JPH06288798A - Stress measuring device around suspension of vehicle - Google Patents

Stress measuring device around suspension of vehicle

Info

Publication number
JPH06288798A
JPH06288798A JP4115109A JP11510992A JPH06288798A JP H06288798 A JPH06288798 A JP H06288798A JP 4115109 A JP4115109 A JP 4115109A JP 11510992 A JP11510992 A JP 11510992A JP H06288798 A JPH06288798 A JP H06288798A
Authority
JP
Japan
Prior art keywords
strain
road surface
measuring device
road
control arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4115109A
Other languages
Japanese (ja)
Other versions
JPH0820323B2 (en
Inventor
Osao Miyazaki
長生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP4115109A priority Critical patent/JPH0820323B2/en
Publication of JPH06288798A publication Critical patent/JPH06288798A/en
Publication of JPH0820323B2 publication Critical patent/JPH0820323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a measuring device of the road surface friction force, the vertical load and the road surface friction coefficient which is a component of an anti-rock brake device or a traction control device. CONSTITUTION:Measuring means consisting of a strain gage F are arranged on an upper control arm A and an axle carrier of a suspension mechanism where the right and left wheels are capable of stroking, and the shearing strain generated in the upper control arm A and a rear axle carrier B when a vehicle is braked or driven.

Description

【発明の詳細な説明】Detailed Description of the Invention

〔0001〕 〔産業上の利用分野〕この発明は、車両の急制動時に車
輪のロック(固定)を防止するアンチロックブレーキ装
置もしくは、トラクションコントロール装置を構成する
要素となり得る路面摩擦力測定装置及び垂直荷重測定装
置並びに路面摩擦係数測定装置に関する。 〔0002〕
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface friction force measuring device and a vertical surface friction force measuring device which can be an element constituting an anti-lock brake device or a traction control device for preventing wheel locking (fixation) during sudden braking of a vehicle. The present invention relates to a load measuring device and a road surface friction coefficient measuring device. [0002]

〔0003〕[0003] 〔0004〕[0004] 〔0005〕[0005] 〔0006〕[0006]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は左右両輪が独立してストロークできるサスペ
ンション機構からなる車輪の後輪に本発明を適用した概
略構成を示す斜視図、図2は図1の要部拡大斜視図、図
3(a)(b)(c)は路面摩擦力の測定装置を示すも
ので、この実施例では歪ゲージ11〜14を用いてサス
ペンション機構の構成部材であるアッパーコントロール
アームAのせん断歪を測定することにより、路面摩擦力
を検出する。歪ゲージ自体は抵抗線の電気抵抗が歪に比
例して変化することを利用したもので、抵抗線を内蔵し
た長方形のフィルムからなり、その長手方向の引張歪及
び圧縮歪を検出するもので、クロスに交叉させた2枚の
歪ゲージ2組の歪ゲージ11,12,及び13,14を
アッパーコントロールアームAの表裏面のリヤデスク3
5への固着部近傍に後車輪30の進行方向31と直交す
る交線上において、この軸線32と略45°の角度をな
す方向の引張歪及び圧縮歪を測定するように貼付する。
但し、歪ゲージ11と14とがまた12と13とが後車
輪の進行方向と直交するアッパーコントロールアームの
中心線33に対して対称となるように貼付ける。歪ゲー
ジ11から14を貼着する代わりに図3(c)に示すよ
うに、プラスチックその他の材料からなる基板36の表
面に歪ゲージ11と12をクロスに交叉させ、裏面に歪
ゲージ13と14をクロスに交叉させて貼着した歪セン
サーFを、アッパーコントロールアームAに設けた貫通
孔37内に挿入埋設した構成としてもよい。又歪ゲージ
11〜14をアッパーコントロールアームAの表裏面に
貼着する代わりに図3(a)の鎖線示の如く、アッパー
コントロールアームAの表面に対称的に貼着してもよ
い。 〔0007〕車輪に制動をかけると後車輪30に加わる
路面摩擦力によりアッパーコントロールアームAには、
水平面上に中心軸が曲がる曲げ変形が加わると同時に、
アッパーコントロールアームAの中心軸に垂直な断面に
路面摩擦力に等しい大きさのせん断歪力が水平方向に加
わる。このせん断歪力に比例してアッパーコントロール
アームAにせん断歪が生じる。歪ゲージを11,12,
13,14を図4に示すようにブリッジ回路Dを形成す
ることにより、上記したアッパーコントロールアームA
のせん断歪を検出して路面摩擦力を測定できる。この場
合ブリッジ回路Dを構成することにより、曲げ変形の影
響は相殺され増幅器40の電圧出力は、後車輪30に加
わる路面摩擦力のみに比例する 〔0008〕図5は、図4に示したブリッジ回路Dの具
体的構成例で、アッパーコントロールアームAに貼付し
た歪ゲージ11〜14のリード線lを端子台41を介し
て色分けされた芯線からなる4芯シールド線42と接続
し、その4芯シールド線の遊端に設けたキャノンコネク
タ43を増幅器40に着脱可能に接続するよう構成さ
れ、ブリッジ回路の構成及び結線が簡便化されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration in which the present invention is applied to a rear wheel of a wheel composed of a suspension mechanism in which both left and right wheels can independently stroke, FIG. 2 is an enlarged perspective view of an essential part of FIG. 1, and FIG. b) and (c) show a device for measuring the road surface friction force. In this embodiment, the strain gauges 11 to 14 are used to measure the shear strain of the upper control arm A, which is a constituent member of the suspension mechanism. Detect frictional force. The strain gauge itself utilizes the fact that the electrical resistance of the resistance wire changes in proportion to the strain, and consists of a rectangular film with a built-in resistance wire, which detects tensile strain and compression strain in the longitudinal direction, Two sets of two strain gauges crossed in a cross, strain gauges 11, 12 and 13, 14 are placed on the rear desk 3 of the upper and lower sides of the upper control arm A.
It is affixed in the vicinity of the fixed portion to 5 so as to measure the tensile strain and the compressive strain in a direction forming an angle of approximately 45 ° with the axis 32 on an intersection line orthogonal to the traveling direction 31 of the rear wheel 30.
However, the strain gauges 11 and 14 and 12 and 13 are attached so as to be symmetrical with respect to the center line 33 of the upper control arm which is orthogonal to the traveling direction of the rear wheels. Instead of sticking the strain gauges 11 to 14, as shown in FIG. 3C, the strain gauges 11 and 12 are crossed on the surface of the substrate 36 made of plastic or other material, and the strain gauges 13 and 14 are formed on the back surface. The strain sensor F, which is attached by crossing with the cross, may be inserted and embedded in the through hole 37 provided in the upper control arm A. Instead of attaching the strain gauges 11 to 14 to the front and back surfaces of the upper control arm A, they may be attached symmetrically to the surface of the upper control arm A as shown by the chain line in FIG. [0007] When the wheels are braked, the upper control arm A is affected by the road surface frictional force applied to the rear wheels 30.
At the same time as bending deformation that the central axis bends on the horizontal plane,
A shear strain force having a magnitude equal to the road surface friction force is horizontally applied to a cross section perpendicular to the central axis of the upper control arm A. Shear strain is generated in the upper control arm A in proportion to the shear strain force. Strain gauges 11, 12,
By forming a bridge circuit D as shown in FIG.
It is possible to measure the road surface friction force by detecting the shear strain. In this case, by configuring the bridge circuit D, the influence of bending deformation is canceled out, and the voltage output of the amplifier 40 is proportional to only the road friction force applied to the rear wheel 30. [0008] FIG. 5 shows the bridge shown in FIG. In a specific configuration example of the circuit D, the lead wire 1 of the strain gauges 11 to 14 attached to the upper control arm A is connected to a 4-core shielded wire 42 composed of color-coded core wires via a terminal block 41, and the 4-core The cannon connector 43 provided at the free end of the shielded wire is detachably connected to the amplifier 40, which simplifies the construction and wiring of the bridge circuit.

〔0009〕図6及び図7は、路面摩擦力測定装置に垂
直荷重測定装置を組み合せた路面摩擦係数計測装置の実
施例を示すもので、歪ゲージ21〜24と51〜54を
用いて後車輪30のサスペンション機構の構成部材リヤ
アクスルキャリアBのせん断歪を測定することにより路
面摩擦力と垂直荷重とを検出して、両検出値を演算によ
り路面摩擦係数を測定する。。リヤアクスルキャリアB
の側壁部60に荷重方向70と直交する貫通孔61を設
け、この貫通孔61内に、歪ゲージ21〜24からなる
歪センサーFと歪ゲージ51〜54からなる歪センサー
Nとを挿入埋設する。この場合歪センサーNの各歪ゲー
ジ51〜54が荷重方向70と直交する軸線71と略4
5°の角度をなす方向の引張歪及び圧縮歪を測定できる
よう配設すると共に、歪センサーFの各歪ゲージ21〜
24が後車輪の進行方向と直交する軸線と略45°の角
度をなす方向の引張歪及び圧縮歪を測定できるように配
設する。 〔0010〕車輪に制動をかけると後車輪に加わる路面
摩擦力により、リヤアクスルキャリアBには中心軸に垂
直な断面に路面摩擦力に等しい大きさのせん断歪力が水
平方向に加わり、このせん断歪力に比例してリアアクス
ルキャリアBにせん断歪が生じると同時に、後車輪に加
わる垂直荷重により、リアアクスルキャリアBには垂直
面上(側面)において曲げ変形が加わると共に水平軸に
対して垂直な断面に垂直荷重に等しい大きさのせん断歪
力が垂直方向に加わり、このせん断歪力に比例してリア
アクスルキャリアBにせん断歪が生じる。歪ゲージ21
〜24と51〜54とを第8図に示すように2組のブリ
ッジ回路D1及びD2に組み、増幅器20の出力として
得られる路面摩擦力に比例した電圧信号と増幅器50の
出力として得られる垂直荷重に比例した電圧信号とを、
それぞれ演算回路80に入力し、この演算回路で路面摩
擦力と垂直荷重との商を演算して、路面摩擦係数μに対
応した電圧信号を出力させ、路面摩擦係数を測定でき
る。尚、貫通孔61を図6及び図7の鎖線示の如く垂直
荷重の荷重方向70と同一方向に設けて、歪センサーF
及び歪センサーNを挿入埋設してもよく、又貫通孔を2
個設け、歪センサーFと歪センサーNとを失々個別に埋
設してもよい。 〔0011〕上記した実施例ではリアアクスルキャリア
Bに設けた貫通孔に歪センサーFと歪センサーNとを挿
入埋設して路面摩擦係数を測定するものを示したが、本
発明はこれに限定されるものでなく、リアアクスルキャ
リアBの貫通孔には歪センサーNのみを挿入埋設して、
該歪センサーNの歪ゲージ51〜54のブリッジ回路D
2と図3及び図4に示したアッパーコントロールアーム
Aに配設した歪センサーFのブリッジ回路Dとを図8に
示すように組んで路面摩擦係数を測定するようにしても
よく、又上述した実施例は後車輪のサスペンション機構
廻りの構成部材について述べたが、本発明は後車輪に限
定されるものではなく、車両であれば、前車輪のサスペ
ンション機構廻りの構成部材に本発明を適用できるのは
勿論である。 〔0012〕
[0009] FIGS. 6 and 7 show an embodiment of a road surface friction coefficient measuring device in which a vertical load measuring device is combined with a road surface frictional force measuring device, and the strain gauges 21 to 24 and 51 to 54 are used for rear wheels. The road surface frictional force and the vertical load are detected by measuring the shear strain of the rear axle carrier B, which is a component of the suspension mechanism of 30, and the road surface friction coefficient is measured by calculating both detected values. . Rear axle carrier B
A through hole 61 that is orthogonal to the load direction 70 is provided in the side wall portion 60, and a strain sensor F including the strain gauges 21 to 24 and a strain sensor N including the strain gauges 51 to 54 are inserted and embedded in the through hole 61. . In this case, each of the strain gauges 51 to 54 of the strain sensor N has an axis 71 orthogonal to the load direction 70 and approximately 4
The strain gauges 21 to 21 of the strain sensor F are arranged so that the tensile strain and the compressive strain in the direction forming an angle of 5 ° can be measured.
24 is arranged so that the tensile strain and the compressive strain in the direction forming an angle of approximately 45 ° with the axis orthogonal to the traveling direction of the rear wheels can be measured. [0010] When the wheels are braked, a road surface frictional force applied to the rear wheels applies a shear strain force equal in magnitude to the road surface frictional force to the rear axle carrier B in a cross section perpendicular to the central axis in the horizontal direction. Shear strain is generated in the rear axle carrier B in proportion to the force, and at the same time, the vertical load applied to the rear wheel causes bending deformation on the vertical surface (side surface) of the rear axle carrier B and also causes a vertical deformation with respect to the horizontal axis. A shear strain force of the same magnitude as a vertical load is applied to the cross section in the vertical direction, and shear strain occurs in the rear axle carrier B in proportion to this shear strain force. Strain gauge 21
.About.24 and 51 to 54 are assembled into two sets of bridge circuits D1 and D2 as shown in FIG. 8, and a voltage signal proportional to the road friction force obtained as the output of the amplifier 20 and a vertical signal obtained as the output of the amplifier 50 are combined. A voltage signal proportional to the load,
Each is input to the arithmetic circuit 80, the quotient of the road surface friction force and the vertical load is calculated by this arithmetic circuit, and a voltage signal corresponding to the road surface friction coefficient μ is output to measure the road surface friction coefficient. The through hole 61 is provided in the same direction as the vertical load direction 70 as shown by the chain line in FIGS. 6 and 7, and the strain sensor F
The strain sensor N may be inserted and embedded, and the through hole may be 2
Alternatively, the strain sensor F and the strain sensor N may be individually embedded by mistake. [0011] In the above embodiment, the strain sensor F and the strain sensor N are inserted and embedded in the through hole provided in the rear axle carrier B to measure the road surface friction coefficient, but the present invention is not limited to this. It is not a thing, but only the strain sensor N is inserted and embedded in the through hole of the rear axle carrier B,
Bridge circuit D of strain gauges 51 to 54 of the strain sensor N
2 and the bridge circuit D of the strain sensor F disposed on the upper control arm A shown in FIGS. 3 and 4 may be assembled as shown in FIG. 8 to measure the road surface friction coefficient, or as described above. Although the embodiment has described the components around the suspension mechanism of the rear wheels, the present invention is not limited to the rear wheels, and the present invention can be applied to the components around the suspension mechanism of the front wheels in the case of a vehicle. Of course. [0012]

【発明の効果】本発明によれば、サスペンション機構の
構成部材に、制動もしくは駆動時に生ずるせん断歪を曲
げ変形の影響を受けることなく精度よく計測でき、とく
に回転部材でないアッパーコントロールアームとリヤア
クスルキャリアに歪ゲージを配設するだけでよいので、
路面摩擦力と垂直荷重を簡便に計測でき、しかもこれら
計測した電圧信号から演算処理によって精度のよい路面
摩擦係数を得ることができる。
According to the present invention, the shear strain generated during braking or driving can be accurately measured in the constituent members of the suspension mechanism without being affected by bending deformation, and particularly in the upper control arm and the rear axle carrier which are not rotating members. Since it is only necessary to install a strain gauge,
It is possible to easily measure the road surface friction force and the vertical load, and it is possible to obtain a highly accurate road surface friction coefficient from the measured voltage signals by arithmetic processing.

【図面の簡単な説明】[Brief description of drawings]

〔図1〕左右両輪が独立してストロークできる車両のサ
スペンション機構に本発明を適用した概略構成を示す斜
視図。 〔図2〕図1の要部を拡大した斜視図。 〔図3〕本発明に係わる路面摩擦力測定装置の実施例を
示す構成図。 〔図4〕図3に示した路面摩擦力測定装置のブリッジ回
路。 〔図5)図4に示したブリッジ回路の具体的構成例図。 〔図6〕本発明に係わる路面摩擦力測定装置に垂直荷重
測定装置を組み合わせた路面摩擦係数測定装置の実施例
を示す正面図。 〔図7〕図5の側面図。 〔図8〕図6に示した路面摩擦係数測定装置のブリッジ
回路。
FIG. 1 is a perspective view showing a schematic configuration in which the present invention is applied to a suspension mechanism of a vehicle in which both left and right wheels can independently stroke. FIG. 2 is an enlarged perspective view of a main part of FIG. FIG. 3 is a configuration diagram showing an embodiment of a road surface frictional force measuring device according to the present invention. [FIG. 4] A bridge circuit of the road frictional force measuring device shown in FIG. [FIG. 5] A specific configuration example of the bridge circuit shown in FIG. 4. [FIG. 6] A front view showing an embodiment of a road surface friction coefficient measuring device in which a vertical load measuring device is combined with a road surface frictional force measuring device according to the present invention. FIG. 7 is a side view of FIG. [FIG. 8] A bridge circuit of the road surface friction coefficient measuring device shown in FIG.

【符号の説明】[Explanation of symbols]

A アッパーコントロールアーム B リヤアクスルキャリア 11〜14 歪ゲージ 21〜24 歪ゲージ 51〜54 歪ゲージ 30 後車輪 31 車輪の進行方向 F 歪センサー N 歪センサー D,D1,D2 ブリッジ回路 20,40,50,増幅器 70 荷重方向 80 演算回路 A Upper control arm B Rear axle carrier 11-14 Strain gauge 21-24 Strain gauge 51-54 Strain gauge 30 Rear wheel 31 Wheel traveling direction F Strain sensor N Strain sensor D, D1, D2 Bridge circuit 20, 40, 50, amplifier 70 Load direction 80 Arithmetic circuit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月15日[Submission date] March 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 車両のサスペンション廻りの応力測定
装置
[Title of Invention] Stress measurement around suspension of vehicle
apparatus

【特許請求の範囲】[Claims]

【発明の詳細な説明】 〔0001〕DETAILED DESCRIPTION OF THE INVENTION [0001]

【産業上の利用分野】この発明は、車両の急制動時に車
輪のロック(固定)を防止するアンチロックブレーキ装
置もしくは、トラクションコントロール装置を構成する
要素となり得る路面摩擦力測定装置及び垂直荷重測定装
置並びに路面摩擦係数測定装置に関する。 〔0002〕
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road friction force measuring device and a vertical load measuring device which can be elements constituting an anti-lock brake device or a traction control device for preventing wheel locking (fixation) during sudden braking of a vehicle. It also relates to a road surface friction coefficient measuring device. [0002]

【従来の技術】従来の車両、例えば自動車のアンチロッ
クブレーキ装置では、スリップ比がある一定の範囲に入
るよう、車体速度と車輪速度とに基づいて制動を自動制
御する方式が一般的である(例えば、特公昭59−30
585号公報、特開昭60−61354号公報。)路面
摩擦係数とスリップ比との間の関係は、路面の状況によ
って変わり得るものであり、このため上記の方式では、
路面の状況によっては制動力が最大とはならないことも
あり、この場合には最小制動距離が得られない。また、
車体速度は車輪速度からの推定値であったため、スリッ
プ比の制御における精度上の問題があった。車体速度を
正確に把握するためには、対地速度センサー(例えば、
特開昭63−64861号公報)、車体減速度センサー
(例えば、特開昭63−64861号公報)等の複雑な
装置を必要とする。特開昭63−25169号公報に記
載される従来のアンチロックブレーキ装置では、車輪角
加速度とブレーキ液圧とから車輪に作用する路面摩擦力
のトルク(タイヤトルク)を演算により算出して、ブレ
ーキ液圧上昇中のタイヤトルクの下降の始まりを車輪の
ロック直前状態の判別材料の一つとして採用している。
しかしながら、この装置ではタイヤトルクを車輪角加速
度とブレーキ液圧とから演算によって間接的に求めてお
り、車輪の慣性能率、ブレーキトブレーキシュー(デス
クとデスクパット)の使用などの温度変化によるμ変
化、ブレーキの制動効率等の不確定な定数の存在のた
め、計算値に精度上の問題があった。また、車輪のタイ
ヤの空気圧や車体重量の加減によっては、車体減速度に
応じて車輪の路面からの距離が変動又は制動などの急加
速時のタイヤにかかる荷重変動により、路面摩擦力とタ
イヤトルクとに関して必ずしも一定比が保たれないとい
う問題もあった。 〔0003〕
2. Description of the Related Art In a conventional vehicle, for example, an anti-lock brake device for an automobile, a system is generally used in which braking is automatically controlled based on a vehicle speed and a wheel speed so that a slip ratio falls within a certain range. For example, Japanese Patent Publication Sho-59-30
585, JP-A-60-61354. ) The relationship between the road surface friction coefficient and the slip ratio can change depending on the road surface condition.
The braking force may not be maximum depending on road conditions, and in this case, the minimum braking distance cannot be obtained. Also,
Since the vehicle speed was an estimated value from the wheel speed, there was a problem in accuracy in controlling the slip ratio. In order to accurately grasp the vehicle speed, a ground speed sensor (for example,
A complicated device such as a vehicle body deceleration sensor (for example, Japanese Patent Laid-Open No. 63-64861) is required. In the conventional anti-lock brake device described in Japanese Patent Laid-Open No. 63-25169, the torque (tire torque) of the road surface frictional force acting on the wheel is calculated by calculation from the wheel angular acceleration and the brake fluid pressure, and the brake is applied. The beginning of the decrease in tire torque while the hydraulic pressure is increasing is used as one of the materials for determining the state immediately before the wheel is locked.
However, in this device, the tire torque is indirectly obtained by calculation from the wheel angular acceleration and the brake fluid pressure, and μ changes due to temperature changes such as the inertia ratio of the wheel and the use of the braked brake shoes (desk and desk pad). Since there is an uncertain constant such as the braking efficiency of the brake, there is a problem in accuracy of the calculated value. Also, depending on the tire pressure of the wheel and the weight of the vehicle body, the distance from the road surface of the wheel may change depending on the vehicle body deceleration, or the load on the tire during sudden acceleration such as braking may cause road surface friction and tire torque. There was also a problem that a constant ratio could not always be maintained. [0003]

【発明が解決しようとする課題】従来例の上記ような問
題点に鑑み本発明は、車両の各車輪の路面との間の摩擦
力は、力学的にその車輪による車体への制動力と等価で
あり、このため車輪の路面との接地点から車体までの各
構造物の任意の点において、路面摩擦力に比例した応力
及び歪が生じ、従ってこれらの構造物中の適当な或る点
でその構造物の歪を測定し、この歪を通じて路面摩擦力
を検出することができることに着目すると共に、車両が
タイヤを有する車輪であればタイヤに最も大きな歪が生
ずるので、タイヤの歪測定結果に基づいて路面摩擦力を
検出することが好ましいが、タイヤは回転するため計測
装置が複雑でコスト高となる、そこで歪量がタイヤに比
べて小さいけれども、回転部分ではない車両のサスペン
ション廻りの構成部材の歪を測定すると計測装置を単純
化できることに着目して、従来例の有する欠点を除去し
たアンチロックブレーキ装置もしくはトラクションコン
トロール装置の構成要素となり得る路面摩擦力及び垂直
荷重並びに路面摩擦係数等の応力測定装置を提供するこ
とを目的とする。 〔0004〕
SUMMARY OF THE INVENTION In view of the above problems of the conventional example, in the present invention, the frictional force between each wheel of the vehicle and the road surface is dynamically equivalent to the braking force exerted by the wheel on the vehicle body. Therefore, at any point of each structure from the ground contact point of the wheel to the road surface to the vehicle body, stress and strain proportional to the road surface friction force occur, and therefore, at an appropriate point in these structures. Measuring the strain of the structure, paying attention to the fact that the road friction force can be detected through this strain, and if the vehicle has wheels, the largest strain will occur in the tire. It is preferable to detect the road surface friction force based on this, but since the tire rotates, the measuring device is complicated and the cost is high. Therefore, although the strain amount is smaller than the tire, the configuration around the suspension of the vehicle that is not the rotating part Focusing on can be simplified and the measuring device for measuring the distortion of the wood, examples of a anti-lock braking system or traction control system to remove the drawbacks components capable of becoming road friction force and the like vertical load and road surface friction coefficient conventional An object is to provide a stress measuring device . [0004]

【課題を解決するための手段】請求項1に記載の本発明
は、左右両輪が独立してストロークできるサスペンショ
ン機構の構成部材に歪ゲージからなる応力計測手段を配
設し、車輪制動もしくは駆動時におけるサスペンション
機構のせん断応力を上記応力計測手段で計測するよう構
成されている。請求項2に記載の本発明は、歪ゲージか
らなる応力計測手段をサスペンション機構の構成部材で
あるアッパーコントロールアームに配設し路面摩擦力を
計測するようにした構成である。請求項3に記載の本発
明は、歪ケージからなる応力計測手段をサスペンション
機構の構成部材である、アクスルキャリアに配設し路面
摩擦力又は垂直荷重を計測するようにした構成である。
請求項4に記載の本発明は、サスペンション機構の構成
部材が、アッパーコントロールアーム又はアクスルキャ
リアである請求項2及び3に記載の路面摩擦力計測手段
に垂直荷重計測手段を組み合わせ路面摩擦係数を計測す
るようにした構成である。請求項5に記載の本発明は、
応力計測手段が、歪ゲージ2枚をクロスに組み合わせた
一対の4枚一組をブリッジ回路に形成した構成とされて
いる。 〔0005〕
According to a first aspect of the present invention, stress measuring means, which is a strain gauge, is provided in a constituent member of a suspension mechanism that allows the left and right wheels to independently stroke, and when the wheel is braked or driven. The shearing stress of the suspension mechanism is measured by the stress measuring means . According to a second aspect of the present invention, the stress measuring means composed of a strain gauge is arranged on the upper control arm which is a constituent member of the suspension mechanism to reduce the road surface friction force.
The configuration is such that it is measured . According to a third aspect of the present invention, the stress measuring means composed of a strain cage is arranged on an axle carrier, which is a constituent member of a suspension mechanism, to provide a road surface.
It is configured to measure a frictional force or a vertical load .
The present invention is defined in claim 4, the components of the suspension mechanism, the road combined vertical load measuring means to the road surface friction force measuring means <br/> according to claim 2 and 3 are upper control arm or axle carrier Measure the friction coefficient
This is the configuration. The present invention according to claim 5 provides
The stress measuring means has a structure in which a pair of four strain gauges, each of which is a combination of two strain gauges, is formed in a bridge circuit. [0005]

【作用】請求項1乃至4に記載の本発明では、サスペン
ション機構の構成部材に歪ゲージからなる応力計測手段
を配設するので、車輪制動もしくは駆動時にサスペンシ
ョンの構成部材に生じるせん断歪を直接検出して、精度
のよい路面摩擦力及び垂直荷重並びに路面摩擦係数等の
応力を測定できる。請求項5に記載の本発明では、歪ゲ
ージをクロスに組み合わせて、ブリッジ回路を形成した
ので、曲げ変形の影響が相殺され路面摩擦力又は垂直荷
重のみに比例した電圧信号を取り出すことができる。 〔0006〕
According to the present invention as set forth in claims 1 to 4, since the stress measuring means consisting of a strain gauge is arranged in the constituent members of the suspension mechanism, the shearing that occurs in the constituent members of the suspension during wheel braking or driving. Strain is directly detected to obtain accurate road surface friction force, vertical load, road surface friction coefficient, etc.
Can measure stress . According to the fifth aspect of the present invention, since the strain gauge is combined with the cross to form the bridge circuit, the influence of the bending deformation is canceled out and the voltage signal proportional to only the road friction force or the vertical load can be taken out. [0006]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は左右両輪が独立してストロークできるサスペ
ンション構成からなる車輪の後輪に本発明を適用した概
略構成を示す斜視図、図2は図1の要部拡大斜視図、図
3(a)(b)(c)は路面摩擦力の計測手段を示すも
ので、この実施例では歪ケージ11〜14を用いてサス
ペンション機構の構成部材であるアッパーコントロール
アームAのせん断歪を測定することにより、路面摩擦力
を検出する。歪ケージ自体は抵抗線の電気抵抗が歪に比
例して変化することを利用したもので、抵抗線を内蔵し
た長方形のフィルムからなり、その長手方向の引張歪及
び圧縮歪を検出するもので、クロスに交叉させた2枚の
歪ゲージ2組の歪ゲージ11,12,及び13,14を
アッパーコントロールアームAの表裏面のリヤデスク3
5への固着部近傍に後車輪30の進行方向31と直交す
る交線上において、この軸線32と略45゜の角度をな
す方向の引張歪及び圧縮歪を測定するように貼付する。
但し、歪ケージ11と14とがまた12と13とが後車
輪の進行方向と直交するアッパーコントロールアームの
中心線33に対して対称となるように貼付ける。歪ケー
ジ11から14を貼着する代わりに図3(c)に示すよ
うに、プラスチックその他の材料からなる基板36の表
面に歪ケージ11と12をクロスに交叉させ、裏面に歪
ゲージ13と14をクロスに交叉させて貼着した歪セン
サーFを、アッパーコントロールアームAに設けた貫通
孔37内に挿入埋設した構成としてもよい。又歪ケージ
11〜14をアッパーコントロールアームAの表裏面に
貼着する代わりに図3(a)の鎖線示の如く、アッパー
コントロールアームAの表面に対称的に貼着してもよ
い。 〔0007〕車輪に制動をかけると後車輪30に加わる
路面摩擦力によりアッパーコントロールアームAには、
水平面上に中心軸が曲がる曲げ変形が加わると同時に、
アッパーコントロールアームAの中心軸に垂直な断面に
路面摩擦力に等しい大きさのせん断歪力が水平方向に加
わる。このせん断歪力に比例してアッパーコントロール
アームAにせん断歪が生じる。歪ゲージを11,12,
13,14を図4に示すようにブリッジ回路Dを形成す
ることにより、上記したアッパーコントロールアームA
のせん断歪を検出して路面摩擦力を測定できる。この場
合ブリッジ回路Dを構成することにより、曲げ変形の影
響は相殺され増幅器40の電圧出力は、後車輪30に加
わる路面摩擦力のみに比例する。 〔0008〕図5は、図4に示したブリッジ回路Dの具
体的構成例で、アッパーコントロールアームAに貼付し
た歪ゲージ11〜14のリード線lを端子台41を介し
て色分けされた芯線からなる4芯シールド線42と接続
し、その4芯シールド線の遊端に設けたキャノンコネク
タ43を増幅器40に着脱可能に接続するよう構成さ
れ、ブリッジ回路の構成及び結線が簡便化されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration in which the present invention is applied to a rear wheel of a wheel having a suspension configuration in which both left and right wheels can independently stroke, FIG. 2 is an enlarged perspective view of an essential part of FIG. 1, and FIG. b) and (c) show a means for measuring the road surface frictional force. In this embodiment, the strain cages 11 to 14 are used to measure the shear strain of the upper control arm A, which is a component of the suspension mechanism. Detect frictional force. The strain cage itself utilizes the fact that the electrical resistance of the resistance wire changes in proportion to the strain, and consists of a rectangular film with a built-in resistance wire, which detects tensile strain and compression strain in the longitudinal direction, Two sets of two strain gauges crossed in a cross, strain gauges 11, 12 and 13, 14 are placed on the rear desk 3 of the upper and lower sides of the upper control arm A.
It is attached in the vicinity of the fixed portion to 5 so as to measure the tensile strain and the compressive strain in a direction forming an angle of approximately 45 ° with the axis 32 on an intersection line orthogonal to the traveling direction 31 of the rear wheel 30.
However, the strain cages 11 and 14 and 12 and 13 are attached so as to be symmetrical with respect to the center line 33 of the upper control arm which is orthogonal to the traveling direction of the rear wheels. Instead of sticking the strain cages 11 to 14, as shown in FIG. 3C, the strain cages 11 and 12 are crossed on the surface of the substrate 36 made of plastic or other material, and the strain gauges 13 and 14 are placed on the back surface. The strain sensor F, which is attached by crossing with the cross, may be inserted and embedded in the through hole 37 provided in the upper control arm A. Instead of attaching the strain cages 11 to 14 to the front and back surfaces of the upper control arm A, they may be attached symmetrically to the surface of the upper control arm A as shown by the chain line in FIG. [0007] When the wheels are braked, the upper control arm A is affected by the road surface frictional force applied to the rear wheels 30.
At the same time as bending deformation that the central axis bends on the horizontal plane,
A shear strain force having a magnitude equal to the road surface friction force is horizontally applied to a cross section perpendicular to the central axis of the upper control arm A. Shear strain is generated in the upper control arm A in proportion to the shear strain force. Strain gauges 11, 12,
By forming a bridge circuit D as shown in FIG.
It is possible to measure the road surface friction force by detecting the shear strain. In this case, by configuring the bridge circuit D, the influence of bending deformation is canceled out, and the voltage output of the amplifier 40 is proportional to only the road friction force applied to the rear wheel 30. [0008] FIG. 5 is a specific configuration example of the bridge circuit D shown in FIG. 4, in which the lead wires 1 of the strain gauges 11 to 14 attached to the upper control arm A are colored from the core wires through the terminal block 41. It is configured to be connected to the four-core shielded wire 42 and the cannon connector 43 provided at the free end of the four-core shielded wire to be detachably connected to the amplifier 40, thereby simplifying the configuration and wiring of the bridge circuit.

〔0009〕図6及び図7は、路面摩擦力計測手段に垂
直荷重計測手段を組み合せた路面摩擦係数計測手段の実
施例を示すもので、歪ケージ21〜24と51〜54を
用いて後車輪30のサスペンション機構の構成部材リヤ
アクスルキャリアBのせん断歪を測定することにより路
面摩擦力と垂直荷重とを検出して、両検出値を演算によ
り路面摩擦係数を測定する。リヤアクスルキャリアBの
側壁部60に荷重方向70と直交する貫通孔61を設
け、この貫通孔61内に、歪ゲージ21〜24からなる
歪センサーFと歪ゲージ51〜54からなる歪センサー
Nとを挿入埋設する。この場合歪センサーNの各歪ゲー
ジ51〜54が荷重方向70と直交する軸線71と略4
5゜の角度をなす方向の引張歪及び圧縮歪を測定できる
よう配設すると共に、歪センサーFの各歪ケージ21〜
24が後車輪の進行方向と直交する軸線と略45゜の角
度をなす方向の引張歪及び圧縮歪を測定できるように配
設する。 〔0010〕車輪に制動をかけると後車輪に加わる路面
摩擦力により、リヤアクスルキャリアBには中心軸に垂
直な断面に路面摩擦力に等しい大きさのせん断歪力が水
平方向に加わり、このせん断歪力に比例してリアアクス
ルキャリアBにせん断歪が生じると同時に、後車輪に加
わる垂直荷重により、リアアクスルキャリアBには垂直
面上(側面)において曲げ変形が加わると共に水平軸に
対して垂直な断面に垂直荷重に等しい大きさのせん断歪
力が垂直方向に加わり、このせん断歪力に比例してリア
アクスルキャリアBにせん断歪が生じる。歪ゲージ21
〜24と51〜54とを第8図に示すように2組のブリ
ッジ回路D1及びD2に組み、増幅器20の出力として
得られる路面摩擦力に比例した電圧信号と増幅器50の
出力として得られる垂直荷重に比例した電圧信号とを、
それぞれ演算回路80に入力し、この演算回路で路面摩
擦力と垂直荷重との商を演算して、路面摩擦係数μに対
応した電圧信号を出力させ、路面摩擦係数を測定でき
る。尚、貫通孔61を図6及び図7の鎖線示の如く垂直
荷重の荷重方向70と同一方向に設けて、歪センサーF
及び歪センサーNを挿入埋設してもよく、又貫通孔を2
個設け、歪センサーFと歪センサーNとを失々個別に埋
設してもよい。 〔0011〕上記した実施例ではリアアクスルキャリア
Bに設けた貫通孔に歪センサーFと歪センサーNとを挿
入埋設して路面摩擦係数を測定するものを示したが、本
発明はこれに限定されるものでなく、リアアクスルキャ
リアBの貫通孔には歪センサーNのみを挿入埋設して、
該歪センサーNの歪ゲージ51〜54のブリッジ回路D
2と図3及び図4に示したアッパーコントロールアーム
Aに配設した歪センサーFのブリッジ回路Dとを図8に
示すように組んで路面摩擦係数を測定するようにしても
よく、又上述した実施例は後車輪のサスペンション機構
廻りの構成部材について述べたが、本発明は後車輪に限
定されるものではなく、車両であれば、前車輪のサスペ
ンション機構廻りの構成部材に本発明を適用できるのは
勿論である。なお、歪センサーとして金属抵抗線歪ゲー
ジを用いたものを示したが、これに限定されることな
く、半導体歪ゲージを用いてもよい。 〔0012〕
[0009] Figs. 6 and 7 show an embodiment of a road surface friction coefficient measuring means in which a road surface friction force measuring means is combined with a vertical load measuring means , and rear cages are constructed by using strain cages 21-24 and 51-54. The road surface frictional force and the vertical load are detected by measuring the shear strain of the rear axle carrier B, which is a component of the suspension mechanism of 30, and the road surface friction coefficient is measured by calculating both detected values. A through hole 61 orthogonal to the load direction 70 is provided in the side wall portion 60 of the rear axle carrier B, and a strain sensor F including the strain gauges 21 to 24 and a strain sensor N including the strain gauges 51 to 54 are provided in the through hole 61. Insert and embed. In this case, each of the strain gauges 51 to 54 of the strain sensor N has an axis 71 orthogonal to the load direction 70 and approximately 4
The strain cages 21 to 21 of the strain sensor F are arranged so that the tensile strain and the compressive strain in the direction forming an angle of 5 ° can be measured.
24 is arranged so that the tensile strain and the compressive strain in the direction forming an angle of approximately 45 ° with the axis orthogonal to the traveling direction of the rear wheels can be measured. [0010] When the wheels are braked, a road surface frictional force applied to the rear wheels applies a shear strain force equal in magnitude to the road surface frictional force to the rear axle carrier B in a cross section perpendicular to the central axis in the horizontal direction. Shear strain is generated in the rear axle carrier B in proportion to the force, and at the same time, the vertical load applied to the rear wheel causes bending deformation on the vertical surface (side surface) of the rear axle carrier B and also causes a vertical deformation with respect to the horizontal axis. A shear strain force of the same magnitude as a vertical load is applied to the cross section in the vertical direction, and shear strain occurs in the rear axle carrier B in proportion to this shear strain force. Strain gauge 21
.About.24 and 51 to 54 are assembled into two sets of bridge circuits D1 and D2 as shown in FIG. 8, and a voltage signal proportional to the road friction force obtained as the output of the amplifier 20 and a vertical signal obtained as the output of the amplifier 50 are combined. A voltage signal proportional to the load,
Each is input to the arithmetic circuit 80, the quotient of the road surface friction force and the vertical load is calculated by this arithmetic circuit, and a voltage signal corresponding to the road surface friction coefficient μ is output to measure the road surface friction coefficient. The through hole 61 is provided in the same direction as the vertical load direction 70 as shown by the chain line in FIGS. 6 and 7, and the strain sensor F
The strain sensor N may be inserted and embedded, and the through hole may be 2
Alternatively, the strain sensor F and the strain sensor N may be individually embedded by mistake. [0011] In the above embodiment, the strain sensor F and the strain sensor N are inserted and embedded in the through hole provided in the rear axle carrier B to measure the road surface friction coefficient, but the present invention is not limited to this. It is not a thing, but only the strain sensor N is inserted and embedded in the through hole of the rear axle carrier B,
Bridge circuit D of strain gauges 51 to 54 of the strain sensor N
2 and the bridge circuit D of the strain sensor F disposed on the upper control arm A shown in FIGS. 3 and 4 may be assembled as shown in FIG. 8 to measure the road surface friction coefficient, or as described above. Although the embodiment has described the components around the suspension mechanism of the rear wheels, the present invention is not limited to the rear wheels, and the present invention can be applied to the components around the suspension mechanism of the front wheels in the case of a vehicle. Of course. Although the strain sensor uses the metal resistance wire strain gauge as the strain sensor, the strain sensor is not limited to this and a semiconductor strain gauge may be used. [0012]

【発明の効果】本発明によれば、サスペンション機構の
構成部材に、制動もしくは駆動時に生ずるせん断歪を曲
げ変形の影響を受けることなく精度よく計測でき、とく
に回転部材でないアッパーコントロールアームとリヤア
クスルキャリアに歪ゲージを配設するだけでよいので、
路面摩擦力と垂直荷重を簡便に計測でき、しかもこれら
計測した電圧信号から演算処理によって精度のよい路面
摩擦係数を得ることができアンチロックブレーキ装置又
はトラクションコントロール装置の構成要素となり得
る、路面摩擦力・垂直荷重・路面摩擦係数等の応力測定
装置を簡便に提供できる。
According to the present invention, the shear strain generated during braking or driving can be accurately measured in the constituent members of the suspension mechanism without being affected by bending deformation, and particularly in the upper control arm and the rear axle carrier which are not rotating members. Since it is only necessary to install a strain gauge,
The road surface friction force and the normal load easily be measured, yet also processing accurate road friction coefficient of can be obtained an anti-lock brake system by these measured voltage signal
Can be a component of a traction control device
Stress measurement of road friction force, vertical load, road friction coefficient, etc.
The device can be easily provided.

【図面の簡単な説明】 〔図1〕左右両輪が独立してストロークできる車両のサ
スペンション機構に本発明を適用した概略構成を示す斜
視図。 〔図2〕図1の要部を拡大した斜視図。 〔図3〕本発明に係わる路面摩擦力測定装置の実施例を
示す構成図。 〔図4〕図3に示した路面摩擦力測定装置のブリッジ回
路。 〔図5〕図4に示したブリッジ回路の具体的構成例図。 〔図6〕本発明に係わる路面摩擦力測定装置に垂直荷重
測定装置を組み合わせた路面摩擦係数測定装置の実施例
を示す正面図。 〔図7〕図5の側面図。 〔図8〕図6に示した路面摩擦係数測定装置のブリッジ
回路。
BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] A perspective view showing a schematic configuration in which the present invention is applied to a suspension mechanism of a vehicle in which both left and right wheels can independently stroke. FIG. 2 is an enlarged perspective view of a main part of FIG. FIG. 3 is a configuration diagram showing an embodiment of a road surface frictional force measuring device according to the present invention. [FIG. 4] A bridge circuit of the road frictional force measuring device shown in FIG. FIG. 5 is a diagram showing a specific configuration example of the bridge circuit shown in FIG. [FIG. 6] A front view showing an embodiment of a road surface friction coefficient measuring device in which a vertical load measuring device is combined with a road surface frictional force measuring device according to the present invention. FIG. 7 is a side view of FIG. [FIG. 8] A bridge circuit of the road surface friction coefficient measuring device shown in FIG.

【符号の説明】 A アッパーコントロールアーム B リヤアクスルキャリア 11〜14 歪ゲージ 21〜24 歪ゲージ 51〜54 歪ゲージ 30 後車輪 31 車輪の進行方向 F 歪センサー N 歪センサー D,D1,D2 ブリッジ回路 20,40,50,増幅器 70 荷重方向 80 演算回路[Explanation of Codes] A Upper Control Arm B Rear Axle Carrier 11-14 Strain Gauge 21-24 Strain Gauge 51-54 Strain Gauge 30 Rear Wheel 31 Wheel Travel Direction F Strain Sensor N Strain Sensor D, D1, D2 Bridge Circuit 20, 40, 50, amplifier 70 load direction 80 arithmetic circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】左右両輪が独立してストロークできるサス
ペンション機構の構成部材に歪ゲージからなる計測手段
を配設し、車輪制動もしくは駆動時におけるサスペンシ
ョン機構のせん断応力を上記計測手段で計測することを
特徴とする車輪のサスペンション廻りの路面摩擦力及び
垂直荷重並びに路面摩擦係数の測定装置。
1. A measuring means composed of a strain gauge is provided in a constituent member of a suspension mechanism capable of independently striking both left and right wheels, and the shearing stress of the suspension mechanism during wheel braking or driving is measured by the measuring means. A device for measuring the road frictional force and vertical load around the wheel suspension and the road friction coefficient.
【請求項2】上記サスペンション機構の構成部材がアッ
パーコントロールアームである請求項1に記載の路面摩
擦力測定装置
2. The road surface frictional force measuring device according to claim 1, wherein the constituent member of the suspension mechanism is an upper control arm.
【請求項3】上記サスペンション機構の構成部材がアク
スルキャリアである請求項1に記載の路面摩擦力もしく
は垂直荷重測定装置。
3. The road frictional force or vertical load measuring device according to claim 1, wherein the constituent member of the suspension mechanism is an axle carrier.
【請求項4】上記サスペンション機構の構成部材がアッ
パーコントロールアームもしくはアクスルキャリアであ
る請求項2及び3に記載の路面摩擦力測定装置に垂直荷
重測定装置を組み合わせた路面摩擦係数測定装置。
4. A road surface friction coefficient measuring device in which a vertical load measuring device is combined with the road surface frictional force measuring device according to claim 2 or 3, wherein a constituent member of the suspension mechanism is an upper control arm or an axle carrier.
【請求項5】上記計測手段が、歪ゲージ2枚をクロスに
組み合わせた一対の4枚一組をブリッジ回路に形成した
構成である請求項1に記載の車両のサスペンション廻り
の路面摩擦力及び垂直荷重並びに路面摩擦係数の測定装
置。
5. The road friction force and vertical force around a suspension of a vehicle according to claim 1, wherein the measuring means has a structure in which a pair of four pairs of two strain gauges combined in a cross is formed in a bridge circuit. Measuring device for load and road friction coefficient.
JP4115109A 1992-03-23 1992-03-23 Stress measuring device around the vehicle suspension Expired - Fee Related JPH0820323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4115109A JPH0820323B2 (en) 1992-03-23 1992-03-23 Stress measuring device around the vehicle suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115109A JPH0820323B2 (en) 1992-03-23 1992-03-23 Stress measuring device around the vehicle suspension

Publications (2)

Publication Number Publication Date
JPH06288798A true JPH06288798A (en) 1994-10-18
JPH0820323B2 JPH0820323B2 (en) 1996-03-04

Family

ID=14654465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115109A Expired - Fee Related JPH0820323B2 (en) 1992-03-23 1992-03-23 Stress measuring device around the vehicle suspension

Country Status (1)

Country Link
JP (1) JPH0820323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008246A1 (en) 2001-07-19 2003-01-30 Bridgestone Corporation Road surface friction coefficient estimating method, signal multiplex transmission method and signal multiplex transmission device
JP2007113957A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Friction force sensor and tire with friction force sensor
JP2014085259A (en) * 2012-10-24 2014-05-12 Toyo Sokki Kk Strain gauge, strain measuring device and strain gauge type converter
WO2019111127A1 (en) * 2017-12-04 2019-06-13 Faiveley Transport Italia S.P.A. System for determining a wheel-rail adhesion value for a railway vehicle and the corresponding method thereof
CN110220722A (en) * 2019-05-29 2019-09-10 中国第一汽车股份有限公司 A kind of control arm load test system and calibration experiment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679222A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Instrument for measuring load
JPS58120945U (en) * 1982-02-09 1983-08-17 株式会社東芝 Strain gauge type load transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679222A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Instrument for measuring load
JPS58120945U (en) * 1982-02-09 1983-08-17 株式会社東芝 Strain gauge type load transducer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008246A1 (en) 2001-07-19 2003-01-30 Bridgestone Corporation Road surface friction coefficient estimating method, signal multiplex transmission method and signal multiplex transmission device
JP2007113957A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Friction force sensor and tire with friction force sensor
JP2014085259A (en) * 2012-10-24 2014-05-12 Toyo Sokki Kk Strain gauge, strain measuring device and strain gauge type converter
WO2019111127A1 (en) * 2017-12-04 2019-06-13 Faiveley Transport Italia S.P.A. System for determining a wheel-rail adhesion value for a railway vehicle and the corresponding method thereof
CN110220722A (en) * 2019-05-29 2019-09-10 中国第一汽车股份有限公司 A kind of control arm load test system and calibration experiment system

Also Published As

Publication number Publication date
JPH0820323B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US6651518B1 (en) Device including a stress detection sensor for measuring action force of a wheel
US6832512B2 (en) Wheel action force detector for detecting axle forces absent brake torque
JP2736395B2 (en) Wheel force measuring device and structure stress measuring device
EP0363570B1 (en) Road surface friction sensor and road surface friction coefficient detector, and vehicle antilock braking device
US20060207336A1 (en) Wheel-acting force measuring device
JP2628444B2 (en) Wheel force measuring device
EP1157219A1 (en) Disc brake mounting bracket torque sensor
EP0748730A1 (en) Control method for antilock braking systems with stress sensor
EP0814329A2 (en) Device for measuring action force of wheel and device for measuring stress of structure
US5507187A (en) Wheel-acting force measuring device
JPH02105023A (en) Method and device for weighing car
JPH06288798A (en) Stress measuring device around suspension of vehicle
JPH03215726A (en) Road surface frictional force detector by spindle, vertical load detector and road surface friction coefficient detector
EP1912811A2 (en) Load sensing wheel support knuckle assembly and method for use
JPH08136374A (en) Apparatus for measuring stress of vehicle
JPS6113132A (en) Braking force detecting mechanism in braking performance meter of tire
JP2784711B2 (en) Stress measuring method for structural body and stress measuring device using the method
JPH06207846A (en) Measuring method for shaft weight of vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960903

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees