JPH06289186A - Cooling sea water discharge device for nuclear power plant - Google Patents

Cooling sea water discharge device for nuclear power plant

Info

Publication number
JPH06289186A
JPH06289186A JP5094911A JP9491193A JPH06289186A JP H06289186 A JPH06289186 A JP H06289186A JP 5094911 A JP5094911 A JP 5094911A JP 9491193 A JP9491193 A JP 9491193A JP H06289186 A JPH06289186 A JP H06289186A
Authority
JP
Japan
Prior art keywords
sea
siphon
pipe
reservoir
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5094911A
Other languages
Japanese (ja)
Other versions
JP3143641B2 (en
Inventor
Yasutaka Tomohara
保孝 智原
Mutsuo Tsunematsu
睦生 常松
Yoshihiko Usui
義彦 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nuclear Fuel Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nuclear Fuel Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP05094911A priority Critical patent/JP3143641B2/en
Publication of JPH06289186A publication Critical patent/JPH06289186A/en
Application granted granted Critical
Publication of JP3143641B2 publication Critical patent/JP3143641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To provide a syphon type drainage device which drains the warm sea water which is used for cooling in a power generation plant and discharged into the sea without generating bubbles and white darkening, and is free from the breaking of the syphon pumping-up state during drainage, as for a coastal nuclear power plant. CONSTITUTION:A discharge device is constituted so that the warm sea water which is heat-exchange-processed in the plant equipment of a coastal nuclear power plant is drainaged into the sea through a syphon tube 13 from a primary water pool 12 installed at the position higher than the sea level in a high tide, and an ejector device 15 for sucking the air in the top part in the syphon tube into a drain stream at the flow speed of the drain stream in the syphon tube is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所用冷却海水
放水装置に関し、特に臨海原子力発電所の発電プラント
機器から排出される温海水を満潮時の海面よりも高い位
置に設けられた一次貯水池からサイホン管を介して海中
に放水するための原子力発電所用冷却海水放水装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling seawater discharger for a nuclear power plant, and more particularly to warm seawater discharged from power plant equipment of a coastal nuclear power plant from a primary reservoir provided at a position higher than the sea level at high tide. The present invention relates to a cooling seawater discharge device for a nuclear power plant for discharging water into the sea through a siphon pipe.

【0002】[0002]

【従来の技術】臨海原子力発電所では、発電プラントの
ディーゼル発電機や一次系補機の冷却系、或いはタービ
ン蒸気の復水器などの冷却媒体として、海から汲み上げ
た海水を利用しており、殆どの場合、冷却のために熱交
換されて温度上昇した海水は温排水として定常的に海中
に放水される。この放水量は、プラントの容量にもよる
が百数十t/minにも及ぶことがあり、従って放水海
域に対する種々の影響を考慮しなければならない。
2. Description of the Related Art At a seaside nuclear power plant, seawater pumped from the sea is used as a cooling medium for a diesel generator of a power plant, a cooling system for primary auxiliary machinery, or a condenser for turbine steam. In most cases, seawater whose temperature has risen due to heat exchange for cooling is constantly discharged into the sea as warm wastewater. This water discharge amount can reach up to hundreds of tons / min depending on the capacity of the plant, and therefore various effects on the water discharge area must be taken into consideration.

【0003】例えば、一般的な臨海原子力発電所では、
発電プラント内で冷却に使用された温海水を海中に排出
するための放水設備として、プラントから排出される温
海水を放水前に一時的に貯留するために、通常の満干潮
の水位差、台風時の波浪、地震発生時の津波等によって
も被水しないような高さ位置に貯水池が設けられてい
る。
For example, in a general seaside nuclear power plant,
As a water discharge facility to discharge the warm seawater used for cooling in the power plant into the sea, in order to temporarily store the warm seawater discharged from the plant before discharging the water, the normal water level difference at high tide and typhoon The reservoir is located at a height so that it will not be flooded by the waves of the time, the tsunami at the time of the earthquake, and so on.

【0004】プラントから貯水池に流入した温海水は、
貯水池の堰堤を越えて滝状に海面に放水されるが、大量
の温海水が例えば数m以上に達することもある大きな落
差で連続的に海面に落下するので、あたかも大型の滝の
様相を呈して海水中に大量の空気を巻き込み、海面上に
大量の気泡を発生し、また海水中に微小な気泡を大量に
分散させて海水を白濁状態にしてしまう。
Warm seawater flowing from the plant into the reservoir is
Although it is discharged to the sea surface in a waterfall shape over the dam of the reservoir, a large amount of warm seawater, which may reach several meters or more, continuously falls to the sea surface with a large head, so that it looks like a large waterfall. A large amount of air is entrained in the seawater to generate a large amount of bubbles on the surface of the sea, and a large amount of fine bubbles are dispersed in the seawater to make the seawater cloudy.

【0005】このようにして形成された海面上の気泡や
白濁状態の海水は、本来、汚染物質を含まず、清浄かつ
無害で、しかも時間を置けば自然に消失する性質のもの
であるが、海面上の気泡は海面上を漂ううちに水垢や大
気中のほこりを吸着して見かけの汚い様相を呈すること
があり、また海水の白濁状態は自然解消されるまでに比
較的長い時間がかかるため、流れに乗って遥か沖合いに
まで拡がると広い範囲の海面を濁った状態にし、海洋汚
染の誤解を招くという問題もあった。
Bubbles on the sea surface and seawater in a cloudy state formed in this manner are essentially free of pollutants, are clean and harmless, and naturally disappear over time. Bubbles on the surface of the sea may adsorb scales and dust in the atmosphere while floating on the surface of the sea, and may appear apparently dirty.Because the cloudiness of seawater takes a relatively long time to resolve itself. However, there was also the problem of spreading the ocean surface over a wide area to muddy water when it spreads far offshore, which could lead to misunderstandings of marine pollution.

【0006】[0006]

【発明が解決しようとする課題】前述の放水海面の気泡
発生や白濁を防止する対策として、貯水池の堰堤を跨い
でサイホン管を設置し、貯水池内の温海水と放水海面下
の海水とをこのサイホン管で連通させて、サイホン管を
通して海面下への連続的な放水を行なうことが考えられ
たが、この場合は、放水海水中に含まれる気体がサイホ
ン管内で分離してサイホン管内の頂部に徐々に溜り、使
用中にサイホン管内の海水の連通が滞留気体によって断
たれると放水が停止するという問題点がある。従ってこ
の場合は、定期的にサイホン管内の空気抜き操作を行な
わなければならず、余分な保守作業が必要であるという
欠点が避けられない。
As a measure for preventing the occurrence of bubbles and cloudiness on the surface of the discharged water, a siphon pipe is installed across the dam of the reservoir, and warm seawater inside the reservoir and seawater below the discharged sea surface are It was considered that the water was continuously discharged under the sea surface through the siphon pipe by communicating with the siphon pipe, but in this case, the gas contained in the discharged seawater was separated in the siphon pipe to the top of the siphon pipe. There is a problem that the water gradually stops, and when the communication of seawater in the siphon pipe is cut off by the stagnant gas during use, the water discharge is stopped. Therefore, in this case, the air bleeding operation inside the siphon tube must be performed regularly, and the disadvantage that extra maintenance work is necessary cannot be avoided.

【0007】本発明は、貯水池から海面までの落差が存
在する場合でも放水海面に気泡を発生したり海水を白濁
状態にする心配が無く、しかも定期的な空気抜き保守作
業も必要としないサイホン管方式の原子力発電所用温海
水放水装置を提供することを目的としている。
[0007] The present invention is a siphon tube system which does not cause bubbles on the surface of the discharged water or makes the seawater cloudy even when there is a head drop from the reservoir to the sea surface, and does not require regular air bleeding maintenance work. The purpose of the present invention is to provide a warm seawater discharge device for a nuclear power plant.

【0008】[0008]

【課題を解決するための手段】本発明は、臨海原子力発
電所のプラント機器で冷却を行った温海水を満潮時の海
面よりも高所に設けられた貯水池からサイホン管を介し
て海中に放水するための放水装置を提供するものであ
り、この放水装置は、前述の課題を達成するために、前
記サイホン管内の頂部の空気を該サイホン管内の放水流
の流速によって該放水流中に吸引するエジェクタ装置を
備えている。
DISCLOSURE OF THE INVENTION According to the present invention, warm seawater cooled by plant equipment of a seaside nuclear power plant is discharged into the sea from a reservoir provided at a height higher than the sea level at high tide through a siphon pipe. In order to achieve the above-mentioned object, the water discharge device sucks the air at the top of the siphon pipe into the water discharge flow according to the flow velocity of the water discharge flow in the siphon pipe. Equipped with an ejector device.

【0009】[0009]

【作用】本発明においては、貯水池に一次貯留された温
海水は、貯水池の堰堤を越えて海面に滝のように落下す
るのではなく、サイホン管を通じて外気との接触を最小
限に抑制した形式で直接に海面下の海水中に放水され
る。従って放水に当たって温海水と海面の衝突は起こら
ず、この衝突に伴う海水中への空気の巻き込みも回避さ
れる。
According to the present invention, the warm seawater primarily stored in the reservoir does not fall like a waterfall over the weir of the reservoir to the sea surface, but the contact with the outside air is minimized through the siphon pipe. Is released directly into the seawater below sea level. Therefore, the warm seawater and the sea surface do not collide with each other when discharging the water, and the entrainment of air into the seawater due to this collision is also avoided.

【0010】前記エジェクタ装置は前記サイホン管内の
下向き放水流中に配置することができ、またエジェクタ
装置自体の構造は、例えばサイホン管内の放水流に対面
してこれを取り入れるラッパ管と、該ラッパ管の出口近
傍を囲む外管とからなる一般的な二重管構造で実現で
き、この場合、前記ラッパ管の出口から出てくる高速流
によって前記外管との間に負圧領域を形成させ、この負
圧領域を別の連通管によってサイホン管頂部に連通させ
れば、サイホン管頂部に溜る気体は、ラッパ管によって
流速を上げられた高速放水流のエジェクタ効果により前
記連通管から前記負圧領域に吸引され、外管内をその下
流側出口へ向かって流れる高速放水流と共にサイホン管
の下流へ流出される。これによって定期的な空気抜き操
作を行なわずともサイホンによる汲み上げを維持するこ
とができる。
The ejector device can be arranged in the downward water discharge flow in the siphon pipe, and the structure of the ejector device itself is, for example, a trumpet pipe that faces the water discharge flow in the siphon pipe and takes in the same, and the trumpet pipe. It can be realized by a general double pipe structure consisting of an outer tube surrounding the vicinity of the outlet of, and in this case, a negative pressure region is formed between the outer tube and the high-speed flow coming out of the outlet of the trumpet tube, If this negative pressure region is communicated with the top of the siphon pipe by another communication pipe, the gas accumulated at the top of the siphon pipe will have a negative pressure region from the communication pipe due to the ejector effect of the high-speed discharge flow whose flow velocity is increased by the trumpet pipe. And is discharged to the downstream of the siphon pipe together with the high-speed water discharge flow flowing in the outer pipe toward the outlet on the downstream side. As a result, siphoning by the siphon can be maintained without performing regular air venting operation.

【0011】従来の放水方式では、放水量の増減に応じ
て貯水池の堰堤を越える温海水の厚みが増減すること
で、放水の落下流量が自律的に調整されるが、本発明の
ようにサイホン管を用いた放水方式では、プラントから
貯水池への温海水の流入量とサイホン管を通過する放水
量とのバランスを考慮することが望ましい。
In the conventional water discharge system, the drop flow rate of the discharged water is autonomously adjusted by increasing or decreasing the thickness of the warm seawater that crosses the dam of the reservoir according to the increase or decrease in the amount of discharged water. In the water discharge system using pipes, it is desirable to consider the balance between the inflow amount of warm seawater from the plant to the reservoir and the water discharge amount passing through the siphon pipe.

【0012】すなわち、貯水池への単位時間当りの流入
量に比較してサイホンを通過する放水量が極端に多過ぎ
ると、貯水池内の水位の下降によってサイホン管の開口
から空気が侵入し、サイホン汲み上げ状態が破れる事態
が生じる恐れがある。一方、貯水池への流入量に比べて
サイホン管を通過する放水量が極端に少な過ぎると、貯
水池の水位が上昇して堰堤から温海水が頻繁に溢水する
事態が生じる恐れがある。従って貯水池の容積が比較的
小さく、プラントから貯水池への温海水の流入量が発電
プラントの負荷状態などによって大きく変動するような
場合は、別の分流手段または流量調整手段によってサイ
ホン管を通過する放水量をサイホン汲み上げ状態が維持
されるように調整することが望ましい。
That is, when the amount of water discharged through the siphon is excessively large compared to the amount of water flowing into the reservoir per unit time, the air level in the reservoir drops and air intrudes through the siphon pipe opening to pump up the siphon. There is a possibility that the situation will be broken. On the other hand, if the amount of water discharged through the siphon pipe is extremely small compared to the amount of water flowing into the reservoir, the water level in the reservoir may rise and warm seawater may frequently overflow from the dam. Therefore, if the volume of the reservoir is relatively small and the inflow of warm seawater from the plant to the reservoir fluctuates greatly due to the load condition of the power plant, etc. It is desirable to adjust the water volume so that the siphon pumping condition is maintained.

【0013】例えば、本発明の放水装置による放水に加
えて、従来と同様な堰堤方式の放水を補助的に行なわせ
るようにしてもよく、主要部をなす一定の放水量はサイ
ホン管を通して放水し、それを越える余剰放水量が生じ
た時は堰堤を越えて海面に落下させるようにしても、そ
れによる気泡の発生および白濁は従来の全量落下の場合
に比べて遥かに少なくて済む。
For example, in addition to the water discharge by the water discharge device of the present invention, water discharge by a dam structure similar to the conventional one may be supplementarily performed, and a constant amount of water discharge forming a main part is discharged through a siphon pipe. However, when excess water discharge exceeds that level, even if the excess water is discharged over the dam and dropped to the sea surface, the generation of bubbles and cloudiness due to it will be much smaller than in the case of total drop in the past.

【0014】別の可能性は、複数のサイホン管を放水量
に応じた本数で選択的に並列使用することである。この
場合、使用停止中のサイホン管はその海中の出口で開閉
弁により閉鎖し、サイホン管内の入口と出口側が海水で
連通するように維持して、次に開閉弁を開いた時に直ち
にサイホン汲み上げが再開できるようにする。
Another possibility is to selectively use a plurality of siphon tubes in parallel in a number corresponding to the amount of water discharged. In this case, the siphon pipe that is not in use is closed by an on-off valve at its subsea outlet, and the inlet and outlet sides of the siphon pipe are kept in communication with seawater.The siphon pumping will be performed immediately when the on-off valve is opened next time. Allow resuming.

【0015】貯水池への流入量とサイホン管を通過させ
る放水量のバランスを調整する1つの方法は、サイホン
管の落下側にバタフライ弁などの流量調整弁を設け、貯
水池の水位に応じて流量調整弁の開度を調整する方法で
ある。
One method of adjusting the balance between the amount of water flowing into the reservoir and the amount of water discharged through the siphon tube is to install a flow rate adjusting valve such as a butterfly valve on the fall side of the siphon tube and adjust the flow rate according to the water level in the reservoir. This is a method of adjusting the opening of the valve.

【0016】サイホン管の内部が空の状態から放水を開
始するには、サイホン管の貯水池側の開口が貯水池内の
温海水に浸漬され、また海側の開口が海中に浸漬された
状態でサイホン管頂部から内部の空気を吸引ポンプ等で
吸引し減圧する。この減圧操作によってサイホン管内の
水位が上昇し、これがサイホン管内底面の最高位点を越
えると、サイホン管内で温海水が海側に落下しはじめ、
サイホンによる貯水池内の温海水の汲み上げが開始され
る。以後は吸引ポンプを止めてサイホン管頂部の外気と
の連通を断てば、この汲み上げが継続される。
To start water discharge from an empty inside of the siphon pipe, the siphon pipe is opened while the opening on the reservoir side is immersed in warm seawater in the reservoir, and the opening on the sea side is immersed in the sea. The internal air is sucked from the top of the pipe with a suction pump to reduce the pressure. This decompression operation raises the water level in the siphon pipe, and when it exceeds the highest point on the bottom surface of the siphon pipe, warm seawater begins to fall to the sea side in the siphon pipe.
Pumping of warm seawater from the reservoir by siphon is started. After that, if the suction pump is stopped and the communication with the outside air at the top of the siphon pipe is cut off, this pumping is continued.

【0017】サイホン管による貯水池内の温海水の汲み
上げ状態では、内部に流れる温海水中に混入している気
体が気泡となってサイホン管内頂部に集合して滞留しよ
うとするが、このサイホン管内の頂部領域は、サイホン
管内に放水の流れが存在するかぎり前記エジェクタ装置
によって吸引状態にあることから、例えサイホン管内頂
部に気泡が滞留しても直ちにエジェクタ装置によって吸
引され、サイホン管の下流側に放水と共に流出される。
したがって連続放水中にも前記エジェクタ装置による吸
引作用によってサイホン管内に大量の気体が滞留するこ
とはなく、サイホンによる汲み上げ状態が破れずに維持
される。
When warm seawater in a reservoir is pumped by a siphon pipe, the gas mixed in the warm seawater flowing inside becomes bubbles and tries to gather and stay at the top of the siphon pipe. Since the area is in the suction state by the ejector device as long as the flow of water is present in the siphon pipe, even if air bubbles stay at the top of the siphon pipe, the region is immediately sucked by the ejector device and is discharged to the downstream side of the siphon pipe. To be leaked.
Therefore, even during continuous water discharge, a large amount of gas does not stay in the siphon pipe due to the suction action of the ejector device, and the pumped state by the siphon is maintained without being broken.

【0018】[0018]

【実施例】本発明の実施例を図面を参照して説明する
と、図1は本発明の一実施例に係る原子力発電所用温海
水放水装置の要部の構成を示す模式図である。ここで
は、従来型の原子力発電所用温海水放水設備の貯水池1
2をそのまま利用し、その堰堤12Eを跨いでサイホン
管13を配置している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the main part of a warm seawater discharger for a nuclear power plant according to an embodiment of the present invention. Here, the reservoir 1 of the conventional hot water discharge facility for nuclear power plants
2 is used as it is, and the siphon pipe 13 is arranged across the dam 12E.

【0019】図1において、貯水池12には図示しない
発電プラントからの放出管11から使用済みの温海水が
流入し、この貯水池12は、外の海面23の満潮時の水
位、台風時の波浪、地震発生時の津波等によっても被水
しない高さ位置のあふれ縁を構成する堰堤12Eを有す
る。放出管11から貯水池12に流入する温海水22
は、貯水池に一旦滞留させた後に、サイホン管13を通
じて海水24中に排出される。
In FIG. 1, used warm seawater flows into a reservoir 12 from a discharge pipe 11 from a power plant (not shown), and the reservoir 12 has a water level at the outer sea level 23 at high tide and waves at typhoon. It has a dam 12E that constitutes an overflow edge at a height position where it is not flooded by a tsunami at the time of an earthquake. Warm seawater 22 flowing into the reservoir 12 from the discharge pipe 11
Is once retained in the reservoir and then discharged into the seawater 24 through the siphon pipe 13.

【0020】サイホン管13は、貯水池12内の水面下
で外の海面よりも高い位置に一方の開口が配置され、こ
の開口よりも高い堰堤12Eの上部を経由して、海水2
4中の干潮時の海面よりも低い位置に他方の開口を配置
しており、両開口の水頭圧差によって、放出管11から
の流入量のほぼ相当する流量で貯水池12内の温海水を
外の海中に放水する。
One opening of the siphon pipe 13 is arranged below the water surface in the reservoir 12 and higher than the outside sea surface, and the seawater 2 passes through the upper part of the dam 12E higher than this opening.
The other opening is placed at a position lower than the sea level during low tide in 4 and the warm seawater inside the reservoir 12 is discharged at a flow rate almost equivalent to the inflow from the discharge pipe 11 due to the head pressure difference between both openings. Discharge into the sea.

【0021】サイホン管13内の頂部には空気溜り13
Hが設けられ、この空気溜り13Hには開閉バルブ14
を介して図示しない真空ポンプが接続される。この真空
ポンプは、サイホン管13内を排気して海水でサイホン
管13内を満たし、貯水池12からの温海水22のサイ
ホン吸い上げ作用を開始させるためのものである。
An air reservoir 13 is provided at the top of the siphon tube 13.
H is provided, and the opening / closing valve 14 is provided in this air reservoir 13H.
A vacuum pump (not shown) is connected via. This vacuum pump is for exhausting the inside of the siphon pipe 13 to fill the inside of the siphon pipe 13 with seawater, and to start the siphon suction action of the warm seawater 22 from the reservoir 12.

【0022】サイホン管13内が海水で満たされてサイ
ホン吸い上げ作用が開始されると、貯水池12内の温海
水22がサイホン管13を通じて海水24中に放出され
ることになる。このとき、サイホン管13の貯水池12
側の開口から温海水と共にサイホン管13内に空気が侵
入し、あるいは温海水中に溶存していた気体がサイホン
管内で気泡となって分離すると、サイホン管内頂部の空
気溜りに気体が徐々に溜り、そのままではサイホン管内
の水位が次第に下がって、遂にはサイホン吸い上げ状態
が破れる結果となる。
When the siphon pipe 13 is filled with seawater and the siphon suction action is started, the warm seawater 22 in the reservoir 12 is discharged into the seawater 24 through the siphon pipe 13. At this time, the reservoir 12 of the siphon pipe 13
When air enters the siphon tube 13 together with warm seawater through the opening on the side, or the gas dissolved in the warm seawater separates as bubbles in the siphon tube, the gas gradually accumulates in the air pool at the top of the siphon tube, If it is left as it is, the water level inside the siphon pipe will gradually drop and eventually the siphon suction state will be broken.

【0023】これを防止するために、本実施例において
は、サイホン管13の空気溜り13Hを吸引管15Pに
よってエジェクタ装置15に接続し、空気溜り13Hに
溜った空気を放水流中に吸引して放水と共に海中に流出
させている。これにより、サイホン吸い上げ状態が継続
的に維持され、温海水22を海水24中に放水し続ける
ことができるようになている。
In order to prevent this, in this embodiment, the air reservoir 13H of the siphon pipe 13 is connected to the ejector device 15 by the suction pipe 15P, and the air accumulated in the air reservoir 13H is sucked into the discharge flow. It is discharged into the sea along with water discharge. As a result, the siphon siphoning state is continuously maintained, and the warm seawater 22 can be continuously discharged into the seawater 24.

【0024】エジェクタ装置15は、サイホン管13内
の下向きの放水流中に入口開口を上流に向けて配置され
た放水流取入れ用のラッパ管15Nと、該ラッパ管15
Nの出口ノズル近傍を囲む外管15Mとからなる一般的
な二重管構造のものであり、この場合、前記ラッパ管1
5Nの出口ノズルから出てくる高速流によって前記外管
15M内に負圧空間15Sを形成し、この負圧空間15
Sに前記吸引管15Pによってサイホン管頂部の空気溜
り13Hを連通させてある。これにより、サイホン管頂
部に溜る気体は、ラッパ管15Nによって流速を上げら
れた高速放水流のエジェクタ効果により前記空気溜り1
3Hから吸引管15Pを介して前記負圧空間15Sに吸
引され、外管15M内をその下流側出口へ向かって流れ
る高速放水流と共にサイホン管13内を下流の海中へ向
けて押し流されて出て行くことになる。
The ejector device 15 includes a trumpet pipe 15N for taking in a water discharge flow, which is arranged in a downward water discharge flow in the siphon pipe 13 with its inlet opening facing upstream, and the trumpet pipe 15
It has a general double pipe structure composed of an outer pipe 15M surrounding the vicinity of the N outlet nozzle, and in this case, the trumpet pipe 1
A negative pressure space 15S is formed in the outer pipe 15M by the high-speed flow coming out of the 5N outlet nozzle.
An air reservoir 13H at the top of the siphon pipe is connected to S by the suction pipe 15P. As a result, the gas accumulated at the top of the siphon pipe is stored in the air pool 1 by the ejector effect of the high-speed discharge flow whose flow velocity is increased by the trumpet pipe 15N.
3H is sucked into the negative pressure space 15S through the suction pipe 15P, and is swept out into the sea downstream in the siphon pipe 13 together with the high-speed water discharge flow flowing in the outer pipe 15M toward the downstream side outlet. I will go.

【0025】ここで、サイホン管13は、空気溜り13
Hに溜った空気を海中に気泡として押し流しているた
め、海水24中には多少の気泡が発生するが、このよう
にして発生する気泡は、大きさと発生量が海面に浮上し
た後にほどなく消滅する程度のものとなるため、堰堤1
2Eからそのまま落下させていた従来の放水方式に比較
すると、海面での気泡の発生量がわずかであり、また海
水を白濁状態にする心配もない。
Here, the siphon tube 13 is an air reservoir 13
Some air bubbles are generated in the seawater 24 because the air accumulated in H is swept into the sea as air bubbles, but the air bubbles thus generated disappear shortly after the size and amount of the air bubbles have risen to the sea surface. Dam 1
Compared with the conventional water discharge method in which the water is dropped from 2E as it is, the amount of bubbles generated on the sea surface is small, and there is no concern that the seawater becomes cloudy.

【0026】以上の実施例では、本発明の放水装置を最
も端的に表す例を説明したが、本発明に従ってエジェク
タ付きサイホン管を用いた放水装置はこの他にも種々の
変形が可能であり、これには前述のようなサイホン管を
並列に設ける方式、あるいはバタフライ弁などの流量調
整弁との組み合わせ方式などが包含されることは述べる
までもない。
In the above embodiment, an example in which the water discharger of the present invention is most simply described has been described, but the water discharger using the siphon tube with an ejector according to the present invention can be modified in various other ways. It goes without saying that this includes a system in which siphon pipes are provided in parallel as described above, or a system in combination with a flow rate adjusting valve such as a butterfly valve.

【0027】[0027]

【発明の効果】以上に述べたように、本発明によれば、
貯水池内の温海水が堰堤を跨いで設置されたサイホン管
を通じて直接に海面下に放水されるので、放水流と海面
との落下衝突は起こらず、この衝突に伴う海水中への空
気の巻き込みも起きない。従って大量の温海水を高所か
ら継続的に放水する場合でも放水海域の海面における気
泡の発生量はわずかであり、近隣海域の海水を白濁状態
にする心配もない。
As described above, according to the present invention,
The warm seawater in the reservoir is discharged directly below the sea surface through a siphon pipe installed across the dam, so there is no drop collision between the discharge flow and the sea surface, and the entrainment of air into the seawater due to this collision. Don't get up Therefore, even when a large amount of warm seawater is continuously discharged from a high place, the amount of bubbles generated on the sea surface of the discharge sea area is small, and there is no concern that the sea water in the adjacent sea area becomes cloudy.

【0028】この場合、本発明では、従来の原子力発電
所における温海水放水設備の貯水池をそのまま利用でき
るので、新たに付加する設備も僅かで済むと共に、既存
の発電プラントへの採用が容易であり、付設工事期間も
短くて済むという利点が得られる。
In this case, according to the present invention, since the reservoir of the warm seawater discharge facility in the conventional nuclear power plant can be used as it is, the number of newly added facilities can be reduced and it can be easily adopted in the existing power plant. The advantage is that the installation period can be shortened.

【0029】また本発明の放水装置によれば、サイホン
汲み上げ状態でサイホン管内頂部の空気溜りに気体が滞
留しようとしても、これをエジェクタ装置によって放水
流のエネルギーで自己作用として吸引・排出することが
できるので、長期の連続放水においても放水中にサイホ
ン汲み上げ状態が破られる恐れがない。
Further, according to the water discharge device of the present invention, even if the gas is retained in the air pool at the top of the siphon pipe in the siphon pumping state, the ejector device can suck and discharge the gas by the energy of the water discharge flow. As a result, there is no fear that the siphon pumping state will be broken during the continuous water discharge for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る原子力発電所用温海水
放水装置の構成を示す模式図である。
FIG. 1 is a schematic diagram showing the configuration of a warm seawater discharger for a nuclear power plant according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 放出管 12 貯水池 13 サイホン管 14 開閉バルブ 15 エジェクタ装置 22 温海水 23 海面 24 海水 12E 堰堤 13H 空気溜り 15N ラッパ管 15P 吸引管 15S 負圧空間 15M 外管 11 Discharge pipe 12 Reservoir 13 Siphon pipe 14 Open / close valve 15 Ejector device 22 Warm seawater 23 Sea level 24 Seawater 12E Dam 13H Air reservoir 15N Wrapper pipe 15P Suction pipe 15S Negative pressure space 15M Outer pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 臼井 義彦 大阪府泉大津市北豊中町1丁目6番8− 107 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshihiko Usui 1-6-8-107 Kita Toyonaka-cho, Izumiotsu-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 臨海原子力発電所のプラント機器で熱交
換を行って排出されてくる温海水を満潮時の海面よりも
高い位置に設けられた一次貯水池からサイホン管を介し
て海中に放水するための放水装置であって、前記サイホ
ン管内の頂部の空気を該サイホン管内の放水流の流速に
よって該放水流中に吸引するエジェクタ装置を備えたこ
とを特徴とする原子力発電所用冷却海水放水装置。
1. To discharge warm seawater discharged by heat exchange in plant equipment of a seaside nuclear power plant into the sea through a siphon pipe from a primary reservoir provided at a position higher than the sea level at high tide The water discharge device for a nuclear power plant, comprising: an ejector device for sucking the air at the top of the siphon pipe into the discharge flow according to the flow velocity of the discharge flow in the siphon pipe.
JP05094911A 1993-03-31 1993-03-31 Cooling seawater discharge system for nuclear power plants Expired - Fee Related JP3143641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05094911A JP3143641B2 (en) 1993-03-31 1993-03-31 Cooling seawater discharge system for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05094911A JP3143641B2 (en) 1993-03-31 1993-03-31 Cooling seawater discharge system for nuclear power plants

Publications (2)

Publication Number Publication Date
JPH06289186A true JPH06289186A (en) 1994-10-18
JP3143641B2 JP3143641B2 (en) 2001-03-07

Family

ID=14123200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05094911A Expired - Fee Related JP3143641B2 (en) 1993-03-31 1993-03-31 Cooling seawater discharge system for nuclear power plants

Country Status (1)

Country Link
JP (1) JP3143641B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114698A (en) * 1994-10-19 1996-05-07 Kawasaki Heavy Ind Ltd Gas entrainment pipe
JP2008127914A (en) * 2006-11-22 2008-06-05 Mitsubishi Heavy Ind Ltd Bubbling preventing device
JP2010101149A (en) * 2008-10-22 2010-05-06 Korea Electric Power Corp Bubble preventing water channel structure for water discharge passage in power station
JP2012052409A (en) * 2011-10-04 2012-03-15 Mitsubishi Heavy Ind Ltd Foam prevention device
CN107083790A (en) * 2017-04-28 2017-08-22 申能股份有限公司 The seawater taking device and its construction method of power plant
JPWO2016208011A1 (en) * 2015-06-24 2018-05-24 三菱日立パワーシステムズ株式会社 Intake equipment for nuclear power plants
CN115340141A (en) * 2022-07-15 2022-11-15 国核电力规划设计研究院有限公司 Drainage channel internal bag type defoaming device and defoaming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191223B (en) * 2017-07-18 2019-11-05 中交第二航务工程局有限公司 A kind of water discharge method passing through rich water crushed zone small-clear-distance tunnel construction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114698A (en) * 1994-10-19 1996-05-07 Kawasaki Heavy Ind Ltd Gas entrainment pipe
JP2008127914A (en) * 2006-11-22 2008-06-05 Mitsubishi Heavy Ind Ltd Bubbling preventing device
JP2010101149A (en) * 2008-10-22 2010-05-06 Korea Electric Power Corp Bubble preventing water channel structure for water discharge passage in power station
JP2012052409A (en) * 2011-10-04 2012-03-15 Mitsubishi Heavy Ind Ltd Foam prevention device
JPWO2016208011A1 (en) * 2015-06-24 2018-05-24 三菱日立パワーシステムズ株式会社 Intake equipment for nuclear power plants
CN107083790A (en) * 2017-04-28 2017-08-22 申能股份有限公司 The seawater taking device and its construction method of power plant
CN115340141A (en) * 2022-07-15 2022-11-15 国核电力规划设计研究院有限公司 Drainage channel internal bag type defoaming device and defoaming method
CN115340141B (en) * 2022-07-15 2024-05-10 国核电力规划设计研究院有限公司 Bag-type defoaming device and defoaming method in drainage channel

Also Published As

Publication number Publication date
JP3143641B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
KR20100044505A (en) Waterway structure for prevention of foam formation at the discharge channel of the power plant
JPH06289186A (en) Cooling sea water discharge device for nuclear power plant
JP3831280B2 (en) Seal pit for drainage
KR101571606B1 (en) Sea water discharge structure having breaker for reducing bubble occurrence
CN209686541U (en) Hydrocone type self-draining arrangement
JP3215835B2 (en) Siphon type water discharge device
JP2002239304A (en) Foaming preventing structure of seawater discharge passage
JPH06324190A (en) Water intake equipment for nuclear power plant
JPH0439521B2 (en)
CN101535629B (en) Flood control system
Richards Air binding in water pipelines
RU2151840C1 (en) System for automatic trapping and collecting contaminants floating on water surface
JP4644562B2 (en) Water intake method in waterway
JPH10298962A (en) Overflow and underwater discharge joint use type outlet structure
US3431708A (en) Vacuum line closure method and device for separation chambers in ground-water pumping systems
CN216142003U (en) Distributed accident oil blocking system of drainage facility of hydropower station
CN110185129B (en) High-flow integrated drainage pump station and drainage method thereof
CN214791039U (en) Energy-saving flash tank
JPH0790828A (en) Outlet structure
KR100779022B1 (en) A cooling water multi-layer water pipe for alleviating formation at intake and outfall of power plant
JPS592177Y2 (en) Water spray device
RU2126476C1 (en) Water lifting device
SU1122781A1 (en) Arrangement for cleaning a cooling water basin from oil film
JPH11323884A (en) Discharge pump system
CN1046984C (en) Defoaming system for water draining channel of electric power station

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

LAPS Cancellation because of no payment of annual fees