JPH06287321A - Fiber reinforced plastic material made by using bagasse and production thereof - Google Patents

Fiber reinforced plastic material made by using bagasse and production thereof

Info

Publication number
JPH06287321A
JPH06287321A JP10379193A JP10379193A JPH06287321A JP H06287321 A JPH06287321 A JP H06287321A JP 10379193 A JP10379193 A JP 10379193A JP 10379193 A JP10379193 A JP 10379193A JP H06287321 A JPH06287321 A JP H06287321A
Authority
JP
Japan
Prior art keywords
bagasse
fiber
thermosetting resin
reinforced plastic
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10379193A
Other languages
Japanese (ja)
Inventor
Isao Fukumoto
功 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKINAWA PREF GOV TOGYO SHINKO
OKINAWA PREF GOV TOGYO SHINKO KYOKAI
Original Assignee
OKINAWA PREF GOV TOGYO SHINKO
OKINAWA PREF GOV TOGYO SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKINAWA PREF GOV TOGYO SHINKO, OKINAWA PREF GOV TOGYO SHINKO KYOKAI filed Critical OKINAWA PREF GOV TOGYO SHINKO
Priority to JP10379193A priority Critical patent/JPH06287321A/en
Publication of JPH06287321A publication Critical patent/JPH06287321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To obtain the title lightweight an tough plastic material at low cost by using a thermosetting resin, glass fibers and bagasse as the principal constituents at a specified weight ratio of thermosetting resin to bagasse. CONSTITUTION:The material consists mainly of a thermosetting resin preferably comprising an unsaturated polyester, glass fibers, and bagasse preferably comprising a fibrous bagasse crushed to a length of 0.3-20mm at a weight ratio of thermosetting resin to bagasse of at least 2:1, preferably about 3:1. Figure shows the relation between the blending ratio of bagasse an tensile strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、さとうきびバガスを充
填材として用いた繊維強化プラスチック材(以下、FR
Pとする)及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced plastic material using sugar cane bagasse as a filler (hereinafter referred to as FR
P) and its manufacturing method.

【0002】[0002]

【従来の技術】さとうきびの茎は、殆どが繊維質で形成
され、糖蜜搾汁後の搾りかすであるバガスの残存率が非
常に高く、製糖工場においては大量(例えば沖縄県にお
いては年間約40万トン)のバガスが発生している。従
来、バガスは一部は合板や漆器の材料として、あるいは
肥料、飼料として使われているが、殆どは製糖工場にお
けるボイラの燃料として燃やされているのが現状であ
り、大量に生じるバガスが二次資源として有効利用され
ているとは言い難い。そのため、砂糖きびの付加価値を
高めるために、バガスの高度有効利用が求められてい
る。
2. Description of the Related Art Most of sugarcane stalks are made of fiber, and the residual rate of bagasse, which is the squeezed residue after molasses squeezing, is very high. (10,000 tons) of bagasse is generated. Traditionally, bagasse is partially used as a material for plywood or lacquer ware, or as fertilizer or feed, but most of it is currently burned as fuel for boilers in sugar factories, and the amount of bagasse produced in large quantities is two. It is hard to say that it is effectively used as the next resource. Therefore, in order to increase the added value of sugar cane, highly effective use of bagasse is required.

【0003】一方、不飽和ポリエステル樹脂やエポキシ
樹脂等の熱硬化性樹脂とガラス繊維を混合したガラス繊
維強化プラスチック(FRP)の成形は、ハンドレイア
ップ法、プリミックス法等種々の成形法が知られている
が、自動化ができ、複雑な小物を成形できる成形法とし
て、熱可塑性樹脂と同様な射出成形法が知られている。
射出成形法の場合、予め熱硬化性樹脂、ガラス繊維、充
填材、その他の添加材を混合して塊状成形コンパウンド
(以下、単にBMCとする)を形成し、それを射出成形
している。従来、充填材としては主に炭酸カルシウムが
用いられているが、比重が大きいため成形されたFRP
製品は他のプラスチック製品に比べて比較的重く、軽量
で靱性に富むFRP製品が得られないという問題があ
る。また、FRPは高価なガラス繊維を補強材として使
用するので、強靱ではあるが一般に高価であるという問
題がある。
On the other hand, molding of glass fiber reinforced plastic (FRP), which is a mixture of thermosetting resin such as unsaturated polyester resin or epoxy resin and glass fiber, is known by various molding methods such as hand layup method and premix method. However, an injection molding method similar to that of thermoplastic resin is known as a molding method capable of being automated and molding a complicated small article.
In the case of the injection molding method, a thermosetting resin, glass fiber, a filler, and other additives are mixed in advance to form a block molding compound (hereinafter simply referred to as BMC), which is injection molded. Conventionally, calcium carbonate has been mainly used as a filler, but the molded FRP has a large specific gravity.
The product is relatively heavier than other plastic products, and there is a problem that an FRP product that is light in weight and rich in toughness cannot be obtained. Further, since FRP uses expensive glass fiber as a reinforcing material, it is tough but generally expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記実情に
鑑み大量に排出されるバガスをより付加価値の高い高度
有効利用を図るために創案されたものであって、バガス
を利用して従来のFRPよりも軽量で強靱であり、しか
も低コストで射出成形により得られるバガスを用いたF
RP、及びその製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention was conceived in view of the above circumstances in order to achieve high-value and highly effective utilization of a large amount of bagasse discharged, and the conventional bagasse is used. FRP, which is lighter and tougher than the FRP, and uses bagasse obtained by injection molding at low cost
An object is to provide an RP and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明者は、バガスの有
効利用について種々研究する過程で、バガスは硬くて強
靱で且つ軽い植物繊維であり粉砕後の形状が針状であ
り、ガラス繊維と類似した形状を呈し、ガラス繊維とか
らみ易い特性を有していることに着目し研究を続けた結
果、バガスをFRPの充填材として利用できることを知
見し、本発明に到達したものである。
Means for Solving the Problems In the course of various studies on effective use of bagasse, the present inventor is a hard, tough and light vegetable fiber, which has a needle-like shape after crushing, and glass fiber and As a result of continued research paying attention to the fact that it has a similar shape and has the property of being easily entangled with glass fibers, the inventors have found that bagasse can be used as a filler for FRP and arrived at the present invention.

【0006】即ち、本発明は、熱硬化性樹脂、ガラス繊
維、バガスより主としてなり、前記熱硬化性樹脂とバガ
スとの重量割合がバガス1に対して熱硬化性樹脂が2倍
以上、望ましくは約3倍であることを特徴とするバガス
を用いた繊維強化プラスチック材である。本発明に用い
られる熱硬化性樹脂は、不飽和ポリエステルが望ましい
が、用途によってはエポキシ樹脂を用いることも可能で
ある。また、バガスに対する熱硬化性樹脂の重量割合
は、バガスの量が増加するにしたがって引張強度が増加
するが、熱硬化性樹脂がバカスの2倍以下であると、バ
ガスが多すぎて樹脂が不足し、バガス内に充分浸透しな
いため強度低下を招くので、2倍以上であることが必要
である。さらに、バガスは、長さ0.3mm〜20mmの範
囲に破砕された繊維状バガスであることが望ましい。バ
ガスは、ガラス繊維と類似した針形状を呈し、ガラス繊
維とからみ易い特性を有するが、長さが0.3mm以下で
あると、針状の形状特性が発揮できず、粒状の挙動を示
し、20mm以上に長いと不飽和ポリエステルがバガス内
部に浸透するのが難しく、バガスの空洞部が残るため、
強度が低下する。前記本発明のガラス繊維強化プラスチ
ック材は、ハンドレイアップ法、プリミックス法等従来
のFRP材の成形法である種々の成形法によっても得る
ことが可能であるが、射出成形法に適用すれば、自動化
ができ、且つ複雑な小物も効率良く成形でき、軽くて丈
夫で且つ安価なガラス繊維強化プラスチック製品を得る
ことができる。
That is, the present invention is mainly composed of a thermosetting resin, glass fiber and bagasse, and the weight ratio of the thermosetting resin to bagasse is twice or more of the thermosetting resin with respect to 1 bagasse, preferably. It is a fiber-reinforced plastic material using bagasse, which is about three times as large. The thermosetting resin used in the present invention is preferably unsaturated polyester, but it is also possible to use an epoxy resin depending on the application. Further, the weight ratio of the thermosetting resin to the bagasse increases the tensile strength as the amount of bagasse increases, but if the thermosetting resin is less than twice the bagasse, the amount of bagasse is too much and the resin is insufficient. However, since it does not sufficiently penetrate into bagasse, it causes a decrease in strength. Further, the bagasse is preferably fibrous bagasse crushed into a length of 0.3 mm to 20 mm. Bagasse has a needle shape similar to that of glass fiber and has a characteristic that it is easily entangled with glass fiber, but if the length is 0.3 mm or less, needle-like shape characteristics cannot be exhibited, and granular behavior is exhibited. If the length is longer than 20 mm, it is difficult for the unsaturated polyester to penetrate into the bagasse, and the cavity of the bagasse remains.
Strength is reduced. The glass fiber reinforced plastic material of the present invention can be obtained by various molding methods such as a hand lay-up method and a premix method, which are conventional FRP material molding methods. It is possible to obtain a glass fiber reinforced plastic product that can be automated, can efficiently mold even a complicated small object, and is light, durable and inexpensive.

【0007】また、本発明のバガスを用いた繊維強化プ
ラスチック材の製造方法は、熱硬化性樹脂、ガラス繊
維、バガスより主としてなり、前記熱硬化性樹脂とバガ
スとの重量割合がバガス1に対して熱硬化性樹脂が2倍
以上、望ましくは約3倍となるように各成分を配合し
て、3〜4時間混練してBMCを得、該BMCを射出成
形することにより、バガスを用いた繊維強化プラスチッ
ク成形品を得ることを特徴とするものである。混練時間
が3分より短いとバガス内部に液状の熱硬化性樹脂を含
浸させるのに不十分であり、4時間以上になるとガラス
繊維が破損されるため、熱硬化性樹脂がバガスに充分に
浸透する3分〜4時間の範囲が必要である。より望まし
くは210分である。
The method for producing a fiber-reinforced plastic material using bagasse of the present invention is mainly composed of a thermosetting resin, glass fiber and bagasse, and the weight ratio of the thermosetting resin to bagasse is 1 bagasse. Then, each component was blended so that the amount of the thermosetting resin was 2 times or more, preferably about 3 times, and the mixture was kneaded for 3 to 4 hours to obtain BMC, and the BMC was injection-molded to use bagasse. It is characterized in that a fiber-reinforced plastic molded product is obtained. If the kneading time is shorter than 3 minutes, it is not enough to impregnate the liquid thermosetting resin into the bagasse, and if it is longer than 4 hours, the glass fiber will be damaged, so the thermosetting resin will penetrate the bagasse sufficiently. A range of 3 minutes to 4 hours is required. More preferably, it is 210 minutes.

【0008】[0008]

【作用】バガスは製糖工場における排出時では、束状の
形状をしているが、粉砕機で粉砕すると針状へと変化
し、この形状はガラス繊維と酷似している。このこと
は、混練の際バガスとガラス繊維とのなじみ、つまりガ
ラス繊維を絡ませるには有利なことを示している。一
方、1本1本のバガス断面は、電子顕微鏡で観察すると
ハニカム状になっており、その空洞部の占める割合は面
積比率で約75%であることが認められる。従って、バ
ガスのハニカム状の空洞部に熱硬化性樹脂をどのように
浸透させ、その後硬化させるかがポイントである。事
実、引張強度の高い成形材と低い成形材の破面の状態を
電子顕微鏡で観察すると、強度の低い場合は、バガス繊
維とガラス繊維が個々に分散し、且つバガス内部の空洞
部はそのままの状態で存在しており、引張試験において
はその部分が欠陥部として作用したものと推察される。
これに対し、引張強度が高い場合は、バガス繊維とガラ
ス繊維のなじみが充分であり、且つバガス内部への熱硬
化性樹脂が充分に浸透していることが確認された。な
お、曲げ強度に対しては、バガス繊維が6〜10メッシ
ュの長繊維の場合と、28〜35メッシュの短繊維の場
合とはあまり変化は無かった。
[Action] Bagasse has a bundle shape when discharged at a sugar factory, but when crushed by a crusher, it changes into a needle shape, which is very similar to glass fiber. This indicates that the bagasse and the glass fibers are compatible with each other during kneading, that is, it is advantageous for entwining the glass fibers. On the other hand, each bagasse cross section has a honeycomb shape when observed with an electron microscope, and it is recognized that the ratio of the cavity portion is about 75% in area ratio. Therefore, the point is how to infiltrate the thermosetting resin into the honeycomb-shaped cavity of bagasse and then to cure it. In fact, when observing the state of the fracture surface of the molding material with high tensile strength and the molding material with low tensile strength with an electron microscope, when the strength is low, the bagasse fiber and the glass fiber are dispersed individually, and the cavity inside the bagasse remains the same. It exists in a state, and it is presumed that the portion acted as a defective portion in the tensile test.
On the other hand, when the tensile strength was high, it was confirmed that the bagasse fiber and the glass fiber were sufficiently compatible with each other and that the thermosetting resin had sufficiently penetrated into the bagasse. Regarding the bending strength, there was not much change between the case where the bagasse fibers were 6 to 10 mesh long fibers and the case where the bagasse fibers were 28 to 35 mesh short fibers.

【0009】バガスのハニカム状の空洞部に熱硬化性樹
脂を充分に浸透させるためには、熱硬化性樹脂はバガス
の空洞部を埋めるのに充分な量が必要であり、また、バ
ガスの空洞に熱硬化性樹脂が浸透し易いようなバガスの
長さが必要であり、さらに空洞部に充分浸透させるため
の混練時間が必要である。BMCの射出成形における成
形材の引張強度に影響を与える因子を検討するために、
射出圧力を一定にしておき、引張強度へ及ぼす成形条件
の因子として、混練時間、金型温度、金型保持時間の三
因子をとり、実験計画法によるF検定の結果、いずれの
因子も有意となり、それぞれの因子の寄与率は、混練時
間が67.30%と最も高く、金型の保持時間が18.
44%、金型温度が10.16%と続いている。また、
金型の温度と保持時間は互いに交互作用があり、BMC
におけるバガス含有量により、金型温度が低い場合は保
持時間を長く、逆に金型温度が高い場合には保持時間を
短くすることが強度に対して有効である。
In order to allow the thermosetting resin to sufficiently penetrate into the honeycomb-shaped cavity of the bagasse, the thermosetting resin needs to be in a sufficient amount to fill the cavity of the bagasse, and the cavity of the bagasse. It is necessary to have a length of bagasse so that the thermosetting resin can easily permeate thereinto, and further, a kneading time for sufficiently permeating into the cavity. In order to study the factors that affect the tensile strength of the molding material in BMC injection molding,
With the injection pressure kept constant, three factors, kneading time, mold temperature, and mold holding time, were taken as factors of the molding conditions that affect the tensile strength, and as a result of the F-test by the experimental design method, all of the factors were significant. , The contribution rate of each factor is the highest, the kneading time is 67.30%, and the die holding time is 18.
44% and mold temperature continue to 10.16%. Also,
The mold temperature and holding time interact with each other, and BMC
It is effective for strength to shorten the holding time when the mold temperature is low and to shorten the holding time when the mold temperature is high, depending on the bagasse content in.

【0010】BCMにおいてバガスは充填材として、増
量材と粘性の調節作用があるが、ガラス繊維とのなじみ
易さの特性から成形材の強度の向上にも役立っており、
従来のFRPにおける充填材として炭酸カルシウムを使
用した場合よりも、強度の高いFRPが得られる。この
ことは、高価なガラス繊維の量を減少させることを可能
とするものであり、FRPのコストを低減させることが
できることを意味する。又は、バガスは植物繊維であ
り、軽量であるから従来よりも軽量のFRPが得られ
る。
In BCM, bagasse has a bulking material and a viscosity adjusting action as a filler, but it is also useful for improving the strength of the molding material due to the property of easy compatibility with glass fiber,
FRP having higher strength can be obtained as compared with the case where calcium carbonate is used as the filler in the conventional FRP. This means that the amount of expensive glass fiber can be reduced, and the cost of FRP can be reduced. Alternatively, since bagasse is a plant fiber and is light in weight, a lighter weight FRP than before can be obtained.

【0011】[0011]

【実施例】以下の実施例では、原料成分は、不飽和ポリ
エステル、ガラス繊維、バガス、を主成分とし、触媒と
してバーチブルZ、滑剤としてステアリン酸亜鉛を用い
た。上記原料成分を双腕型のニーダを使用して、まず不
飽和ポリエステルに触媒を添加して5分間、次に滑剤を
添加して5分間、さらに充填剤を添加して10分間、最
後にガラス繊維を徐々に添加し、その後30分〜270
分の範囲で混練を行って、BCMを作製した。なお、成
分の配合比、バガスの粗さ、混練時間、射出条件は種々
変化させた。以下の実施例では、バガスと不飽和ポリエ
ステルとの配合比、バガスの形状(繊維長さ)、混練時
間が引張強度に及ぼす影響を調べた。
EXAMPLES In the following examples, the raw material components were unsaturated polyester, glass fiber and bagasse as the main components, Vitable Z as the catalyst and zinc stearate as the lubricant. Using a double-arm kneader for the above raw materials, a catalyst is first added to unsaturated polyester for 5 minutes, then a lubricant is added for 5 minutes, a filler is added for 10 minutes, and finally a glass is added. Fiber is gradually added, then 30 minutes to 270
Kneading was performed in the range of minutes to produce BCM. The composition ratio of the components, the roughness of bagasse, the kneading time, and the injection conditions were variously changed. In the following examples, the effects of the blending ratio of bagasse and unsaturated polyester, the shape of the bagasse (fiber length), and the kneading time on the tensile strength were investigated.

【0012】バガスと不飽和ポリエステルとの配合比の影響 本発明ではバガスを充填材として使用しているが、バガ
スが強度に対してどのような影響を及ぼしているかを知
るために、ガラス繊維及びその他の触媒や滑剤を一定に
して、不飽和ポリエステルとバガスの割合を次の実施例
1〜2及び比較例1のように変え、得られた成形片の引
張強度を測定した。その結果を表1及び図1に示す。な
お、実施例1〜3とも混練時間180分、金型温度20
0℃、射出圧力7.84MPa、保持時間3分で射出成形
した。
Effect of Blending Ratio of Bagasse and Unsaturated Polyester Bagasse is used as a filler in the present invention. In order to know what effect bagasse has on strength, glass fiber and With the other catalysts and lubricants kept constant, the ratios of unsaturated polyester and bagasse were changed as in the following Examples 1-2 and Comparative Example 1, and the tensile strength of the obtained molded pieces was measured. The results are shown in Table 1 and FIG. In addition, in each of Examples 1 to 3, the kneading time was 180 minutes, and the mold temperature was 20.
Injection molding was carried out at 0 ° C., injection pressure of 7.84 MPa and holding time of 3 minutes.

【表1】 UP:不飽和ポリエステル GF:ガラス繊維
B:バガス PBZ:パーチブルZ SA:ステアリン酸亜鉛 その結果、バガス繊維が増加するに従って強度は増加
し、実施例2の不飽和ポリエステル/バガスが3.04
の場合が最も高い強度を示すが、その後は比較例1に示
すように引張強度は減少している。これはバガスが不飽
和ポリエステルに比較して量が多すぎると樹脂が不足
し、充分浸透しないため、強度低下を招くものと思われ
る。また、バガス繊維が少ない場合は、BMCの粘性が
低下し、成形材にバリの発生が多くなり品質が悪かった
が、バガス繊維が多くなると不飽和ポリエステルがバガ
ス繊維に充分濡れしかも含浸するため、良好な粘性とな
り良好な成形材が得られる。バガス量が23%の実施例
ではBMCは定性的には糸を引いたような粘性を示し、
最も良好な状態を示した。しかし、比較例1のように2
3%を過ぎると逆にバガス繊維に対し不飽和ポリエステ
ルが不足し、手で触るとバサバサしている状態になっ
た。
[Table 1] UP: Unsaturated polyester GF: Glass fiber
B: bagasse PBZ: reachable Z SA: zinc stearate As a result, the strength increased as the number of bagasse fibers increased, and the unsaturated polyester / bagasse of Example 2 was 3.04.
In the case of No. 1, the highest strength is shown, but thereafter, the tensile strength is decreased as shown in Comparative Example 1. It is considered that when the amount of bagasse is too large as compared with the unsaturated polyester, the resin is insufficient and the resin does not sufficiently permeate, resulting in a decrease in strength. Further, when the bagasse fiber is small, the viscosity of the BMC is lowered and the molding material has many burrs, resulting in poor quality. However, when the bagasse fiber is large, the unsaturated polyester is sufficiently wetted and impregnated with the bagasse fiber. Good viscosity and good molding material can be obtained. In the example in which the amount of bagasse was 23%, BMC qualitatively showed a string-like viscosity,
It showed the best condition. However, as in Comparative Example 1, 2
On the contrary, when it exceeded 3%, the unsaturated polyester was insufficient for the bagasse fiber, and when it was touched by the hand, it became dry.

【0013】バカスの形状の影響 次に、バガスの形状が強度に及ぼす影響を調べるため
に、粉砕されたバガスを自動ふるい機によって種々のメ
ッシュに分類した。その結果、メッシュ#48を境にし
て、粉砕さたバガスの形状は繊維質と粉末とに大きく分
けることができ、#48から#200を粉末バガス(繊
維長さ0.30mm以下)とし、#6から#35までを繊
維バガス(0.81mm以上)とし、それぞれのバガスの
形状に着目して、メッシュの相違する種々のバガスを使
用して、不飽和ポリエステル80.7%、ガラス繊維
6.1%、バガス12.3%、同一配合比及び同一成形
条件で成形し、その成形材の引張強度の試験を行った。
その結果を図2に示す。図から明らかなように、粉末バ
ガス及び繊維バガスにおけるそれぞれの引張強さは、図
示の範囲で変動し、その中間値は、繊維バガスは粉末バ
ガスの約2倍の強度を示すことが確認された。これは、
充填密度から考えると、粉末バガスが高いと思われる
が、直接的には強度向上に関係あるのは、ガラス繊維で
あることから、繊維バガスはガラス繊維となじみあるい
は絡みに相互作用があり、ガラス繊維の固定に寄与して
いるためと思われる。これに対し、粉末バガスでは繊維
長さが0.3mm以下と非常に細かいため、バガスの針状
の形状特性が発揮されず、粒状の挙動を示したものと思
われる。
Influence of Bagasse Shape Next, in order to investigate the influence of the shape of bagasse on the strength, the crushed bagasse was classified into various meshes by an automatic sieving machine. As a result, the shape of the crushed bagasse can be broadly divided into fibrous material and powder with the mesh # 48 as a boundary, and # 48 to # 200 are powdered bagasse (fiber length is 0.30 mm or less). 6 to # 35 are used as fiber bagasse (0.81 mm or more), paying attention to the shape of each bagasse, various bagasses having different meshes are used, and unsaturated polyester 80.7%, glass fiber 6. 1%, bagasse 12.3%, the same compounding ratio and the same molding conditions were used for molding, and the tensile strength of the molded material was tested.
The result is shown in FIG. As is clear from the figure, the tensile strength of each of the powder bagasse and the fiber bagasse varied within the range shown in the figure, and the intermediate value was confirmed to indicate that the fiber bagasse exhibits about twice the strength of the powder bagasse. . this is,
Considering the packing density, it seems that the powder bagasse is high, but since the glass fiber is directly related to the strength improvement, the fiber bagasse interacts with the glass fiber in a familiar or entangled manner, This is probably because it contributes to the fixation of fibers. On the other hand, the powdered bagasse has a very fine fiber length of 0.3 mm or less, and thus the needle-like shape characteristic of bagasse is not exhibited, and it is considered that the powdered bagasse exhibits a granular behavior.

【0014】以上のように、使用するバガスは、繊維バ
ガスが望ましいことが明らかになったが、さらに繊維バ
ガスの繊維長さの最適値を知るために、バガスの繊維長
さを#28〜#20までを短繊維(平均長さ約2.1m
m)、#14〜#20までを中繊維(平均長さ約5.3m
m)、及び#6〜#10までを長繊維(平均長さ10.8m
m)の3グループに分けて、それぞれ同一配合比(主成分
UP:65.5Wt%、B:23.0Wt%、GF:10.0
Wt%、)及び同一成形条件でFRPを成形し、成形品の引
張強度を測定した。その結果を図3のグラフに示す。該
図より、繊維長さが短くなるにつれ、引張強度が強くな
る傾向にある。これは、長繊維になるにつれて不飽和ポ
リエステルがバガス内部に浸透するのが難しく、空洞部
がいくらか残るため強度低下を招くと思われる。それに
対し、短繊維になると不飽和ポリエステルは内部まで充
分に浸透し、且つガラス繊維を絡ませるのに効果的な役
割を果たしているものと思われる。即ち、混練後のガラ
ス繊維の長さは1.8mm程度になっていることから、ガ
ラス繊維とバガスの短繊維の長さはほぼ等しくなってお
り、混練のさいガラス繊維にバガスが絡み付くのに効果
があると思われる。
As described above, it has been clarified that the fiber bagasse is preferably used as the bagasse to be used, but in order to know the optimum value of the fiber length of the fiber bagasse, the fiber length of bagasse is # 28 to #. Short fibers up to 20 (average length about 2.1 m
m), # 14 to # 20 are medium fibers (average length of about 5.3 m
m) and long fibers from # 6 to # 10 (average length 10.8 m
m) and divided into three groups, each having the same mixing ratio (main component UP: 65.5 Wt%, B: 23.0 Wt%, GF: 10.0).
Wt%,) and FRP were molded under the same molding conditions, and the tensile strength of the molded product was measured. The results are shown in the graph of FIG. From the figure, as the fiber length becomes shorter, the tensile strength tends to become stronger. This is because it is difficult for the unsaturated polyester to permeate into the bagasse as the fiber becomes longer, and some hollow portions remain, which causes a decrease in strength. On the other hand, when the short fibers are used, it is considered that the unsaturated polyester sufficiently penetrates to the inside and also plays an effective role in entangling the glass fibers. That is, since the length of the glass fiber after kneading is about 1.8 mm, the length of the glass fiber and the short fiber of bagasse are almost the same, and even if bagasse is entangled with the glass fiber during kneading. It seems to be effective.

【0015】混練時間の影響 次に、混練時間が強度に及ぼす影響を調べる為に、混練
時間を変えて実施した。射出成形はプランジャータイプ
の横型の射出成形機を試作し、BCMの成形を行った。
成形条件は射出圧力が5.9〜19.6MPa、金型温
度は100〜200℃、保持時間は3〜15分の範囲で
行った。混練時間が引張強度に及ぼす影響は、例えば材
料の配合比を不飽和ポリエステル65.0wt%、ガラス
繊維12.0wt%、バガス21.0wt%、バーブチルZ
0.5wt%、それにステアリン酸亜鉛1.0wt%にして、
混練時間と引張強度との関係を調べた。その結果、混練
時間が長くなるに従って、成形材の引張強度は高くな
り、何れの成形圧力の場合でも混練時間が210分でピ
ーク値を取るがその後は減少した。これは、バガス内部
に液状の不飽和ポリエステルを含浸させるのに充分な時
間が必要であることを示し、さらにガラス繊維との濡れ
性や親和性等が関係していることも示している。しかし
ながら、240分混練した場合は成形材の強度は低下し
た。これは混練し過ぎてガラス繊維が破損したためと考
えられる。
[0015] The kneading time effect now, in order to examine the effect of kneading period of time is on strength, was carried out by changing the kneading time. For injection molding, a plunger type horizontal injection molding machine was prototyped and BCM molding was performed.
The molding conditions were such that the injection pressure was 5.9 to 19.6 MPa, the mold temperature was 100 to 200 ° C., and the holding time was 3 to 15 minutes. The influence of the kneading time on the tensile strength depends on, for example, the mixing ratio of the materials such as unsaturated polyester 65.0 wt%, glass fiber 12.0 wt%, bagasse 21.0 wt% and barbutyl Z.
0.5wt% and zinc stearate 1.0wt%,
The relationship between kneading time and tensile strength was investigated. As a result, as the kneading time became longer, the tensile strength of the molding material became higher, and at any molding pressure, the kneading time had a peak value at 210 minutes, but decreased thereafter. This indicates that sufficient time is required to impregnate the bagasse inside with the liquid unsaturated polyester, and further shows that wettability with glass fiber, affinity, and the like are related. However, when the mixture was kneaded for 240 minutes, the strength of the molding material decreased. It is considered that this is because the glass fibers were damaged due to excessive kneading.

【0016】次に、以上のようにして得られた充填材と
してバガスを用いた本発明に係るBCMと、充填材とし
て炭酸カルシウムを用いた従来のBCMとの機械的性質
を比較する。従来のBMC(炭酸カルシウム60.0Wt
%、不飽和ポリエステル28.4Wt%、ガラス繊維10Wt
%)と、該従来例とガラス繊維を同じ割合配合した図3
に示す中繊維バガスを用いた本発明の実施例に係るBM
C(23.0Wt%、不飽和ポリエステル65.5Wt%、ガ
ラス繊維10Wt%)との機械的性質を比較すると表2に
示すようになった。
Next, the mechanical properties of the BCM according to the present invention using bagasse as the filler thus obtained and the conventional BCM using calcium carbonate as the filler will be compared. Conventional BMC (calcium carbonate 60.0Wt
%, Unsaturated polyester 28.4 Wt%, glass fiber 10 Wt
%) And the glass fiber in the same proportion as in the conventional example are mixed in FIG.
BM according to an embodiment of the present invention using the medium fiber bagasse shown in FIG.
Table 2 shows a comparison of the mechanical properties with C (23.0 wt%, unsaturated polyester 65.5 wt%, glass fiber 10 wt%).

【表2】 表2から明らかなように、強化材としてのガラス繊維の
配合量は同じであっても、バガスを充填材として用いた
本実施例は、炭酸カルシウムを充填材として用いた従来
のBMCと比較して、比重が小さくて軽く、且つ引張強
さ及びロックウエル硬さが共に優れ、しかも耐薬品性に
も優れ、従来と比べ機械的性質が極めて良好なBMCが
得られることが確認できた。
[Table 2] As is clear from Table 2, this example using bagasse as the filler, compared with the conventional BMC using calcium carbonate as the filler, even though the amount of glass fiber as the reinforcing material was the same. It was confirmed that a BMC having a small specific gravity and lightness, excellent tensile strength and Rockwell hardness, excellent chemical resistance, and excellent mechanical properties as compared with conventional ones can be obtained.

【0017】[0017]

【発明の効果】以上のように本発明によれば、バガスを
利用して、従来のBMCの射出成形FRPに比べて強度
は変わらないか又は向上し、しかも従来の充填材に炭酸
カルシウムを採用しているものに比べて比重が小さくて
軽く、且つ靱性に優れたFRPが得られる。そして、砂
糖きびの搾り滓であるバガスを利用するので、低コスト
のFRPが得られ、従来主として燃料として利用されて
いたバガスの高度有効利用を図ることができる。また、
射出成形できるので、金型次第で複雑な形状も成形加工
が可能であり、多品種少量又は変量生産にも対応でき、
付加価値の高い工業製品を得ることができる。
As described above, according to the present invention, by utilizing bagasse, the strength is not changed or improved as compared with the conventional injection-molded FRP of BMC, and calcium carbonate is used as the conventional filler. It is possible to obtain an FRP having a smaller specific gravity and lighter weight than that of the conventional ones and excellent toughness. Further, since bagasse, which is a slag of sugar cane, is used, a low-cost FRP can be obtained, and highly efficient use of bagasse, which has been mainly used as a fuel in the past, can be achieved. Also,
Since it can be injection-molded, complex shapes can be molded depending on the mold, and it is possible to handle high-mix low-volume or variable-volume production.
Industrial products with high added value can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】バガスの配合率と引張強度の関係を表すグラフ
である。
FIG. 1 is a graph showing the relationship between the blending ratio of bagasse and tensile strength.

【図2】バガスの形状と引張強度の関係を表すグラフで
ある。
FIG. 2 is a graph showing the relationship between the shape of bagasse and tensile strength.

【図3】繊維バガスの長さと引張強度の関係を表すグラ
フである。
FIG. 3 is a graph showing the relationship between the length of fiber bagasse and the tensile strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08K 7/14 KKF 7242−4J C08L 67/06 MSJ 8933−4J 97/02 LSW 7415−4J // B29K 67:00 105:06 C08L 67:00 8933−4J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C08K 7/14 KKF 7242-4J C08L 67/06 MSJ 8933-4J 97/02 LSW 7415-4J // B29K 67:00 105: 06 C08L 67:00 8933-4J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂、ガラス繊維、バガスより
主としてなり、前記熱硬化性樹脂とバガスとの重量割合
がバガス1に対して熱硬化性樹脂が2倍以上、望ましく
は約3倍であることを特徴とするバガスを用いた繊維強
化プラスチック材。
1. A thermosetting resin, glass fiber, and bagasse as a main component, wherein the weight ratio of the thermosetting resin to bagasse is 2 times or more, preferably about 3 times, the bagasse. A fiber-reinforced plastic material using bagasse, which is characterized by being present.
【請求項2】 前記熱硬化性樹脂が不飽和ポリエステル
である請求項1記載の繊維強化プラスチック。
2. The fiber reinforced plastic according to claim 1, wherein the thermosetting resin is an unsaturated polyester.
【請求項3】 前記バガスが長さ0.3mm〜20mmの範
囲に破砕された繊維状バガスである請求項1又は2記載
のバガスを用いた繊維強化プラスチック材。
3. The fiber-reinforced plastic material using bagasse according to claim 1 or 2, wherein the bagasse is fibrous bagasse crushed to a length of 0.3 mm to 20 mm.
【請求項4】 熱硬化性樹脂、ガラス繊維、バガスより
主としてなり、前記熱硬化性樹脂とバガスとの重量割合
がバガス1に対して熱硬化性樹脂が2〜7倍、望ましく
は約3倍の範囲となるように各成分を配合して、3分〜
4時間混練してBMCを得、該BMCを射出成形するこ
とにより、バガスを用いた繊維強化プラスチック成形品
を得ることを特徴とする繊維強化プラスチック材の製造
方法。
4. A thermosetting resin, glass fiber, and bagasse as a main component, wherein the weight ratio of the thermosetting resin to bagasse is 2 to 7 times, preferably about 3 times as much as 1 bagasse. Add each component to the range of 3 to 3 minutes
A method for producing a fiber-reinforced plastic material, which comprises kneading for 4 hours to obtain BMC, and injection-molding the BMC to obtain a fiber-reinforced plastic molded product using bagasse.
JP10379193A 1993-04-07 1993-04-07 Fiber reinforced plastic material made by using bagasse and production thereof Pending JPH06287321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10379193A JPH06287321A (en) 1993-04-07 1993-04-07 Fiber reinforced plastic material made by using bagasse and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10379193A JPH06287321A (en) 1993-04-07 1993-04-07 Fiber reinforced plastic material made by using bagasse and production thereof

Publications (1)

Publication Number Publication Date
JPH06287321A true JPH06287321A (en) 1994-10-11

Family

ID=14363229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10379193A Pending JPH06287321A (en) 1993-04-07 1993-04-07 Fiber reinforced plastic material made by using bagasse and production thereof

Country Status (1)

Country Link
JP (1) JPH06287321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084700A (en) * 2005-09-22 2007-04-05 Showa Highpolymer Co Ltd Thermosetting resin composition
JP2012158164A (en) * 2011-02-01 2012-08-23 Univ Of Ryukyus Fiber-reinforced complex using sugar cane bagasse fibers
JP2013068305A (en) * 2011-09-26 2013-04-18 Panasonic Corp Rolling bearing and electric motor with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084700A (en) * 2005-09-22 2007-04-05 Showa Highpolymer Co Ltd Thermosetting resin composition
JP2012158164A (en) * 2011-02-01 2012-08-23 Univ Of Ryukyus Fiber-reinforced complex using sugar cane bagasse fibers
JP2013068305A (en) * 2011-09-26 2013-04-18 Panasonic Corp Rolling bearing and electric motor with the same

Similar Documents

Publication Publication Date Title
EP0319589B1 (en) Thermoplastic composite material reinforced with hemp fibers
US5120776A (en) Process for chemical treatment of discontinuous cellulosic fibers and composites of polyethylene and treated fibers
Rozman et al. The effect of compounding techniques on the mechanical properties of oil palm empty fruit bunch–polypropylene composites
DE60125396T2 (en) SHAPED SOFT ELASTOMER / HARD POLYESTER COMPOSITION WITH SHIELDING INSULATING
CA2208344C (en) Process for the production of composites of co-mingled thermoset resin-bonded wood waste blended with thermoplastic polymers
Chtourou et al. Reinforcement of recycled polyolefins with wood fibers
EP2028235B1 (en) Molded article and process for producing the same
Sherwani et al. Physical, mechanical and morphological properties of sugar palm fiber reinforced polylactic acid composites
Shibata et al. Effects of injection temperature on mechanical properties of bagasse/polypropylene injection molding composites
US20150291784A1 (en) Composite material containing renewable raw materials and method for the production thereof
Mechraoui et al. The effect of fibre and coupling agent content on the mechanical properties of hemp/polypropylene composites
KR20170134485A (en) A composite material comprising at least one thermoplastic resin and filler particles
CN106967250B (en) Composition of long fiber reinforced thermoplastic molding material and use method thereof
Athijayamani et al. Mechanical Properties of Phenol Formaldehyde Hybrid Composites Reinforced with Natural Cellulose Fibers.
EP0317628B1 (en) Fiber-reinforced thermosetting resin molding material and process for its production
Arzondo et al. Injection molding of long sisal fiber–reinforced polypropylene: Effects of compatibilizer concentration and viscosity on fiber adhesion and thermal degradation
Clemons et al. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition
JPH06287321A (en) Fiber reinforced plastic material made by using bagasse and production thereof
EP2135894A1 (en) Biodegradable fibrous material composition
Chaitanya et al. Processing of lignocellulosic fiber-reinforced biodegradable composites
CN102532661A (en) Natural fiber filled polyethylene composite material and preparation method thereof
Garkhail et al. Thermoplastic composites based on biopolymers and natural fibres
JP2009096875A (en) Method for producing thermoplastic resin composition, and method for producing molded article
Mustapa et al. Preliminary study on the mechanical properties of polypropylene rice husk composites
Röhl et al. Wool fiber-reinforced thermoplastic polymers for injection molding and 3D-printing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020820