JPH0628955A - Direct current vacuum circuit breaker - Google Patents

Direct current vacuum circuit breaker

Info

Publication number
JPH0628955A
JPH0628955A JP18138592A JP18138592A JPH0628955A JP H0628955 A JPH0628955 A JP H0628955A JP 18138592 A JP18138592 A JP 18138592A JP 18138592 A JP18138592 A JP 18138592A JP H0628955 A JPH0628955 A JP H0628955A
Authority
JP
Japan
Prior art keywords
commutation
repulsion
circuit
current
repulsion coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18138592A
Other languages
Japanese (ja)
Inventor
Masaru Isozaki
優 磯崎
Nobuyuki Takao
宣行 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18138592A priority Critical patent/JPH0628955A/en
Publication of JPH0628955A publication Critical patent/JPH0628955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PURPOSE:To reduce the number of parts, and realize cost reduction and downsizing of a device. CONSTITUTION:When a repulsion coil 2A to generate electromagnetic force to drive opening and closing operation of a vacuum valve 1 is connected/inserted in series to/in a flow changing reactor 4A of a flow changing circuit 10A, an electric current having the same waveform size with the flow changing reactor 4A is flowed simultaneously to the repulsion coil 2A, so that necessary electromagnetic force is generated. Thereby, there is no need to provide an independent repulsion circuit. As a result, since repulsion electric power supply, a repulsion capacitor and a repulsion switch to constitute the repulsion circuit become unnecessary, the number of parts can be reduced, so that cost reduction and downsizing of a direct current vacuum circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電鉄用直流電源の系
統保護に使用される直流遮断器として、真空バルブに流
れる直流電流に交流電流を重畳して瞬時電流が零となる
時点を強制的に生じさせて電流遮断を行うように構成さ
れた直流真空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC circuit breaker used to protect the system of a DC power supply for electric railways, in which an AC current is superposed on a DC current flowing through a vacuum valve to force a moment when the instantaneous current becomes zero. The present invention relates to a direct current vacuum circuit breaker configured to cause a current interruption.

【0002】[0002]

【従来の技術】機械的接点を有する遮断器では、遮断電
流が零となる時点があって始めて接点間に生じたアーク
を消滅させることができることから、直流を遮断する場
合には、遮断電流に交流電流を重畳させて強制的に電流
が零となる時点を発生させる方式が採用される。
2. Description of the Related Art In a circuit breaker having a mechanical contact, the arc generated between the contacts can be extinguished only when the breaking current reaches zero. A method is adopted in which an alternating current is superimposed to force a time when the current becomes zero.

【0003】図5は従来の直流真空遮断器の回路図であ
る。この図において、直流真空遮断器は、真空バルブ1
とこれの開閉操作を駆動するために反発コイル2に電磁
力を発生させる反発回路20、真空バルブ1に並列接続
されて遮断時に交流電流を重畳して流す転流回路10か
らなっている。真空バルブ1は反発回路20に流れる電
流が反発コイル2に流れてこれと図示しない導体板の間
に生ずる電磁力によって符号を付さない可動接点が駆動
されて遮断動作に入るように構成されている。この反発
回路20は反発コイル2、反発用コンデンサ30と反発
電源50の並列回路及び反発用スイッチ60がそれぞれ
直列接続された閉回路からなっていて、反発コンデンサ
30は反発用電源50によってあらかじめ充電された状
態になっていて、遮断動作が開始されたときに反発スイ
ッチ60が投入されて反発コンデンサ30の電荷が開放
されて反発回路20内に電流が流れ、前述のように反発
コイル2に電磁力が発生しこの電磁力を伝達する図示し
ない伝達装置を介して真空バルブ1の可動接点が駆動さ
れる。
FIG. 5 is a circuit diagram of a conventional DC vacuum circuit breaker. In this figure, the DC vacuum circuit breaker is a vacuum valve 1
And a repulsion circuit 20 for generating an electromagnetic force in the repulsion coil 2 for driving the opening / closing operation thereof, and a commutation circuit 10 which is connected in parallel to the vacuum valve 1 and superimposes an AC current at the time of interruption. The vacuum valve 1 is configured so that a current flowing through the repulsion circuit 20 flows through the repulsion coil 2 and an electromagnetic force generated between the repulsion coil 2 and a conductor plate (not shown) drives a movable contact (not shown) to start the breaking operation. The repulsion circuit 20 is composed of a repulsion coil 2, a repulsion capacitor 30, a parallel circuit of a repulsion power supply 50, and a closed circuit in which a repulsion switch 60 is connected in series. The repulsion capacitor 30 is precharged by the repulsion power supply 50. When the interruption operation is started, the repulsion switch 60 is turned on, the charge of the repulsion capacitor 30 is released, and a current flows in the repulsion circuit 20. As described above, the repulsion coil 2 receives an electromagnetic force. Is generated and the movable contact of the vacuum valve 1 is driven via a transmission device (not shown) that transmits this electromagnetic force.

【0004】真空バルブ1に並列に接続されている転流
回路10は、遮断動作時に真空バルブ1に流れる主回路
の電流Iに交流電流It を重畳させて遮断電流が零とな
る時点を強制的に発生させるものである。転流回路10
は、転流コンデンサ3と転流電源5の並列回路、転流リ
アクトル4及び転流スイッチ6の直列回路からなってい
て、転流コンデンサ3は遮断動作前にあらかじめ転流電
源5によって充電されている。
The commutation circuit 10 connected in parallel to the vacuum valve 1 superimposes the alternating current I t on the current I of the main circuit flowing through the vacuum valve 1 during the breaking operation to force the time when the breaking current becomes zero. It is what is generated. Commutation circuit 10
Is composed of a parallel circuit of a commutation capacitor 3 and a commutation power source 5, a series circuit of a commutation reactor 4 and a commutation switch 6, and the commutation capacitor 3 is charged by the commutation power source 5 in advance before the shutoff operation. There is.

【0005】図6は遮断動作時の電流などの時間変化を
示す波形図である。この図において、横軸は時間、縦軸
はそれぞれの瞬時値であり、一番上の段が主回路電流I
と転流電流Ic の和となる真空バルブ1に流れる遮断電
流IV であり、主回路電流Iと転流電流Ic も併記して
ある。次の段は反発回路20に流れる反発電流It 、次
の段が反発コイル2に発生する電磁力で反発電流It
自乗に略比例した波形となる。最下段は真空バルブ1の
開閉の動作を示しており、 High が「閉」、Low が
「開」を示す。各時間軸に示す時点は、時点t1 は、負
荷側で短絡事故が発生して主回路電流Iが上昇し始める
時点、時点t2 は、過電流が検出され制御装置から遮断
指令が出力されて反発スイッチ60と転流スイッチ6と
が同時に投入された時点、時点t3 は、真空バルブ1が
開局した時点、時点t4 は、遮断電流IV が零となる時
点である。
FIG. 6 is a waveform diagram showing a change over time in current or the like during the breaking operation. In this figure, the horizontal axis is the time, the vertical axis is the instantaneous value of each, and the uppermost stage is the main circuit current I.
Is the sum of the commutation current I c and the breaking current IV flowing through the vacuum valve 1, and the main circuit current I and the commutation current I c are also shown. The next stage has a repulsion current I t flowing through the repulsion circuit 20, and the next stage has a waveform substantially proportional to the square of the repulsion current I t due to the electromagnetic force generated in the repulsion coil 2. The lowermost stage shows the opening / closing operation of the vacuum valve 1, with High being "closed" and Low being "open". At the time points shown on the respective time axes, at time point t 1 , a short circuit accident occurs on the load side and the main circuit current I starts to rise, and at time point t 2 , an overcurrent is detected and a cutoff command is output from the control device. When the repulsion switch 60 and the commutation switch 6 are turned on at the same time, a time point t 3 is a time point when the vacuum valve 1 is opened, and a time point t 4 is a time point when the breaking current IV becomes zero.

【0006】これらの図に示す真空直流遮断器の遮断動
作を図6によって時間経過を追って説明する。 短絡事故発生まで(t<t1 ) 時点t1 において主回路に短絡事故が発生したとして、
その前は真空バルブに流れる電流IV は主回路電流Iで
あり定格電流かそれよりも小さな電流が流れている。 遮断動作開始まで(t1 <t<t2 ) 時点t1 の後、電流IV は負荷側のインダクタンクの値
に応じた上昇速度で上昇してゆく。一定の値に到達した
時点で過電流として検出され、その結果直流真空遮断器
の制御装置から遮断指令が出力され、時点t2 において
転流回路10の転流スイッチ6と反発回路20の反発ス
イッチ60とが同時に投入されて、転流電流Ic と反発
電流It が同時に流れ始める。転流コンデンサ3及び反
発コンデンサ30はそれぞれ転流電源5及び反発電源5
0によってあらかじめ所定の電圧に充電された状態が保
持されていたものである。転流回路10、反発回路20
ともインダクタンスとキャパシタンスとの直列共振回路
であるから、それぞれの回路定数で決まる共振周波数で
振動する交流電流が流れる。
The breaking operation of the vacuum DC circuit breaker shown in these figures will be described with reference to FIG. Until the occurrence of a short circuit accident (t <t 1 ) Assume that a short circuit accident occurred in the main circuit at time t 1 .
Before that, the current IV flowing through the vacuum valve is the main circuit current I, and the rated current or a current smaller than it is flowing. After the time point t 1 until the interruption operation starts (t 1 <t <t 2 ), the current I V increases at a rising speed according to the value of the inductor on the load side. When it reaches a certain value, it is detected as an overcurrent, and as a result, an interruption command is output from the control device of the DC vacuum circuit breaker, and at time t 2 , the commutation switch 6 of the commutation circuit 10 and the repulsion switch of the repulsion circuit 20. 60 and is turned at the same time, the commutation current I c and the resilience current I t starts flowing at the same time. The commutation capacitor 3 and the repulsion capacitor 30 are the commutation power source 5 and the repulsion power source 5, respectively.
The state of being charged to a predetermined voltage by 0 is maintained. Commutation circuit 10, repulsion circuit 20
Since both are series resonant circuits of inductance and capacitance, an alternating current that oscillates at a resonant frequency determined by the respective circuit constants flows.

【0007】反発コイル2に発生する電磁力は電流It
の自乗に比例するから電流が流れる方向に関係しない。
一方、転流電流IC は最初の半波の間に遮断電流が零点
を切るようにするために図示のように最初の半波で主回
路電流Iとは反対の方向に電流が流れるように転流コン
デンサ3を充電しておく。通常、転流回路10の共振周
波数は数kHz程度で反発回路20のそれは転流回路10
の共振周波数の2倍程度の周波数が選定される。 真空バルブ開極まで(t2 <t<t3 ) 主回路電流Iに転流電流It が重畳することによって真
空バルブ1を流れる遮断電流IV は減少を始める。一
方、反発コイル2に反発電流It が流れることによって
電磁力が発生しこれが真空バルブ1を開極する駆動力に
なる。真空バルブ1が閉極の状態では接点同士を所定の
圧力で接触させる接触力を与えてあるので、この接触力
に打ち勝つ程度に電磁力が大きくなって始めて真空バル
ブ1は開極する。真空バルブ1の開極距離は数mmと小さ
いので開極開始と終了の時点差は僅かなのでこの図では
その時間差を零として図示してある。時点t3 で開極し
ても極間はアークで短絡されて電流IV が継続して流れ
続ける。真空バルブ1が開極すると後はラッチがかかっ
て電磁力が接触力を下回っても再度閉極するということ
はない。 真空バルブの電流遮断まで(t3 <t<t4 ) この電流IV が零点を切る時点t4 まで電流IV は継続
して流れるがこの時点t4 以降電流は流れず真空バルブ
1は電流遮断を終了する。 真空バルブの電流遮断以降(t4 <t) 真空バルブ1の電流IV が零になっても主回路電流Iは
流れ続ける。この電流Iは転流回路10を介して負荷側
に流れることになる。すなわち、主回路電流Iは真空バ
ルブ1から転流回路10に転流したことになる。時点t
4 以降の電流I V や転流電流It の図示した波形は真空
バルブ1の電流遮断が行われなかったとしたときのもの
であり、実際には時点t4 以降は転流電流It と主回路
電流Iとはその値が一致し符号が反対の波形になる。
The electromagnetic force generated in the repulsion coil 2 is the current It
Since it is proportional to the square of, it does not relate to the direction of current flow.
On the other hand, the commutation current ICHas a zero breaking current during the first half-wave
The first half wave as shown in the drawing to turn off
The commutation capacitor is designed so that the current flows in the direction opposite to the path current I.
Charge Densa 3 in advance. Normally, the resonance circumference of the commutation circuit 10
The wave number is about several kHz, and that of the repulsion circuit 20 is the commutation circuit 10.
A frequency about twice the resonance frequency of is selected. Until the vacuum valve is opened (t2<T <t3) Commutation current I to main circuit current ItTrue by overlapping
Breaking current I flowing through the empty valve 1VBegins to decline. one
Repulsion current I to repulsion coil 2tBy flowing
Electromagnetic force is generated and this becomes the driving force to open the vacuum valve 1.
Become. When the vacuum valve 1 is closed, the contacts are
Since the contact force to contact with pressure is given, this contact force
When the electromagnetic force becomes large enough to overcome the
Bu1 opens. The opening distance of the vacuum valve 1 is as small as a few mm.
Therefore, the time difference between the start and end of opening is small, so in this figure
The time difference is shown as zero. Time t3Open with
However, the gap between the electrodes is short-circuited by the arc and the current IVContinues to flow
to continue. When the vacuum valve 1 opens, it will be latched later.
Even if the electromagnetic force falls below the contact force, it will close again.
There is no. Until the vacuum valve current is cut off (t3<T <tFour) This current IVWhen t crosses zeroFourUp to current IVContinues
Then, at this point tFourNo current flows thereafter Vacuum valve
1 ends the current interruption. After vacuum valve current interruption (tFour<T) Current I of vacuum valve 1VThe main circuit current I is
Keep flowing. This current I passes through the commutation circuit 10 to the load side.
Will flow to. That is, the main circuit current I is
This means that commutation from the lube 1 to the commutation circuit 10 has occurred. Time t
FourSubsequent current I VAnd commutation current ItThe illustrated waveform of is a vacuum
When the current of valve 1 is not cut off
And actually tFourAfter that, the commutation current ItAnd main circuit
The current I has a waveform whose value matches and whose sign is opposite.

【0008】転流回路10には転流コンデンサ3が直列
に接続されているから主回路電流Iはこの転流コンデン
サ3を充電することになる。その充電の方向は遮断動作
開始前とは反対で、遮断動作開始前は図の右側が+、左
側が−であったのに対して、時点t4 以降は図の左側が
+になるように充電される。その結果、図の右側の負荷
側にかかる電圧は図の左側の電源電圧から転流コンデン
サ3の充電電圧を差し引いた値になって時間経過ととも
に減少しついには零になり主回路電圧Iも零になる。主
回路にはインダクタンスがあるから転流コンデンサ3の
キャパシタンスとで共振を起こし前述に比べて現象はも
う少し複雑であるが、図の左側の直流電源は整流器であ
ることが普通であるから、反対方向に電流が流れること
はなく、したがって、主回路電流Iが零になった時点以
降は主回路電流Iも零のままとなり、その後スイッチ6
を「開」にすることによって負荷側は電源側から完全に
遮断され、ここに直流真空遮断器としての遮断動作が完
了する。
Since the commutation capacitor 3 is connected in series to the commutation circuit 10, the main circuit current I charges the commutation capacitor 3. The charging direction is opposite to that before the interruption operation is started. Before the interruption operation is started, the right side of the figure is + and the left side is −, whereas after the time t 4 , the left side of the figure becomes +. Be charged. As a result, the voltage applied to the load side on the right side of the figure becomes a value obtained by subtracting the charging voltage of the commutation capacitor 3 from the power supply voltage on the left side of the figure, and eventually decreases to zero until the main circuit voltage I also becomes zero. become. Since the main circuit has an inductance, resonance occurs with the capacitance of the commutation capacitor 3 and the phenomenon is a little more complicated than the above, but since the DC power supply on the left side of the figure is usually a rectifier, the opposite direction Therefore, no current flows through the switch 6. Therefore, after the time when the main circuit current I becomes zero, the main circuit current I also remains at zero, and then the switch 6
The load side is completely cut off from the power supply side by opening the switch, and the breaking operation as the DC vacuum circuit breaker is completed.

【0009】もし、真空バルブ1の開極時点t3 が電流
零点の時点t4 よりも後になると、電流遮断されるのは
次の電流零点である時点t5 となり、開極時点t3 から
電流遮断時点t5 の間の期間が長くなりこの間は極間が
アークで短絡された状態になることら接点の損耗が大き
くなるという問題が生ずるので、開極時点t3 は最初の
電流零点の時点t4 よりも前になるように設定されてい
る。そのために、前述のように反発回路20の共振周波
数を転流回路10のそれの2倍程度と高くして電磁力の
最初の立ち上がりが急峻になるようにしてある。
If the opening time t 3 of the vacuum valve 1 is later than the time t 4 of the current zero point, the current is interrupted at the next current zero point t 5 and the current starts from the opening time t 3. Since the period between the breaking times t 5 becomes long, and during this period, there is a problem that the contact between the electrodes is short-circuited by the arc and the wear of the contacts becomes large, the opening time t 3 is the time of the first current zero point. It is set to be before t 4 . Therefore, as described above, the resonance frequency of the repulsion circuit 20 is set to be about twice as high as that of the commutation circuit 10 so that the first rising of the electromagnetic force becomes sharp.

【0010】[0010]

【発明が解決しようとする課題】ところで、反発回路2
0と転流回路10とは別回路としているために前述のよ
うに異なる共振周波数を採用するのが可能な構成ではあ
るが、そのために、それぞれの回路のコンデンサ3,3
0、これらを充電するための電源5,50、及びスイッ
チ6,60などの類似の機能を持った回路要素が複数使
用されているために直流真空遮断器が大型化ししかもコ
ストアップになっているという問題がある。
By the way, the repulsion circuit 2
Since 0 and the commutation circuit 10 are separate circuits, different resonance frequencies can be adopted as described above. Therefore, capacitors 3 and 3 of the respective circuits are used for that purpose.
0, a plurality of circuit elements having similar functions such as power supplies 5 and 50 for charging these, and switches 6 and 60 are used, so that the DC vacuum circuit breaker becomes large and the cost increases. There is a problem.

【0011】この発明の目的はこのような問題を解決
し、回路要素を削減して装置の小型化、コストダウンを
図ることのできる直流真空遮断器を提供することにあ
る。
An object of the present invention is to provide a DC vacuum circuit breaker which solves such a problem and can reduce the circuit elements to reduce the size and cost of the apparatus.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空バルブ、この真空バルブの
開閉を電磁力によって駆動する反発コイル及び前記真空
バルブの開極時に主回路電流に重畳して流す交流電流を
生成する転流回路からなり、この転流回路が、転流電
源、この転流電源に並列接続された転流コンデンサ及び
この並列回路と転流リアクトルと転流スイッチとの直列
回路が前記真空バルブに並列接続されてなる直流真空遮
断器において、前記反発コイルを前記転流回路に挿入
し、前記転流リアクトルのインダクタンスの一部をなす
ものとし、また、反発コイルと転流リアクトルとを直列
接続してなるものとし,又は、反発コイルと転流リアク
トルとを並列接続してなるものとし、又は、反発コイル
を第1の反発コイルと第2の反発コイルで構成し、第1
の反発コイルを直列に、第2の反発コイルを並列に、そ
れぞれ転流リアクトルと接続してなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a vacuum valve, a repulsion coil for driving the opening and closing of the vacuum valve by an electromagnetic force, and a main circuit current when the vacuum valve is opened. A commutation circuit for generating an alternating current that is superposed on the commutation power source, the commutation circuit including a commutation power source, a commutation capacitor connected in parallel to the commutation power source, the parallel circuit, the commutation reactor, and the commutation switch. In a direct current vacuum circuit breaker in which a series circuit of and is connected in parallel to the vacuum valve, the repulsion coil is inserted into the commutation circuit to form a part of the inductance of the commutation reactor. And the commutation reactor are connected in series, or the repulsion coil and the commutation reactor are connected in parallel, or the repulsion coil is the first repulsion coil. Composed of two of repulsion coil, the first
It is assumed that the repulsion coils of 1 are connected in series and the second repulsion coils are connected in parallel with the commutation reactor.

【0013】[0013]

【作用】この発明の構成において、真空バルブの開閉操
作を駆動するための電磁力を発生する反発コイルを、真
空バルブに並列接続された遮断動作時にこの真空バルブ
に交流電流を重畳させて流すための転流回路に挿入して
転流リアクトルのインダクタンスの一部をなすように構
成することによって、反発コイルには転流リアクトルと
同じ波形の電流が同時に流れて電磁力を発生するので、
反発コイルの挿入位置とそのインダクタンス値を転流リ
アクトルのそれとの関連において適切に設定することに
よって、独立した反発回路を設けることなく真空バルブ
の遮断動作に必要な電磁力を発生させることができる。
転流回路のインダクタンスは転流リアクトルと反発コイ
ルの合成インダクタンスとなる。また、反発コイルを転
流リアクトルに直列に接続して挿入すると、反発コイル
には転流リアクトルと同じ電流が流れ、又は、反発コイ
ルを転流リアクトルに並列に接続して挿入すると、それ
ぞれのインダクタンスに逆比例して電流が配分され波形
は同じになる。又は、反発コイルを第1と第2の反発コ
イルに分け、第1の反発コイルを転流リアクトルに直列
に、第2の反発コイルを転流リアクトルに並列に接続し
てそれぞれ挿入することでもよい。
In the structure of the present invention, the repulsion coil for generating the electromagnetic force for driving the opening / closing operation of the vacuum valve is connected to the vacuum valve in parallel so that the alternating current is caused to flow through the vacuum valve during the breaking operation. By configuring it to be part of the inductance of the commutation reactor by inserting it into the commutation circuit of, the current of the same waveform as that of the commutation reactor flows in the repulsion coil at the same time, and electromagnetic force is generated.
By properly setting the insertion position of the repulsion coil and its inductance value in relation to that of the commutation reactor, it is possible to generate the electromagnetic force required for the shutoff operation of the vacuum valve without providing an independent repulsion circuit.
The inductance of the commutation circuit is the combined inductance of the commutation reactor and the repulsion coil. Also, when the repulsion coil is connected in series with the commutation reactor and inserted, the same current as the commutation reactor flows through the repulsion coil, or when the repulsion coil is connected in parallel with the commutation reactor and inserted, the inductance of each The current is distributed in inverse proportion to and the waveform becomes the same. Alternatively, the repulsion coil may be divided into a first repulsion coil and a second repulsion coil, the first repulsion coil may be connected in series with the commutation reactor, and the second repulsion coil may be connected in parallel with the commutation reactor and inserted. .

【0014】[0014]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す直流真空遮断器の回路図
であり、図5と同じ回路要素に対しては共通の符号を、
機能は類似ではあっても異なるものに対しては図5の符
号に添字Aを付けることにより詳しい説明を省略する。
この図において、図5の反発回路20は設けず、その代
わりに反発コイル2Aを転流回路10Aに挿入したもの
であり、この図では転流リアクトル4Aに直列に接続し
たものである。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a circuit diagram of a DC vacuum circuit breaker showing an embodiment of the present invention, in which the same circuit elements as those in FIG.
For functions which are similar but different in function, detailed description will be omitted by adding a subscript A to the reference numerals in FIG.
In this figure, the repulsion circuit 20 of FIG. 5 is not provided, but instead, the repulsion coil 2A is inserted in the commutation circuit 10A, and in this figure, it is connected in series to the commutation reactor 4A.

【0015】図5の場合で反発回路20の反発コンデン
サ30の充電エネルギーは転流回路10の転流コンデン
サ3の約3分の1程度なので、図1の転流コンデンサの
キャパシタンス値や充電電圧が図5と同じとすると、反
発コイル2Aのインダクタンスは転流コイル4の3分の
1程度が妥当な値になる。これに伴って転流コイル4A
のインダクタンスは転流コイル4の2〜3倍で良いこと
になる。その代わりに、反発コイル2Aには転流回路1
0Aの共振周波数の電流が流れるので図6のように電磁
力の立ち上がりを急峻にするために周波数を上げること
はできない。
In the case of FIG. 5, since the charging energy of the repulsion capacitor 30 of the repulsion circuit 20 is about one third of that of the commutation capacitor 3 of the commutation circuit 10, the capacitance value and charging voltage of the commutation capacitor of FIG. Assuming the same as in FIG. 5, the inductance of the repulsion coil 2A is about 1/3 of the commutation coil 4 and a reasonable value. Along with this, the commutation coil 4A
The inductance of 2 may be 2 to 3 times that of the commutation coil 4. Instead, the repulsion coil 2A has a commutation circuit 1
Since a current having a resonance frequency of 0 A flows, the frequency cannot be increased in order to make the rising of the electromagnetic force steep as shown in FIG.

【0016】反発コイル2Aは単なるインダクタとして
働くのではなく真空バルブ1を駆動するための仕事をす
るのでその分等価的な減衰抵抗を増大させることになる
ので、これを補うために転流コンデンサ3の充電電圧を
上げるなどの従来とは異なる点が生ずるがその差は小さ
い。図2はこの発明の別の実施例を示す直流遮断器の回
路図であり、図1と異なるのは反発コイル2Bを転流リ
アクトル4Bに並列に接続した点である。並列接続なの
で反発コイル2Bと転流リアクトル4Bとの電流分担は
それぞれのインダクタンスに反比例する。また、転流イ
ンダクタンスが図5のそれと同じとし、反発コイル2B
の磁気エネルギーが全体の3分の1とすると、転流リア
クトル4Bのインダクタンスは転流リアクトル4の2/
3倍、反発コイル2Bのそれは3倍となり、この場合も
転流リアクトル4Bは従来のものよりも小さくてよい。
Since the repulsion coil 2A does not work as a simple inductor but works for driving the vacuum valve 1, the equivalent damping resistance is increased by that amount, and the commutation capacitor 3 is used to compensate for this. There are some differences from the conventional ones, such as increasing the charging voltage of, but the difference is small. 2 is a circuit diagram of a DC circuit breaker showing another embodiment of the present invention. What is different from FIG. 1 is that the repulsion coil 2B is connected in parallel to the commutation reactor 4B. Since they are connected in parallel, the current sharing between the repulsion coil 2B and the commutation reactor 4B is inversely proportional to their respective inductances. The commutation inductance is the same as that of FIG. 5, and the repulsion coil 2B is
Assuming that the magnetic energy of the commutation reactor is 1/3 of the whole, the inductance of the commutation reactor 4B is 2 /
3 times, that of the repulsion coil 2B becomes 3 times, and in this case also, the commutation reactor 4B may be smaller than the conventional one.

【0017】図3は図1を想定した図6と類似の波形図
であり、図6と同じ事項については説明を省略する。こ
の図において、転流電流IC と反発電流It とは波形と
その値及び出発点も同じである。この図では反発コイル
2Aのインダクタンスを大きめにして反発コイル2Aが
発生する電磁力を真空バルブ1の接触力に対して充分大
きく設定し、転流電流It は比較的小さく設定してあ
る。
FIG. 3 is a waveform diagram similar to FIG. 6 assuming FIG. 1, and description of the same items as in FIG. 6 will be omitted. In this figure, the commutation current I C and the repulsion current I t have the same waveform, the same value, and the same starting point. In this figure sufficiently large set electromagnetic force repulsion coil 2A is generated in the large inductance of the repulsion coil 2A against the contact force of the vacuum valve 1, the commutation current I t is is set relatively small.

【0018】転流電流It が比較的小さく設定されてい
るので遮断動作開始の時点t2 と遮断電流が零点を切る
時点t4 との時間差が比較的大きく、反発コイル2Aの
電磁力が大きく設定されているので遮断動作開始の時点
2 と真空バルブ1の開極時点t3 との時点差は小さく
なり、その結果、時点t3 は時点t4 の前になって真空
バルブ1の開極後に遮断電流IV が零になるのでこの時
点t4 で真空バルブ1の電流遮断が完了する。
The time difference between the time point t 4 the commutation current I t is relatively small set in which the time t 2 of the cut-off operation start since breaking current is cut zeros is relatively large, the electromagnetic force of repulsion coil 2A is large time difference between the opening time t 3 of the set time t 2 of the cut-off operation start since the vacuum valve 1 is reduced, as a result, time t 3 is open the vacuum valve 1 is earlier point in time t 4 Since the breaking current I V becomes zero after a while, the breaking of the vacuum valve 1 is completed at this time t 4 .

【0019】図4は図3とは類似ではあるが別の条件で
の波形図であり、図2の反発コイル2Bを転流リアクト
ル4Bに並列接続した場合を想定している。この図にお
いて、転流電流It は比較的大きく、電磁力は比較的小
さく設定した場合を想定したものであり、転流電流It
が大きいために遮断動作開始の時点t2 に対する遮断電
流IV が零点を切る時点t4 の時間差は小さく、開極時
点t3 の時間差は大きくそのために時点t3 が時点t4
の後になっており、その結果、時点t4 ではまだ開極し
ていないので電流遮断が行われず、次の零点を切る時点
5 になって始めて電流遮断が行われる。このような場
合、開極時点t3 と電流遮断時点t5 の時間差が大きく
しかもその期間中に電流ピークが含まれることからアー
クエネルギーが大きく接点の消耗が大きくなるという問
題が生ずる。しかし、一般に真空バルブは高頻度の遮断
動作に耐える接点消耗の小さな開閉器であるので、電気
鉄道における回路短絡事故の際に動作する直流真空遮断
器では接点消耗の増大はそれほど問題にならない場合も
ある。
FIG. 4 is a waveform diagram similar to FIG. 3 but under different conditions, and it is assumed that the repulsion coil 2B of FIG. 2 is connected in parallel to the commutation reactor 4B. In this figure, the commutation current I t is relatively large, and assumes a case of setting the electromagnetic force is relatively small, the commutation current I t
Is large, the time difference between the time point t 2 at which the breaking operation starts and the time point t 4 at which the breaking current I V crosses the zero point is small, and the time difference at the opening time point t 3 is large, so that the time point t 3 is changed to the time point t 4.
As a result, the current interruption is not performed at the time point t 4 because the contact has not been opened yet, and the current interruption is performed only at the time point t 5 when the next zero point is crossed. In such a case, since the time difference between the opening time t 3 and the current interruption time t 5 is large and a current peak is included in the period, there arises a problem that the arc energy is large and the contact wear is large. However, in general, vacuum valves are switches with small contact wear that endure high-frequency breaking operations, so in a DC vacuum circuit breaker that operates during a short circuit accident in an electric railway, the increase in contact wear may not be a problem. is there.

【0020】時点t2 に対する時点t3 の時間差を小さ
くするためには反発コイル2A又は2Bが発生する電磁
力を大きくすればよく、そのためには転流リアクトル4
A又は4Bとのインダクタンスの比率を適切に設定すれ
ばよい。また、時点t2 に対する時点t4 の時間を大き
くするためには転流電流を小さくすればよく、そのため
には転流コンデンサ3の充電電圧を下げるのが最も簡単
である。
In order to reduce the time difference between the time point t 3 and the time point t 2, it is sufficient to increase the electromagnetic force generated by the repulsion coil 2A or 2B. For that purpose, the commutation reactor 4 is used.
The inductance ratio with A or 4B may be set appropriately. Further, in order to increase the time from the time point t 2 to the time point t 4 , it is sufficient to reduce the commutation current. For that purpose, it is easiest to lower the charging voltage of the commutation capacitor 3.

【0021】いずれにしても前述の2つの時間差はそれ
ぞれ独立して変えることができるから反発コイル2A,
2Bに流れる電流の周波数が転流回路のそれと同じであ
っても問題はない。このように、回路条件を適切に設定
することによって遮断電流IV が零点を切る時点t4
開極時点t3 とを適切に設定することができて種々の遮
断動作を行わせることができるので、従来の条件に類似
の図3の開極時点t3 と零点を切る時点t4 との関係を
確保するための転流リアクトル4Aと反発コイル2Aの
製作は容易である。なお、図3は図1の反発コイル4A
を直列挿入した場合を想定したものであるが、これと同
じ時点関係は図4の並列挿入の場合での転流リアクトル
4B、反発コイル2Bで実現することも可能であり、同
じようにして図4の条件を転流リアクトル4A、反発コ
イル2Aで実現することも可能である。
In any case, since the above-mentioned two time differences can be changed independently of each other, the repulsion coil 2A,
There is no problem even if the frequency of the current flowing through 2B is the same as that of the commutation circuit. As described above, by appropriately setting the circuit conditions, the time point t 4 at which the breaking current I V crosses the zero point and the opening time point t 3 can be appropriately set, and various breaking operations can be performed. since the fabrication of the commutation reactor 4A and repulsion coil 2A to ensure the relationship between the time t 4 when the conventional conditions cut opening time t 3 the zero point similar to the view of FIG. 3 is easy. Incidentally, FIG. 3 shows the repulsion coil 4A of FIG.
Is assumed to be inserted in series, but the same time relationship as this can be realized by the commutation reactor 4B and the repulsion coil 2B in the case of parallel insertion in FIG. It is also possible to realize the condition of No. 4 by the commutation reactor 4A and the repulsion coil 2A.

【0022】更に、反発コイル2A又は2Bを2分割し
て一方を転流リアクトルに直列接続、他方を並列接続す
る接続構成を採用することもできる。いずれを選択する
かは実際の転流回路及び反発コイルを製作する上で種々
の条件を考慮した総合的な判断で決定することになる。
Further, it is also possible to adopt a connection structure in which the repulsion coil 2A or 2B is divided into two, one of which is connected in series to the commutation reactor and the other of which is connected in parallel. Which one is selected will be determined by comprehensive judgment in consideration of various conditions in manufacturing the actual commutation circuit and the repulsion coil.

【0023】[0023]

【発明の効果】この発明は前述のように、反発コイル
を、転流リアクトルのインダクタンスの一部になるよう
に転流回路に挿入する構成とすることによって、反発コ
イルには転流リアクトルと同じ波形の電流が同時に流れ
て電磁力を発生するので、反発コイルの挿入位置とその
インダクタンス値を転流リアクトルのそれとの関連にお
いて適切に設定することによって、独立した反発回路を
設けることなく真空バルブの遮断動作に必要な電磁力を
反発コイルに発生させることができることから、反発回
路を省略することができ、それによる部品点数を削減で
きて直流真空遮断器のコストダウンと寸法の縮小化が可
能になるという効果が得られる。更に、転流回路のイン
ダクタンスは転流リアクトルと反発コイルの合成インダ
クタンスとなるので従来の転流リアクトルにくらべて反
発コイルの分だけ転流リアクトルの容量を小さくするこ
とができることによるコストダウンの効果も得られる。
As described above, according to the present invention, the repulsion coil has the same structure as that of the commutation reactor because the repulsion coil is inserted in the commutation circuit so as to be a part of the inductance of the commutation reactor. Waveform currents flow simultaneously to generate electromagnetic force, so by properly setting the insertion position of the repulsion coil and its inductance value in relation to that of the commutation reactor, the vacuum valve can be installed without an independent repulsion circuit. Since the electromagnetic force necessary for the breaking operation can be generated in the repulsion coil, the repulsion circuit can be omitted, and the number of parts can be reduced by this, which enables cost reduction and size reduction of the DC vacuum circuit breaker. The effect of becoming Furthermore, since the inductance of the commutation circuit is the combined inductance of the commutation reactor and the repulsion coil, the capacity of the commutation reactor can be reduced by the amount of the repulsion coil compared to the conventional commutation reactor, which also has the effect of cost reduction. can get.

【0024】また、反発コイルを転流リアクトルに直列
に接続して挿入すると、反発コイルには転流リアクトル
と同じ電流が流れ、又は、反発コイルを転流リアクトル
に並列に接続して挿入すると、それぞれのインダクタン
スに逆比例して電流が配分され波形は同じになり、又
は、反発コイルを第1と第2の反発コイルに分け、第1
の反発コイルを転流リアクトルに直列に、第2の反発コ
イルを転流リアクトルに並列に接続してそれぞれ挿入す
ることでもよく、いずれの場合も反発コイルと転流リア
クトルとのインダクタンスの関係を適切に選ぶことによ
って前述と同様の効果を得ることができる。
When the repulsion coil is connected in series to the commutation reactor and inserted, the same current as the commutation reactor flows in the repulsion coil, or when the repulsion coil is connected in parallel to the commutation reactor and inserted. A current is distributed in inverse proportion to each inductance and the waveforms are the same, or the repulsion coil is divided into a first repulsion coil and a second repulsion coil,
It is also possible to insert the repulsion coil in series with the commutation reactor and to connect the second repulsion coil in parallel with the commutation reactor, and in each case, the inductance relationship between the repulsion coil and the commutation reactor is appropriate. The same effect as described above can be obtained by selecting.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す直流真空遮断器の回路
FIG. 1 is a circuit diagram of a DC vacuum circuit breaker showing an embodiment of the present invention.

【図2】この発明の別の実施例を示す直流遮断器の回路
FIG. 2 is a circuit diagram of a DC circuit breaker showing another embodiment of the present invention.

【図3】図1の直流真空遮断器の遮断動作時の遮断電流
などの波形図
FIG. 3 is a waveform diagram of the breaking current and the like during the breaking operation of the DC vacuum circuit breaker of FIG.

【図4】図2の直流真空遮断器の遮断動作時の遮断電流
などの波形図
FIG. 4 is a waveform diagram of the breaking current and the like during the breaking operation of the DC vacuum circuit breaker of FIG.

【図5】従来の直流真空遮断器の回路図FIG. 5 is a circuit diagram of a conventional DC vacuum circuit breaker.

【図6】図5の直流真空遮断器の遮断動作時の電流の時
間変化などを示す波形図
FIG. 6 is a waveform diagram showing changes over time in the current during the breaking operation of the DC vacuum circuit breaker of FIG.

【符号の説明】[Explanation of symbols]

1 真空バルブ 10A 転流回路 10B 転流回路 2A 反発コイル 4A 転流リアクトル 2B 反発コイル 4B 転流リアクトル 3 転流コンデンサ 5 転流電源 6 転流スイッチ 1 vacuum valve 10A commutation circuit 10B commutation circuit 2A repulsion coil 4A commutation reactor 2B repulsion coil 4B commutation reactor 3 commutation capacitor 5 commutation power supply 6 commutation switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空バルブ、この真空バルブの開閉を電磁
力によって駆動する反発コイル及び前記真空バルブの開
極時に主回路電流に重畳して流す交流電流を生成する転
流回路からなり、この転流回路が、転流電源、この転流
電源に並列接続された転流コンデンサ及びこの並列回路
と転流リアクトルと転流スイッチとの直列回路が前記真
空バルブに並列接続されてなる直流真空遮断器におい
て、前記反発コイルを前記転流回路に挿入し、前記転流
リアクトルのインダクタンスの一部をなすことを特徴と
する直流真空遮断器。
1. A vacuum valve, a repulsion coil for driving the opening and closing of the vacuum valve by an electromagnetic force, and a commutation circuit for generating an alternating current which flows in superposition with the main circuit current when the vacuum valve is opened. A direct current vacuum circuit breaker in which a flow circuit is a commutation power source, a commutation capacitor connected in parallel to this commutation power source, and a series circuit of this parallel circuit, a commutation reactor, and a commutation switch are connected in parallel to the vacuum valve. The DC vacuum circuit breaker according to claim 1, wherein the repulsion coil is inserted into the commutation circuit to form a part of the inductance of the commutation reactor.
【請求項2】反発コイルと転流リアクトルとを直列接続
してなることを特徴とする請求項1記載の直流真空遮断
器。
2. The DC vacuum circuit breaker according to claim 1, wherein the repulsion coil and the commutation reactor are connected in series.
【請求項3】反発コイルと転流リアクトルとを並列接続
してなることを特徴とする請求項1記載の直流真空遮断
器。
3. The DC vacuum circuit breaker according to claim 1, wherein the repulsion coil and the commutation reactor are connected in parallel.
【請求項4】反発コイルを第1の反発コイルと第2の反
発コイルで構成し、第1の反発コイルを直列に、第2の
反発コイルを並列に、それぞれ転流リアクトルと接続し
てなることを特徴とする請求項1記載の直流真空遮断
器。
4. A repulsion coil comprising a first repulsion coil and a second repulsion coil, wherein the first repulsion coil is connected in series and the second repulsion coil is connected in parallel with the commutation reactor. The DC vacuum circuit breaker according to claim 1, wherein:
JP18138592A 1992-07-09 1992-07-09 Direct current vacuum circuit breaker Pending JPH0628955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18138592A JPH0628955A (en) 1992-07-09 1992-07-09 Direct current vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18138592A JPH0628955A (en) 1992-07-09 1992-07-09 Direct current vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH0628955A true JPH0628955A (en) 1994-02-04

Family

ID=16099814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18138592A Pending JPH0628955A (en) 1992-07-09 1992-07-09 Direct current vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0628955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864085A (en) * 1994-08-22 1996-03-08 Kansai Electric Power Co Inc:The Dc cutout gear
JPH09262964A (en) * 1996-03-28 1997-10-07 Nec Corp Screen process printing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864085A (en) * 1994-08-22 1996-03-08 Kansai Electric Power Co Inc:The Dc cutout gear
JPH09262964A (en) * 1996-03-28 1997-10-07 Nec Corp Screen process printing device

Similar Documents

Publication Publication Date Title
US5563459A (en) Apparatus for controlling opening and closing timings of a switching device in an electric power system
US9379535B2 (en) System, apparatus, and method for reducing inrush current in a transformer
US10217585B2 (en) Control circuit for composite switch with contact protection based on diode and relay control method
JP3965037B2 (en) DC vacuum interrupter
EP2914455B1 (en) Circuit arrangement comprising pick-up and variable compensating arrangement, and method
Ängquist et al. Design and test of VSC assisted resonant current (VARC) DC circuit breaker
KR20150023827A (en) Switch
CN103840729A (en) Start and transition branch of contactless on-load automatic voltage control distribution transformer
JPH0628955A (en) Direct current vacuum circuit breaker
WO1996001010A1 (en) Current source gate drive circuit for simultaneous firing of thyristors
JPH03155332A (en) Electric energy storage system
CN100570979C (en) Suppress three-phase Y type and connect the method and apparatus that load starts transient state
JP2002216594A (en) Operation mechanism for switch device
WO2020055317A1 (en) Current interrupter with actuator run-time control
JP3619212B2 (en) Switchgear
JPH04259719A (en) Electric current shutting apparatus
CN117117794B (en) Transformer pre-magnetizing circuit and control method thereof
KR20040076376A (en) Start control circuit of hybrid motor starter
JP4374669B2 (en) Switchgear
JP3181323B2 (en) Electric car control device
JP2933997B2 (en) Switch drive
Daley Load transfer strategies for machine and other inrush loads
Tupper et al. Demonstration of the Production of 60 HZ AC Power Directly from High Frequency Alternators
JPH08288154A (en) Switching device
SU1742934A1 (en) Device for protection of thyristor converter against emergency currents