JPH06289182A - Nuclear reactor output measuring device - Google Patents

Nuclear reactor output measuring device

Info

Publication number
JPH06289182A
JPH06289182A JP5074449A JP7444993A JPH06289182A JP H06289182 A JPH06289182 A JP H06289182A JP 5074449 A JP5074449 A JP 5074449A JP 7444993 A JP7444993 A JP 7444993A JP H06289182 A JPH06289182 A JP H06289182A
Authority
JP
Japan
Prior art keywords
output
detector
axial direction
core
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074449A
Other languages
Japanese (ja)
Other versions
JP3274904B2 (en
Inventor
Hiroshi Shigeno
啓 重野
Tadayoshi Oda
直敬 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07444993A priority Critical patent/JP3274904B2/en
Publication of JPH06289182A publication Critical patent/JPH06289182A/en
Application granted granted Critical
Publication of JP3274904B2 publication Critical patent/JP3274904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a nuclear reactor output measuring device which does not require a traveling device, secures high reliability, can be manufactured at a low cost, and can carry out the measurement of the reactor core axial direction output distribution having high precision. CONSTITUTION:A protecting pipe 24 which penetrates through along the axial direction in the reactor core 22 part of a nuclear reactor is installed. Inside the protecting pipe 24, a plurality of fixed neutron detectors 25 as the first output detector are arranged in a certain interval in the axial direction of the protecting pipe 24. Inside the protecting pipe 24, at the different position in the radial direction of the fixation type neutron detector 25, gamma-beam thermometers 26 which serve as calibrating means for the fixation type neutron detector 25 and the second output detector in the number larger than the quantity of the fixation type neutron detectors 25 are fixedly installed in a certain interval over the whole in the axial direction of the reactor core 22. The gamma-beam thermometers 26 are arranged, in the rough interval at the center position in the axial direction of the reactor core 22, and in the close interval in the edge part side in the same direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉(BW
R)等の大形炉心の出力測定に適用される原子炉出力測
定装置に係り、特に出力検出器の構成簡素化および測定
精度の向上等を図った原子炉出力測定装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a boiling water reactor (BW).
The present invention relates to a reactor power measuring device applied to the power measurement of a large core such as R), and more particularly to a reactor power measuring device in which the structure of the power detector is simplified and the measurement accuracy is improved.

【0002】[0002]

【従来の技術】従来、原子炉の出力測定技術としては、
炉心内に複数の出力検出器を装荷してその出力信号値の
平均値から全炉心の出力を求める方式と、炉心外に複数
の出力検出器を設置してその平均出力から炉心出力を求
める方式との2方式が知られている。一般に前者はBW
R等の大型炉心の出力測定に採用され、後者は小型炉心
の出力測定に採用されている。
2. Description of the Related Art Conventionally, as a technique for measuring the output of a nuclear reactor,
A method in which multiple output detectors are loaded inside the core and the output of the entire core is obtained from the average value of the output signal values, and a method in which multiple output detectors are installed outside the core and the core output is obtained from the average output There are two known methods. Generally the former is BW
It is used to measure the output of large cores such as R, and the latter is used to measure the output of small cores.

【0003】図4はBWRの炉心で採用される従来の出
力測定装置を例示したものである。原子炉圧力容器1の
炉心2内に複数の検出器集合体(図では1体だけ示して
ある)3が設置されている。この検出器集合体3は、炉
心を貫通する保護管4内に、核分裂電離箱からなる固定
型中性子検出器(以下、LPRMという)5を設けた構
成とされている。このLPRM5は、例えば図にA,
B,C,Dで示す如く、軸方向に沿って4体、間隔的に
配置されており、これらの出力が信号ケーブル7を介し
て出力監視装置8に入力されて原子炉出力測定および制
御が行われる。
FIG. 4 exemplifies a conventional power measuring device used in a BWR core. A plurality of detector assemblies (only one body is shown in the figure) 3 are installed in a core 2 of a reactor pressure vessel 1. The detector assembly 3 has a structure in which a fixed neutron detector (hereinafter referred to as LPRM) 5 including a fission ionization chamber is provided in a protective tube 4 penetrating the core. This LPRM5 is, for example, A,
As shown by B, C, and D, four bodies are arranged at intervals along the axial direction, and the outputs of these are input to the output monitoring device 8 via the signal cable 7 to perform reactor power measurement and control. Done.

【0004】ところで、LPRM5として使用されてい
る核分裂電離箱は、被覆管内に核分裂性物質(通常はウ
ラン235が使用される)を収容した構成とされ、この
核分裂性物質が中性子を吸収し、核分裂したときのガス
電離作用を利用して出力信号が得られる。したがって、
炉内での使用により核分裂性物質の量が減少し、検出器
の感度は徐々に変化する。
By the way, the fission ionization chamber used as the LPRM5 is constructed such that a fissile material (usually uranium 235 is used) is housed in a cladding tube, and this fissile material absorbs neutrons to cause fission. An output signal is obtained by utilizing the gas ionization action at the time. Therefore,
The use in the reactor reduces the amount of fissile material and gradually changes the sensitivity of the detector.

【0005】この感度変化に対応するため、従来ではL
PRM5の感度を校正する手段が設けられている。この
校正手段として最も多用されているのは、保護管4内に
LPRM5と隣接する配置で中空な案内管6を設け、こ
の案内管6にLPRM5の感度校正用の移動型中性子検
出器(以下、TIPという)9を挿入したものである。
このTIP9はLPRM5と同様に核分裂電離箱からな
るもので、駆動装置10およびTIP監視装置11によ
って中空案内管6の軸方向に走行され、その位置信号と
出力信号とが出力監視装置8に入力されてLPRM5の
出力校正が行われる。この操作を定期的に全ての検出器
集合体3について実施することにより、炉心2内に設置
された全てのLPRM5の出力をTIP9に対して規格
化することができる。
In order to deal with this change in sensitivity, the conventional L
Means are provided to calibrate the sensitivity of PRM5. The most frequently used calibration means is to provide a hollow guide tube 6 in the protection tube 4 adjacent to the LPRM 5, and to the guide tube 6 a mobile neutron detector for sensitivity calibration of the LPRM 5 (hereinafter, (TIP) 9 is inserted.
Like the LPRM 5, the TIP 9 is composed of a fission ionization chamber, and is driven in the axial direction of the hollow guide tube 6 by the driving device 10 and the TIP monitoring device 11, and its position signal and output signal are input to the output monitoring device 8. The output of LPRM5 is calibrated. By periodically performing this operation for all the detector assemblies 3, the outputs of all LPRMs 5 installed in the core 2 can be normalized with respect to TIP9.

【0006】[0006]

【発明が解決しようとする課題】ところで110万KW級
のBWRでは、LPRMが通常172体装荷され、その
検出信号を処理するための電子装置や信号ケーブルがL
PRMと同数設置されている。また、これらに付属する
部品、例えば信号ケーブル保護用の電線管やケーブル接
続のためのコネクタ、電子装置を収納する監視盤等も多
量となる。
By the way, in a 1.1 million KW class BWR, 172 LPRMs are usually loaded, and an electronic device or a signal cable for processing the detection signal is L
The same number as PRM is installed. In addition, a large number of parts are attached to them, such as a conduit for protecting the signal cable, a connector for connecting the cable, and a monitoring panel for housing the electronic device.

【0007】このように、検出器数が多くなると、それ
に略比例して装置規模が大きくなり、プラント建設コス
トや保守コストが上昇する。したがって、経済的観点か
らはLPRMの数を減少することが望ましいが、検出器
数を減少しただけでは検出器のない位置で部分的に出力
が上昇した場合に出力上昇が正確に把握できなくなるの
で、単に検出器数を減少することはできない。
As described above, when the number of detectors increases, the scale of the apparatus increases in proportion to the increase in the number of detectors, and the plant construction cost and maintenance cost increase. Therefore, it is desirable to reduce the number of LPRMs from an economical point of view, but if the number of detectors is simply reduced, the output increase cannot be accurately grasped when the output partially increases at a position where there is no detector. , You cannot simply reduce the number of detectors.

【0008】一方、上述したTIPは、LPRMの校正
という目的から、感度を一定に保つ必要があるが、LP
RMと同様に核分裂電離箱からなる構成とされているの
で、炉内で長時間使用すると感度が変化する。そのた
め、校正に用いる場合以外は原子炉圧力容器1から引出
し、その感度劣化を防止する措置がとられる。
On the other hand, the above-mentioned TIP needs to keep the sensitivity constant for the purpose of LPRP calibration.
Since it is composed of a fission ionization chamber like RM, the sensitivity changes when it is used for a long time in the reactor. Therefore, except when used for calibration, measures are taken to prevent the sensitivity from being pulled out from the reactor pressure vessel 1.

【0009】しかしながら、TIPを高温・高圧の原子
炉から引出すための装置は極めて複雑であり、また校正
対象であるLPRMとの間の位置精度を保つために高い
機械的精度も要求される。このため、TIPおよびその
駆動装置は高価なものとなり、保守作業も複雑なものと
なっている。また、校正作業にはTIPの挿脱および広
範囲の走行操作が必要であるため、校正回数には一定の
制約があり、このことは出力測定精度の向上を制限する
一要因となっている。
However, the apparatus for pulling out the TIP from the high temperature and high pressure reactor is extremely complicated, and high mechanical accuracy is required to maintain the positional accuracy between the TIP and the LPRM to be calibrated. Therefore, the TIP and its driving device are expensive and the maintenance work is complicated. Further, since the calibration work requires insertion / removal of the TIP and a wide range of traveling operation, there is a certain limitation on the number of calibrations, which is one factor limiting the improvement in output measurement accuracy.

【0010】なお、このような走行式の校正用検出器を
不要とする技術も開発されている(特開平3−6569
6号等)。この技術では、例えば図5に示すように、L
PRM5の配置(A,B,C,D)に対応する略等間隔
の配置(a,b,c,d)で、保護管4内に固定式の校
正用検出器11が複数設けられている。この各校正用検
出器11はγ線温度計で構成され、γ線強度に基づく温
度値によりLPRMの校正値を得るようにしている。
A technique for eliminating the need for such a traveling calibration detector has been developed (Japanese Patent Laid-Open No. 3-6569).
No. 6). In this technique, for example, as shown in FIG.
A plurality of fixed calibration detectors 11 are provided in the protective tube 4 at substantially equal intervals (a, b, c, d) corresponding to the PRM 5 arrangement (A, B, C, D). . Each of the calibration detectors 11 is composed of a γ-ray thermometer, and the LPRM calibration value is obtained from the temperature value based on the γ-ray intensity.

【0011】このような技術によれば、校正用検出器1
1が固定式であることから、前記の移動式検出器に係る
構成の複雑化、操作の困難性等が解消される。しかし、
この技術においても、炉心軸方向の出力分布の測定はL
PRM5によっており、必ずしも測定精度の向上は望め
ず、また校正用検出器11の配置がLPRM5の配置に
対応する略等間隔とされ、測定精度が最大で20%程度
悪化していた。
According to such a technique, the calibration detector 1
Since 1 is a fixed type, the complicated structure of the movable detector and the difficulty of operation are eliminated. But,
Even with this technique, the power distribution in the axial direction of the core can be measured by L
Since the PRM5 is used, improvement in measurement accuracy cannot always be expected, and the calibration detectors 11 are arranged at substantially equal intervals corresponding to the arrangement of LPRM5, and the measurement accuracy deteriorates by about 20% at the maximum.

【0012】本発明はこのような事情に鑑みてなされた
もので、走行装置を不要とし、信頼性が高く、低コスト
で、なおかつ精度の高い炉心軸方向出力分布の測定が行
える原子炉出力測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and requires no traveling device, is highly reliable, is low in cost, and is capable of highly accurately measuring the power distribution in the axial direction of the reactor core. The purpose is to provide a device.

【0013】[0013]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る原子炉出力測定装置は、原子炉の炉心
部に軸方向に沿って貫通する保護管を設け、この保護管
の内部に第1の出力検出器として固定型中性子検出器を
複数、前記保護管の軸方向に間隔的に設置するととも
に、前記保護管の内部に、前記固定型中性子検出器と径
方向位置を異ならせて、その固定型中性子検出器の校正
手段と第2の出力検出器とを兼用するγ線温度計を前記
固定型中性子検出器よりも多数、前記炉心の軸方向全体
に亘って間隔的に固定設置したことを特徴とする。
In order to achieve the above-mentioned object, a reactor power measuring apparatus according to the present invention is provided with a protective pipe penetrating along an axial direction in a core portion of a nuclear reactor, and A plurality of fixed-type neutron detectors as first output detectors are installed inside the protective tube at intervals in the axial direction, and inside the protective tube, if the radial position is different from the fixed-type neutron detector. Then, a larger number of γ-ray thermometers that also serve as the calibration means of the fixed type neutron detector and the second output detector than the fixed type neutron detector are provided at intervals over the entire axial direction of the core. It is characterized by fixed installation.

【0014】本発明において好ましくは、γ線温度計の
配置を、炉心の軸方向中心位置での間隔を粗に、また同
方向端部側での間隔を同方向中心位置よりも密に設定す
るものである。
In the present invention, preferably, the γ-ray thermometers are arranged such that the intervals at the center position in the axial direction of the core are coarse and the intervals at the end portions in the same direction are closer than those at the center position in the same direction. It is a thing.

【0015】[0015]

【作用】本発明によれば、原子炉出力を検出する出力検
出器を固定型中性子検出器のみならず、γ線温度計によ
っても構成したことにより、出力検出データの豊富化が
図れるとともに、そのγ線検出器は炉心全長に亘って複
数、間隔的に固定したので、γ線温度計の各位置での出
力に基づいて炉心軸方向の出力分布が求められ、出力検
出データ収集範囲の拡大も図れる。したがって、従来に
比して精度の高い炉心軸方向出力分布の測定が行えるよ
うになる。また、走行装置が不要であるから、構成の簡
素化および操作の容易化ひいては信頼性向上も図れ、さ
らに低コスト化も図れるようになる。
According to the present invention, the output detector for detecting the reactor output is constituted not only by the fixed neutron detector but also by the γ-ray thermometer, so that the output detection data can be enriched and Since multiple γ-ray detectors were fixed at intervals over the entire length of the core, the power distribution in the core axis direction was obtained based on the output at each position of the γ-ray thermometer, and the range of output detection data collection could be expanded. Can be achieved. Therefore, the power distribution in the axial direction of the core can be measured with higher accuracy than in the conventional case. Further, since the traveling device is not required, the structure can be simplified, the operation can be facilitated, the reliability can be improved, and the cost can be further reduced.

【0016】特に、γ線温度計の配置を、炉心の軸方向
中心位置での間隔を粗に、また同方向端部側での間隔を
同方向中心位置よりも密に設定した場合には、出力分布
の大きい炉心軸方向端部において、出力分布測定精度を
向上させることができる。
In particular, in the case where the γ-ray thermometer is arranged such that the interval at the axial center position of the core is coarse and the interval at the end portion side in the same direction is set closer than the central position in the same direction, The accuracy of power distribution measurement can be improved at the axial end portion of the core where the power distribution is large.

【0017】なお、γ線温度計は出力検出器と同時に固
定型中性子検出器の校正用として兼用され、このγ線温
度計は感度変化が殆ど生じないものであるから、その中
性子検出器の相対校正についての高信頼性が得られる。
原子炉の全熱出力に対する検出器出力の絶対校正は従来
通り、原子炉の熱バランスにより行えばよい。
The γ-ray thermometer is also used as a calibration for the fixed neutron detector simultaneously with the output detector. Since this γ-ray thermometer hardly changes the sensitivity, the relative neutron detector High reliability for calibration is obtained.
The absolute calibration of the detector output with respect to the total heat output of the nuclear reactor may be performed by the thermal balance of the nuclear reactor as in the conventional case.

【0018】[0018]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0019】図1は原子炉出力測定装置の概略的配置構
成を示し、図2は詳細な配置構成を示す。また図3は、
本実施例によって得られた出力分布の例を示す。
FIG. 1 shows a schematic arrangement of the reactor power measuring device, and FIG. 2 shows a detailed arrangement. Also, in FIG.
An example of the output distribution obtained by this example is shown.

【0020】図1に示すように、本実施例の原子炉出力
測定装置では、原子炉圧力容器21の炉心22内に複数
の検出器集合体(図では1体だけ示してある)23が設
置されている。この検出器集合体23は、炉心を貫通す
る保護管24内に、第1の出力検出器として、核分裂電
離箱からなる固定型中性子検出器(LPRM)25を設
けるとともに、このLPRM25の校正手段と第2の出
力検出器とを兼用するγ線温度計26とを設けた構成と
されている。
As shown in FIG. 1, in the reactor power measuring apparatus of this embodiment, a plurality of detector assemblies (only one body is shown in the figure) 23 are installed in a core 22 of a reactor pressure vessel 21. Has been done. In this detector assembly 23, a fixed neutron detector (LPRM) 25 composed of a fission ionization chamber is provided as a first output detector in a protective tube 24 penetrating the core, and a calibration means for this LPRM 25 is provided. A γ-ray thermometer 26 that also serves as a second output detector is provided.

【0021】LPRM25は、図1および図2にA,
B,C,Dで示す如く、保護管24の軸方向に沿って4
体、間隔的に配置されており、これらの出力が信号ケー
ブル27を介して局所出力監視装置28に入力されるよ
うになっている。
The LPRM 25 is shown in FIGS.
4 along the axial direction of the protective tube 24 as shown by B, C, D
They are arranged at intervals in the body, and their outputs are input to the local output monitoring device 28 via the signal cable 27.

【0022】また、γ線温度計26は保護管の内部にL
PRM25と径方向位置を異ならせて、かつLPRM2
5よりも多数、炉心22の軸方向全体に亘って間隔的に
固定設置されている。このγ線温度計26は、炉心22
内のγ線によって発生する発熱量に基づいて、原子炉出
力を測定するもので、感度劣化が少なく、また内部に校
正用ヒータを有することで自己校正できるものである。
したがってTIPで必要とされる検出器感度校正は必要
とされない。
The γ-ray thermometer 26 has an L inside the protective tube.
Radial position is different from PRM25, and LPRM2
More than five, fixedly installed at intervals over the entire axial direction of the core 22. This γ-ray thermometer 26 is used for the core 22
The reactor output is measured based on the amount of heat generated by the γ-rays inside, and there is little sensitivity deterioration, and it is possible to perform self-calibration by having a calibration heater inside.
Therefore, the detector sensitivity calibration required in TIP is not required.

【0023】そして本実施例では、図1および図2にa
…iで示すように、γ線温度計26が例えば1本の被覆
管29内の9カ所に間隔的に配置されて一つのγ線温度
計集合体26Aとして構成されている。そして、γ線温
度計26の配置は、炉心22の軸方向中心位置での間隔
を粗に、また同方向端部(上端部および下端部)側での
間隔を同方向中心位置よりも密に設定してある。すなわ
ち、図2に炉心底部からの距離を示すように、上端部側
の間隔(iとhとの間隔)は364mm,下端部側の間隔
(aとbとの間隔)は309mmで、それぞれ炉心中央部
側の間隔(b〜h間の各間隔(約454〜474mm))
よりも小さく設定されている。
In this embodiment, a is shown in FIGS.
As indicated by i, the γ-ray thermometers 26 are arranged, for example, at 9 positions in one cladding tube 29 at intervals so as to constitute one γ-ray thermometer assembly 26A. And, the arrangement of the γ-ray thermometer 26 is such that the interval at the axial center position of the core 22 is rough, and the interval at the end portion (upper end portion and lower end portion) in the same direction is closer than that in the same direction. It is set. That is, as shown in FIG. 2 showing the distance from the bottom of the core, the interval on the upper end side (the interval between i and h) is 364 mm and the interval on the lower end side (the interval between a and b) is 309 mm. Space on the central side (Each space between b and h (about 454 to 474 mm))
Is set smaller than.

【0024】γ線温度計26の出力は、軸方向出力分布
測定装置30に入力され、さらに局所出力監視装置28
に入力されるようになっている。
The output of the γ-ray thermometer 26 is input to the axial power distribution measuring device 30 and further the local power monitoring device 28.
It is designed to be input to.

【0025】このように構成された本実施例の作用につ
いて、原子炉出力100%の定格出力時の各装置の機能
を従来の装置と比較して説明すると以下の通りである。
The operation of this embodiment thus constructed will be described below by comparing the functions of the respective devices when the rated output of the reactor power is 100% in comparison with the conventional device.

【0026】すなわち、原子炉の平均出力の測定につい
ては従来と同様にLPRM25の平均値を用い、早い応
答が要求される安全保護系として利用するが、炉心軸方
向出力分布測定についてはγ線温度計26により行な
う。この場合、図3に炉心軸方向出力分布の例を示すよ
うに、炉心22の上下端で大きく低下する形状となる
が、本実施例では、γ線温度計26が炉心22の軸方向
中心位置での間隔を粗に、また上端部および下端部側で
の間隔を同方向中心位置よりも密となるように設定して
9個設置したので、従来例(等間隔で4個または8個の
設置)に比べて、炉心3次元シミュレーション計算によ
る2乗平均誤差が約20%改善され、十分な精度で測定
できる。このことは、実験により確認した。図3は、本
実施例により得られた原子炉出力の軸方向出力分布の例
を示す。
That is, the average value of LPRM25 is used as in the conventional case for the measurement of the average output of the reactor, and it is used as a safety protection system that requires a fast response. 26 in total. In this case, as shown in FIG. 3 as an example of the core axial power distribution, the core 22 has a shape in which it is greatly lowered at the upper and lower ends. Since 9 intervals were set by setting the intervals at the rough position and the intervals at the upper end and the lower end closer than the center position in the same direction, the conventional example (4 or 8 at equal intervals) Compared with (installation), the root mean square error by the three-dimensional simulation calculation of the core is improved by about 20%, and the measurement can be performed with sufficient accuracy. This was confirmed by experiments. FIG. 3 shows an example of the axial power distribution of the reactor power obtained by this example.

【0027】以上の本実施例によれば、システム構成、
保守および構成作業が簡素化され、省力化、被曝低減化
を実現できるとともに、高精度の炉心軸方向出力分布の
測定が可能となる。
According to the present embodiment described above, the system configuration,
Maintenance and configuration work can be simplified, labor can be saved and radiation exposure can be reduced, and highly accurate core axial power distribution can be measured.

【0028】また、図4に示した従来の装置では、4カ
所のLPRMの出力を校正する場合、TIPの炉内への
挿入および引抜き作業が伴い、校正作業が頻繁には実施
できないが、本実施例によれば、炉内固定式のγ線温度
計26を用いることにより、LPRM25の校正が随時
可能であり、また、移動装置が不要であるとともに、信
号伝送用ケーブルが削減され、システム構成が単純化さ
れ、システム全体の保全も容易なものとなる。
Further, in the conventional apparatus shown in FIG. 4, when calibrating the outputs of LPRMs at four locations, the TIP is inserted into and removed from the furnace, and the calibration work cannot be performed frequently. According to the embodiment, by using the fixed γ-ray thermometer 26 in the reactor, the LPRM 25 can be calibrated at any time, and the moving device is not necessary, and the signal transmission cable is reduced. Is simplified and maintenance of the entire system is facilitated.

【0029】なお、本発明は以上の実施例に限定され
ず、種々変形または応用が可能である。例えば炉心軸方
向出力分布測定精度を向上させるために、γ線温度計2
5の軸方向の個数を増加してもよい。
The present invention is not limited to the above embodiments, and various modifications and applications are possible. For example, in order to improve the accuracy of core axial power distribution measurement, a γ-ray thermometer 2
The number of 5 in the axial direction may be increased.

【0030】また、従来装置におけるTIP案内管を利
用することも可能である。但し、その場合にはTIP案
内管の外径寸法により設置できる個数が制限されるの
で、γ線温度計26の軸方向の個数を増加するには、L
PRM25とγ線温度計26とを収容する保護管24の
内径を有効に利用すればよい。これにより、10個以上
のγ線温度計26の設置も十分可能である。また、炉心
3次元シミュレーション計算精度が向上すれば、4個の
LPRM位置と炉心上下端とに配置した計6個のγ線温
度計でも同等の機能が実現できる。
It is also possible to use the TIP guide tube in the conventional device. However, in that case, the number that can be installed is limited by the outer diameter of the TIP guide tube. Therefore, in order to increase the number of γ-ray thermometers 26 in the axial direction,
The inner diameter of the protective tube 24 accommodating the PRM 25 and the γ-ray thermometer 26 may be effectively used. As a result, it is possible to sufficiently install ten or more γ-ray thermometers 26. Further, if the accuracy of the three-dimensional simulation calculation of the core is improved, the same function can be realized even with a total of six γ-ray thermometers arranged at the four LPRM positions and the core upper and lower ends.

【0031】[0031]

【発明の効果】以上のように、本発明によれば、原子炉
出力を検出する出力検出器を固定型中性子検出器のみな
らず、γ線温度計によっても構成したことにより、出力
検出データの豊富化が図れるとともに、そのγ線検出器
は炉心全長に亘って複数、間隔的に固定したので、γ線
温度計の各位置での出力に基づいて炉心軸方向の出力分
布が求められ、出力検出データ収集範囲の拡大も図れ
る。したがって、従来に比して精度の高い炉心軸方向出
力分布の測定が行える。また、走行装置が不要であるか
ら、構成の簡素化および操作の容易化ひいては信頼性向
上も図れ、さらに低コスト化も図れる。
As described above, according to the present invention, since the output detector for detecting the reactor output is constituted not only by the fixed neutron detector but also by the γ-ray thermometer, the output detection data Along with the enrichment, multiple γ-ray detectors were fixed at intervals over the entire length of the core, so the output distribution in the core axis direction was calculated based on the output at each position of the γ-ray thermometer. The detection data collection range can be expanded. Therefore, the power distribution in the axial direction of the core can be measured with higher accuracy than before. Further, since the traveling device is not required, the structure can be simplified, the operation can be facilitated, and the reliability can be improved, and the cost can be further reduced.

【0032】また、γ線温度計の配置を、炉心の軸方向
中心位置での間隔を粗に、同方向端部側での間隔を同方
向中心位置よりも密に設定した場合には、出力分布の大
きい炉心軸方向端部において、出力分布測定精度を向上
させることができる。
Further, when the γ-ray thermometer is arranged such that the interval at the axial center position of the core is set roughly and the interval on the end side in the same direction is set denser than the center position in the same direction, the output The power distribution measurement accuracy can be improved at the axial end portion of the core having a large distribution.

【0033】さらに、γ線温度計は出力検出器と同時に
固定型中性子検出器の校正用として兼用し、このγ線温
度計は感度変化が殆ど生じないものであるから、その中
性子検出器の相対校正についての高信頼性が得られる。
Further, the γ-ray thermometer also serves as a calibration of the fixed type neutron detector simultaneously with the output detector, and since this γ-ray thermometer hardly changes the sensitivity, the relative neutron detector High reliability for calibration is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1のγ線温度計の軸方向配置例を示す図。FIG. 2 is a diagram showing an example of axial arrangement of the γ-ray thermometer of FIG.

【図3】本実施例による炉心軸方向出力分布の例を示す
図。
FIG. 3 is a diagram showing an example of a core axial power distribution according to the present embodiment.

【図4】従来例を示す図。FIG. 4 is a diagram showing a conventional example.

【図5】他の従来例を示す図。FIG. 5 is a diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

22 炉心 24 保護管 25 LPRM(固定型中性子検出器(第1の出力検出
器)) 26 γ線温度計(第2の出力検出器)
22 Core 24 Protective Tube 25 LPRM (Fixed Neutron Detector (First Output Detector)) 26 γ-Ray Thermometer (Second Output Detector)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の炉心部に軸方向に沿って貫通す
る保護管を設け、この保護管の内部に第1の出力検出器
として固定型中性子検出器を複数、前記保護管の軸方向
に間隔的に設置するとともに、前記保護管の内部に、前
記固定型中性子検出器と径方向位置を異ならせて、その
固定型中性子検出器の校正手段と第2の出力検出器とを
兼用するγ線温度計を前記固定型中性子検出器よりも多
数、前記炉心の軸方向全体に亘って間隔的に固定設置し
たことを特徴とする原子炉出力測定装置。
1. A protective tube penetrating along an axial direction in a core portion of a nuclear reactor, and a plurality of fixed neutron detectors as a first output detector are provided inside the protective tube, and the protective tube has an axial direction. The fixed neutron detector and the second output detector are used as the calibration means of the fixed neutron detector by making the radial position different from the fixed neutron detector inside the protective tube. A reactor output measuring device characterized in that a larger number of γ-ray thermometers than the fixed type neutron detector are fixedly installed at intervals over the entire axial direction of the core.
【請求項2】 γ線温度計の配置は、炉心の軸方向中心
位置での間隔を粗に、また同方向端部側での間隔を同方
向中心位置よりも密に設定したことを特徴とする請求項
1に記載の原子炉出力測定装置。
2. The arrangement of the γ-ray thermometer is characterized in that the interval at the axial center position of the core is set roughly and the interval at the end portion side in the same direction is set denser than the center position in the same direction. The reactor power measuring device according to claim 1.
JP07444993A 1993-03-31 1993-03-31 Reactor power measurement device Expired - Fee Related JP3274904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07444993A JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07444993A JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Publications (2)

Publication Number Publication Date
JPH06289182A true JPH06289182A (en) 1994-10-18
JP3274904B2 JP3274904B2 (en) 2002-04-15

Family

ID=13547564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07444993A Expired - Fee Related JP3274904B2 (en) 1993-03-31 1993-03-31 Reactor power measurement device

Country Status (1)

Country Link
JP (1) JP3274904B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236698B1 (en) 1998-03-17 2001-05-22 Kabushiki Kaisha Toshiba Nuclear reactor power distribution monitoring system and method including nuclear reactor instrumentation system
US6310929B1 (en) 1998-08-25 2001-10-30 Kabushiki Kaisha Toshiba In-core fixed nuclear instrumentation system and power distribution monitoring system
JP2003066185A (en) * 2001-08-29 2003-03-05 Toshiba Corp Method for replacing radiation detector
JP2004309401A (en) * 2003-04-09 2004-11-04 Toshiba Corp Nuclear reactor core monitoring system
EP2077562A1 (en) * 2007-11-26 2009-07-08 GE-Hitachi Nuclear Energy Americas LLC Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
CN106024080A (en) * 2016-06-24 2016-10-12 西安交通大学 Method for obtaining reactor core neutron-flux density fine distribution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9813002D0 (en) 1998-06-16 1998-08-12 Symmetricom Inc An antenna
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236698B1 (en) 1998-03-17 2001-05-22 Kabushiki Kaisha Toshiba Nuclear reactor power distribution monitoring system and method including nuclear reactor instrumentation system
US6477219B2 (en) * 1998-03-17 2002-11-05 Kabushiki Kaisha Toshiba Nuclear reactor power distribution monitoring system and method including nuclear reactor instrumentation system
US6310929B1 (en) 1998-08-25 2001-10-30 Kabushiki Kaisha Toshiba In-core fixed nuclear instrumentation system and power distribution monitoring system
US6408041B2 (en) 1998-08-25 2002-06-18 Kabushiki Kaisha Toshiba In-core fixed nuclear instrumentation system and power distribution monitoring system
JP2003066185A (en) * 2001-08-29 2003-03-05 Toshiba Corp Method for replacing radiation detector
JP2004309401A (en) * 2003-04-09 2004-11-04 Toshiba Corp Nuclear reactor core monitoring system
EP2077562A1 (en) * 2007-11-26 2009-07-08 GE-Hitachi Nuclear Energy Americas LLC Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
JP2009175128A (en) * 2007-11-26 2009-08-06 Ge-Hitachi Nuclear Energy Americas Llc Axial device of gamma thermometer and method for monitoring reactor core in nuclear power generation plant
US8175210B2 (en) 2007-11-26 2012-05-08 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
US8644443B2 (en) 2007-11-26 2014-02-04 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
CN106024080A (en) * 2016-06-24 2016-10-12 西安交通大学 Method for obtaining reactor core neutron-flux density fine distribution

Also Published As

Publication number Publication date
JP3274904B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JPH11264887A (en) Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
EP0403223B1 (en) Measuring thermal neutron flux
JPH06289182A (en) Nuclear reactor output measuring device
EP1842205B1 (en) Neutron detector assembly with variable length rhodium emitters
US11621091B2 (en) Temperature measurement sensor using material with a temperature dependent neutron capture cross section
Leyse et al. Gamma thermometer developments for light water reactors
JP2000258586A (en) Reactor power measuring device
JPH0587978A (en) Device for measuring reactor output
JPH11101890A (en) Output-monitoring device in reactor
JPH0548438B2 (en)
JPH10104388A (en) Reactor output measuring equipment
JP2005172474A (en) Nuclear reactor core thermal output monitoring device
JP2001042083A (en) Automatic calibration device of incore neutron flux measuring device
JP3442598B2 (en) Fixed in-core instrumentation system
Loving Neutron, temperature and gamma sensors for pressurized water reactors
Versluis CE in-core instrumentation-functions and performance
JP3863690B2 (en) Fixed in-reactor instrumentation system
JPH056678B2 (en)
JP4429707B2 (en) Automatic thermal limit value monitoring device
Adams et al. Response of LOFT SPNDs to reactor coolant density variations during a LOCA simulation
JPH04178598A (en) Measuring device for neutron in center of reactor
JP2003066185A (en) Method for replacing radiation detector
Fleischman PRELIMINARY OUTLINE OF FTR NUCLEAR SYSTEMS START-UP TESTS.
JPH095480A (en) Reactor output distribution monitoring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees