted behind the sample in order to select only a specific diffracted electron beam. The aperture is a thin piece of metal with a small hole, and the size of the small hole is about several tens of μm, although it depends on the accelerating voltage used.

【0003】[0003]

【発明が解決しようとする課題】アパーチャ径の精度
は、例えばSiやGaAsの観察において、隣合う回折
線を分離するために、±2μm以下である必要がある。
従来、アパーチャは、厚さ10〜100μm程度の金属
片に放電加工により小孔を開けて製作されてきた。この
手法では5μm以下の精度で小孔の直径を制御すること
は困難であった。金属片を薄くすることにより精度は向
上するが、強度的な問題から限界がある。また、アパー
チャの開口部形状は、円以外は製作不可能であった。本
発明は、このような従来の課題を解決して、高精度でか
つ開口部形状の自由度の高い透過電子顕微鏡用アパーチ
ャおよびその製造法を提供することを目的とする。
The accuracy of the aperture diameter needs to be ± 2 μm or less in order to separate adjacent diffraction lines when observing Si or GaAs, for example.
Conventionally, an aperture has been manufactured by making a small hole in a metal piece having a thickness of about 10 to 100 μm by electric discharge machining. With this method, it was difficult to control the diameter of the small holes with an accuracy of 5 μm or less. The accuracy is improved by making the metal piece thin, but there is a limit due to the problem of strength. In addition, the shape of the aperture of the aperture could not be manufactured except for the circle. SUMMARY OF THE INVENTION It is an object of the present invention to solve such conventional problems and provide an aperture for a transmission electron microscope with high accuracy and a high degree of freedom in the shape of an opening, and a method for manufacturing the aperture.

【0004】[0004]

【課題を解決するための手段】本発明は、第1の材質か
らなる電子線阻止層と、第2の材質からなる支持層との
2層構造を少なくとも有し、前記電子線阻止層に形成さ
れた第1の開口部と、前記支持層に形成されて前記第1
の開口部を見通し、かつ該第1の開口部よりも面積の大
きな第2の開口部とからなる開口部を備えてなることを
特徴とする電子顕微鏡用アパーチャである。また本発明
によれば、開口部を複数個備え、該開口部が被観察結晶
の逆格子点を電子線照射方向に投影した点のいずれかの
位置に設けられている透過電子顕微鏡用アパーチャが提
供される。本発明による透過電子顕微鏡用アパーチャの
製造法は、所定の位置に開口部を有し、後記する第2の
材質のエッチング剤によりエッチングされない第1の材
質からなる電子線阻止層を第2の材質からなる支持層上
に形成する工程と、前記電子線阻止層をマスクとして前
記支持層をエッチングし、前記支持層に貫通孔を形成す
る工程とからなることを特徴とする。
The present invention has at least a two-layer structure of an electron beam blocking layer made of a first material and a support layer made of a second material, and is formed in the electron beam blocking layer. And a first opening formed in the support layer.
The aperture for the electron microscope is characterized in that it includes an opening that is in front of the first opening and has a second opening having a larger area than the first opening. Further, according to the present invention, there is provided an aperture for a transmission electron microscope, which comprises a plurality of openings, the openings being provided at any position of the points where the reciprocal lattice points of the crystal to be observed are projected in the electron beam irradiation direction. Provided. A method of manufacturing an aperture for a transmission electron microscope according to the present invention includes an electron beam blocking layer made of a first material, which has an opening at a predetermined position and is not etched by an etching agent of a second material, which will be described later. And a step of forming a through hole in the support layer by etching the support layer using the electron beam blocking layer as a mask.

【0005】[0005]

【作用】本発明によれば、アパーチャの機械的強度は支
持層の厚さで決まる。このため、電子線阻止層の厚さを
電子線が透過しない程度まで薄くすることができる。例
えばアルミニウムを阻止層に用いた場合、加速電圧40
0kVの電子線に対する透過能はμ-1=2000A程度
であるから、1μm以上の厚さであれば電子線阻止層と
して十分機能する。金やチタンを阻止層に用いれば、厚
さをさらに薄くすることができる。開口部を形成する際
の精度は、電子線阻止層の厚さと同程度かそれ以下であ
るから、本発明によるアパーチャの開口部精度は1μm
以下となる。また、フォトリソグラフィー技術を用いれ
ば、開口部形状やその数を任意のものとすることができ
る。
According to the present invention, the mechanical strength of the aperture is determined by the thickness of the support layer. Therefore, the thickness of the electron beam blocking layer can be reduced to such an extent that the electron beam does not pass therethrough. For example, when aluminum is used as the blocking layer, an acceleration voltage of 40
Since the transmissivity for an electron beam of 0 kV is about μ −1 = 2000 A, a thickness of 1 μm or more sufficiently functions as an electron beam blocking layer. If gold or titanium is used for the blocking layer, the thickness can be further reduced. Since the accuracy in forming the opening is equal to or less than the thickness of the electron beam blocking layer, the opening accuracy of the aperture according to the present invention is 1 μm.
It becomes the following. Further, by using the photolithography technique, the shape of the openings and the number thereof can be made arbitrary.

【0006】[0006]

【実施例】以下、本発明の実施例について、図面を用い
て詳細に説明する。図1は、電子線阻止層に金、支持層
にアルミニウムを用いた本発明によるアパーチャの形成
工程を示す図である。厚さ200μmのアルミニウム1
01上に、気相成長法で酸化膜(SiO2)を2μm堆
積させた。次に図1(a)に示すようにフォトリソグラ
フィー技術により10μm径の円状にSiO2102を
残し、残りをバッファードフッ酸で取り去る。この後、
図1(b)に示すように電解メッキにより金103を厚
さ2μmメッキする。SiO2102が残された部分は
メッキされないため、結果として10μm径の小孔が形
成される。SiO2102をバッファードフッ酸により
取り去り第1の開口部を形成した後、リン酸系エッチン
グ液を用いてAlをエッチングして第2の開口部を形成
し、、図1(c)に示すように第1の開口部と第2の開
口部よりなる開口部104を形成する。金はバッファー
ドフッ酸やリン酸に侵されないため、開口部の面積はメ
ッキされたときのものと同一となる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing a process of forming an aperture according to the present invention in which gold is used for an electron beam blocking layer and aluminum is used for a support layer. 200 μm thick aluminum 1
An oxide film (SiO 2 ) having a thickness of 2 μm was deposited on No. 01 by a vapor phase growth method. Next, as shown in FIG. 1A, the SiO 2 102 is left in a circular shape having a diameter of 10 μm by a photolithography technique, and the rest is removed with buffered hydrofluoric acid. After this,
As shown in FIG. 1B, gold 103 is plated to a thickness of 2 μm by electrolytic plating. Since the portion where the SiO 2 102 is left is not plated, a small hole having a diameter of 10 μm is formed as a result. After removing SiO 2 102 with buffered hydrofluoric acid to form a first opening, Al is etched with a phosphoric acid-based etching solution to form a second opening, as shown in FIG. 1 (c). Thus, the opening 104 including the first opening and the second opening is formed. Since gold is not attacked by buffered hydrofluoric acid or phosphoric acid, the area of the opening is the same as when plated.

【0007】上記の形成方法を用い、GaAsの[10
0]方向に対する逆格子点のうち、(00)、(1
0)、(11)に対応する位置に開口部が設けられたア
パーチャを作製した。これらの回折電子線のみで結ばれ
た電子顕微鏡像はGaとAlに対するコントラストが通
常の明視野像よりも高くなることが報告されている(N.
Ikarashiほか、マテリアル・リサーチ・ソサエティ・シ
ンポジウム・プロシーディング,第183巻,187ページ,
1990年[Materials Research Society Symposium Proce
edings 183(1990)])。本アパーチャを加速電圧200
kVの透過電子顕微鏡に装着し、GaAs(100)上
に形成されたGaAs/AlAs量子井戸構造を[10
0]方向から観察した。その結果、開口部以外の部分に
入射した電子線は電子線阻止層により透過しないことが
確認された。また長時間の使用に際しても、開口部形状
の変形等はみられず、機械的にも十分な強度を持つこと
が明らかとなった。また本アパーチャにより、従来のも
のに比べコントラストの高いGaAs/AlAsヘテロ
界面の像が得られた。本実施例では開口部形状が円のも
のについて述べたが、その他の形状についても同様の結
果が得られることは明らかである。
Using the above forming method, GaAs [10
Of the reciprocal lattice points for the [0] direction, (00), (1
Apertures having openings provided at positions corresponding to 0) and (11) were produced. It has been reported that the contrast of Ga and Al in an electron microscope image formed only by these diffracted electron beams is higher than that in a normal bright field image (N.
Ikarashi et al., Material Research Society Symposium Proceedings, Volume 183, 187 pages,
1990 [Materials Research Society Symposium Proce
edings 183 (1990)]). Accelerating voltage of 200 for this aperture
The GaAs / AlAs quantum well structure formed on GaAs (100) was attached to a transmission electron microscope of kV [10
It was observed from the [0] direction. As a result, it was confirmed that the electron beam incident on the portion other than the opening was not transmitted by the electron beam blocking layer. In addition, it was revealed that the shape of the opening was not deformed even when it was used for a long time, and that it had sufficient mechanical strength. In addition, the image of the GaAs / AlAs hetero interface having a higher contrast than that of the conventional one was obtained by this aperture. In the present embodiment, the shape of the opening is circular, but it is clear that similar results can be obtained with other shapes.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば開
口部の加工精度の高い透過電子顕微鏡用アパーチャを得
ることができる。また得られたアパーチャは十分な機械
強度をもち、しかも開口部の形状に対する自由度が高い
ものである。
As described above, according to the present invention, it is possible to obtain an aperture for a transmission electron microscope having a high processing accuracy of the opening. The obtained aperture has sufficient mechanical strength and has a high degree of freedom with respect to the shape of the opening.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電子顕微鏡用アパーチャの製造法
を工程順に示す断面図である。
FIG. 1 is a cross-sectional view showing a method of manufacturing an aperture for an electron microscope according to the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

101 Al 102 SiO2 103 Au 104 開口部101 Al 102 SiO 2 103 Au 104 Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の材質からなる電子線阻止層と、第
2の材質からなる支持層との2層構造を少なくとも有
し、前記電子線阻止層に形成された第1の開口部と、前
記支持層に形成されて前記第1の開口部を見通し、かつ
該第1の開口部よりも面積の大きな第2の開口部とから
なる開口部を備えてなることを特徴とする電子顕微鏡用
アパーチャ。
1. A first opening formed in the electron beam blocking layer, which has at least a two-layer structure of an electron beam blocking layer made of a first material and a support layer made of a second material. An electron microscope, comprising: an opening formed in the support layer, which is in front of the first opening, and which has a second opening having an area larger than that of the first opening. Aperture.
【請求項2】 開口部を複数個備え、該開口部が被観察
結晶の逆格子点を電子線照射方向に投影した点のいずれ
かの位置に設けられている請求項1記載の透過電子顕微
鏡用アパーチャ。
2. The transmission electron microscope according to claim 1, wherein a plurality of openings are provided, and the openings are provided at any positions of the points where the reciprocal lattice points of the crystal to be observed are projected in the electron beam irradiation direction. Aperture.
【請求項3】 所定の位置に開口部を有し、後記する第
2の材質のエッチング剤によりエッチングされない第1
の材質からなる電子線阻止層を第2の材質からなる支持
層上に形成する工程と、前記電子線阻止層をマスクとし
て前記支持層をエッチングし、前記支持層に貫通孔を形
成する工程とからなることを特徴とする電子顕微鏡用ア
パーチャの製造法。
3. A first device which has an opening at a predetermined position and is not etched by an etching agent of a second material described later.
Forming an electron beam blocking layer made of the above material on a support layer made of a second material, and etching the support layer using the electron beam blocking layer as a mask to form a through hole in the support layer. A method for manufacturing an aperture for an electron microscope, which comprises:
JP4206232A 1992-07-10 1992-07-10 Transmission type electron microscope aperture and its manufacture Pending JPH0628992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206232A JPH0628992A (en) 1992-07-10 1992-07-10 Transmission type electron microscope aperture and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206232A JPH0628992A (en) 1992-07-10 1992-07-10 Transmission type electron microscope aperture and its manufacture

Publications (1)

Publication Number Publication Date
JPH0628992A true JPH0628992A (en) 1994-02-04

Family

ID=16519950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206232A Pending JPH0628992A (en) 1992-07-10 1992-07-10 Transmission type electron microscope aperture and its manufacture

Country Status (1)

Country Link
JP (1) JPH0628992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081897A1 (en) * 2007-12-21 2009-07-02 Daiwa Techno Systems Co., Ltd. Filming treatment jig, plasma cvd apparatus, and metal plate and osmium film forming method
JP2013083006A (en) * 2012-12-17 2013-05-09 Utec:Kk Metal plate, and film deposition method of osmium film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081897A1 (en) * 2007-12-21 2009-07-02 Daiwa Techno Systems Co., Ltd. Filming treatment jig, plasma cvd apparatus, and metal plate and osmium film forming method
JP2009149949A (en) * 2007-12-21 2009-07-09 Utec:Kk Tool for film deposition treatment, plasma cvd system, metal plate, and osmium film deposition method
US9714468B2 (en) 2007-12-21 2017-07-25 Daiwa Techno Systems Co., Ltd. Film-forming method of an osmium film
JP2013083006A (en) * 2012-12-17 2013-05-09 Utec:Kk Metal plate, and film deposition method of osmium film

Similar Documents

Publication Publication Date Title
US4964946A (en) Process for fabricating self-aligned field emitter arrays
US4158141A (en) Process for channeling ion beams
JPH0243330B2 (en)
JP2944559B2 (en) Method for manufacturing through-hole for beam current measurement
US6696371B2 (en) Method for fabricating positionally exact surface-wide membrane masks
US4390394A (en) Method of structuring with metal oxide masks by reactive ion-beam etching
US5126288A (en) Fine processing method using oblique metal deposition
US5899728A (en) Method of forming a lithographic mask
JP4655411B2 (en) Mask, manufacturing method thereof, and manufacturing method of semiconductor device
JPH0628992A (en) Transmission type electron microscope aperture and its manufacture
EP3922752A1 (en) A method for preparing a sample for transmission electron microscopy
US5593761A (en) Electron beam shaping mask for an electron beam system with pattern writing capability
KR101015176B1 (en) Method for manufacturing transfer mask substrate, transfer mask substrate and transfer mask
US4269653A (en) Aperture stop
JPH04243118A (en) Charged particle exposure transmitting mask
JP3554009B2 (en) Mask plate for forming fine pattern and method of manufacturing the same
JPH08261894A (en) Tem evaluation sample, and its preparation
JPS5929421A (en) Manufacture of mask
JPH09162096A (en) Charged beam aligner and aperture for shaping charged beam
JP2899542B2 (en) Method of manufacturing transfer mask
JP2676746B2 (en) Method of forming fine pattern
JP2638576B2 (en) Manufacturing method of X-ray exposure mask
JPH07174677A (en) Method for manufacturing sample for observation by transmission electronic microscope
JPH0247848B2 (en)
WO2023089127A1 (en) Micromechanical component and method for producing same