JPH06285596A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH06285596A
JPH06285596A JP9652693A JP9652693A JPH06285596A JP H06285596 A JPH06285596 A JP H06285596A JP 9652693 A JP9652693 A JP 9652693A JP 9652693 A JP9652693 A JP 9652693A JP H06285596 A JPH06285596 A JP H06285596A
Authority
JP
Japan
Prior art keywords
steel
casting
cast
mold
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9652693A
Other languages
Japanese (ja)
Inventor
Akifumi Seze
昌文 瀬々
Eiichi Takeuchi
栄一 竹内
Takanori Ishii
孝宣 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9652693A priority Critical patent/JPH06285596A/en
Publication of JPH06285596A publication Critical patent/JPH06285596A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the production cost by casting a steel while executing rolling reduction to unsolidified part in a strand of steel cast before changing the kind of steel in a mold in the thickness direction. CONSTITUTION:The molten steels having mutually different components are continuously cast. At this time, the unsolidified part 7 in the strand of the steel cast before changing the kind of steel in the mold 4 is cast while executing the rolling reduction to the part 7 with the rolling reduction rolls 6 in the thickness direction. Further, the casting is performed in the order of higher density of the molten steel. Further, one pair of magnetic 8 are arranged on faced wide surfaces in the casting mold 4 and DC magnetic flux in the direction crossing the thickness of the cast slab is given over the whole width of the wide surfaces to form the magnetic field zone by the DC magnetic flux in the casting direction in the mold 4. The molten steel is poured into the casting space at the upper side. In this way, the mix range of the component in the connected part can be reduced without damaging the productivity at the time of sequentially and continuously casting the different kinds of steels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼成分が互いに異な
る複数の鋼種を連続的に鋳造する際に、成分が異なる鋼
種の間の鋳片内成分混合領域を最小限に抑える鋼の連続
鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when continuously casting a plurality of steel grades having different molten steel components, continuously casts steel in which the component mixing region in a slab between the steel grades having different components is minimized. It is about the method.

【0002】[0002]

【従来の技術】鋼の連続鋳造にあたり、生産性を向上さ
せ、かつ製造コストの低減を図るために、複数の溶鋼鍋
(溶製単位)の溶鋼を1つの鋳型内で連続的に鋳造する
いわゆる連々鋳が広く行われている。また、これをさら
に拡張して、溶鋼成分が互いに異なる複数の鋼種の連々
鋳、いわゆる異鋼種連々鋳が実施されている。
2. Description of the Related Art In continuous casting of steel, in order to improve productivity and reduce manufacturing cost, molten steel of a plurality of molten steel ladles (melting units) is continuously cast in a single mold. Casting is widely performed one after another. Further, by further expanding this, continuous casting of a plurality of steel types having different molten steel components, that is, so-called different casting of different steel types is being carried out.

【0003】異鋼種連々鋳を実施する際には、溶鋼鍋を
交換する時に鋳造した継目部で成分混合が生じ、その結
果、成分的に製造目的に合わない鋳片ができるため、継
目部の鋳片を格落ち処理やスクラップ処理し、あるい
は、継目部の前後鋳片を成分判定結果がでるまでの間圧
延を保留することが異鋼種連々鋳の大きな問題となって
いた。
When continuously casting different steel types, when the molten steel ladle is exchanged, components are mixed in the cast seam, and as a result, a slab that does not meet the purpose of production is formed. It has been a major problem in continuous casting of different steel types that the cast pieces are subjected to the grade-down treatment or the scrap treatment, or that the rolling pieces before and after the joint portion are held for rolling until the composition determination result is obtained.

【0004】そこで、異鋼種連々鋳を行う際に発生する
継目部の成分混合を低減する方法として、特開昭61−
1459号公報には、タンディッシュにおける前鍋の残
湯量をできるだけ少なくしたのちに後鍋の溶鋼を注入す
ることによってタンディッシュでの成分混合を防止する
方法、後鍋の溶鋼の鋳造を開始するときの鋳造速度を一
時的に低下させ、注湯ノズルからの吐出流が鋳型内溶鋼
中に浸入する深さを浅くして鋳型内での混合を防止する
方法、継目部で一旦鋳造を中止し、鋳型内に鉄板を遮蔽
板として挿入して鋳型内での混合を防止する方法、静磁
場を鋳型直下に形成し継目部で循環流を抑制しながら鋳
造する方法が記載されている。
Therefore, as a method for reducing the mixing of components in the joint portion which occurs when continuously casting different steel types, Japanese Patent Laid-Open No. 61-
Japanese Patent No. 1459 discloses a method of preventing the components from being mixed in the tundish by injecting molten steel in the rear pot after reducing the residual hot water in the front pot in the tundish as much as possible, and when starting casting of molten steel in the rear pot. Temporarily reduce the casting speed of, the method of preventing the mixing in the mold by shallowing the depth of the discharge flow from the pouring nozzle to penetrate into the molten steel in the mold, temporarily stop the casting at the seam, A method is described in which an iron plate is inserted as a shielding plate in the mold to prevent mixing in the mold, and a method in which a static magnetic field is formed immediately below the mold and casting is performed while suppressing the circulating flow at the joint.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ような従来の技術では、継目部毎に鋳造速度を低下させ
るため、連続鋳造自体の生産性を損ねるばかりか、これ
により鋳片の温度が部分的に低くなるため、鋳片の曲げ
・矯正等での連鋳機への機械的負荷が大きくなって設備
寿命が短くなること、熱間直送圧延のスケジュールに障
害を与えること、鉄板を鋳型内に挿入するために極めて
危険な作業を伴うこと等の問題があった。
However, in the prior art as described above, the casting speed is lowered at each joint, which not only impairs the productivity of continuous casting itself, but also causes the temperature of the slab to partially change. As the mechanical load on the continuous casting machine for bending and straightening the slab becomes large, the life of the equipment is shortened, the schedule of hot direct rolling is impaired, and the iron plate is placed inside the mold. There was a problem that it involved extremely dangerous work for inserting into the.

【0006】さらに、異鋼種連々鋳時の継目部における
成分混合領域を必ずしも満足のいく程度にまで減少させ
ているとはいえず、得られた鋳片中の格落ち部分の長さ
あるいは屑化長さの判定が困難であり、これを補うため
継目部前後の鋳片に対して成分分析による確認を余儀な
くされていた。したがって、圧延のスケジュールを乱す
のみならず、一時的な在庫量の拡大を招く等の問題もあ
った。
Furthermore, it cannot be said that the component mixing region at the joint portion during continuous casting of different steel types is not necessarily reduced to a satisfactory degree, and the length or the scrap of the disqualified portion in the obtained slab is reduced. It was difficult to determine the length, and in order to compensate for this, it was inevitable to confirm the slabs before and after the joint by component analysis. Therefore, there is a problem that not only the rolling schedule is disturbed, but also the stock amount is temporarily increased.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。
The gist of the present invention is as follows.

【0008】 溶鋼成分が互いに異なる鋼を連続的に
鋳造するにあたり、鋳型内で鋼種変更が行われる以前に
鋳造した鋼のストランド内未凝固部を厚み方向に圧下し
ながら鋳造することを特徴とする鋼の連続鋳造方法。
When continuously casting steels having different molten steel components, it is characterized in that the unsolidified portion in the strand of the cast steel is cast while being pressed in the thickness direction before the steel type is changed in the mold. Continuous casting method for steel.

【0009】 溶鋼成分が互いに異なる鋼を連続的に
鋳造するにあたり、溶鋼密度の大きい鋼種から小さい鋼
種へと順に鋳造し、鋳型内で鋼種変更が行われる以前に
鋳造した溶鋼密度の大きい鋼のストランド内未凝固部を
厚み方向に圧下しながら鋳造することを特徴とする鋼の
連続鋳造方法。
When continuously casting steels having different molten steel components, the steels having a high molten steel density are cast in order from a steel type having a high molten steel density to a steel type having a low molten steel density and cast before the steel type is changed in the mold. A continuous casting method for steel, which comprises casting while unpressurizing an inner unsolidified portion in a thickness direction.

【0010】 溶鋼成分が互いに異なる鋼を連続的に
鋳造するにあたり、鋳型内の対向する広面またはその後
方に一対の磁石を配設し、鋳片の厚みを横切る方向に直
流磁束を広面全幅に亙って付与して鋳型内鋳造方向に該
直流磁束による静磁場帯を形成し、その上側鋳造空間に
溶鋼を注入して溶鋼密度の大きい鋼種から小さい鋼種へ
と順に鋳造し、鋳型内で鋼種変更が行われる以前に鋳造
した溶鋼密度の大きい鋼のストランド内未凝固部を厚み
方向に圧下しながら鋳造することを特徴とする鋼の連続
鋳造方法。
In continuously casting steels having different molten steel components, a pair of magnets are arranged in a wide surface facing each other in the mold or at the rear of the wide surfaces, and a direct current magnetic flux is spread over the wide surface in the direction crossing the thickness of the slab. To form a static magnetic field band by the direct current magnetic flux in the casting direction in the mold, inject molten steel into the upper casting space and cast in order from a steel type with a high molten steel density to a steel type with a small molten steel density, and change the steel type in the mold The continuous casting method for steel, characterized in that the unsolidified portion in the strand of the steel having a high molten steel density cast before the casting is cast while pressing in the thickness direction.

【0011】[0011]

【作用】以下、本発明の作用を詳細に説明する。The function of the present invention will be described in detail below.

【0012】従来の技術における前記問題を解決するた
めには、異鋼種連々鋳の際の成分混合に及ぼす要因のう
ち、主に以下の3つの要因を制御することが重要であ
る。
In order to solve the above problems in the prior art, it is important to control mainly the following three factors among the factors affecting the mixing of components during continuous casting of different steel types.

【0013】まず、異鋼種連々鋳時の鋳型内での成分混
合に最も大きな影響を及ぼす要因は、浸漬ノズルからの
吐出溶鋼のストランドプール内下方への浸入とこれにと
もなうマクロ的な対流混合であると考えられる。このマ
クロ的対流混合を防止する手段として、従来は鋳造を一
旦停止し、鋳型内に鉄板を遮蔽板として挿入すること
で、鋳型内での鋼種変更後(後鍋)の溶鋼のストランド
プール下方への浸入を防止し、鋼種変更前(前鍋)の溶
鋼との混合を最小化していたが、前記のように鉄板挿入
作業にともなう問題が付随的に生じる。
First, the factors that have the greatest influence on the mixing of the components in the mold during continuous casting of different steel types are the infiltration of molten steel discharged from the dipping nozzle into the lower part of the strand pool and the accompanying macroscopic convective mixing. It is believed that there is. As a means to prevent this macroscopic convective mixing, conventionally, casting was temporarily stopped and an iron plate was inserted into the mold as a shielding plate, so that the steel was moved downwards in the strand pool of molten steel after the steel type was changed in the mold (post pot). However, the mixing with the molten steel before the steel type change (front ladle) was minimized, but as described above, the problems associated with the iron plate insertion work occur incidentally.

【0014】そこで、この問題を解決するため、図1,
2に示すように鋳型4内の対向する広面またはその後方
に一対の磁石8を配設し、鋳片の厚みを横切る方向に直
流磁束を広面全幅に亙って付与することで、鋳型内鋳造
方向に直流磁束による静磁場帯2を形成し、その上側鋳
造空間に溶鋼を注入することとした。表1に、この方法
で静磁場を付与した場合の浸漬ノズルからの吐出溶鋼の
ストランドプール内下方への浸入深さの低減効果を示す
が、静磁場の付与により浸入深さは大幅に短縮されるこ
とがわかる。最も効率的に作用した場合は、浸入深さは
静磁場帯の位置にほぼ対応する深さまで短くなる。これ
は、静磁場によりノズルからの吐出溶鋼流にローレンツ
力によるブレーキ効果が働くためで、静磁場が従来の鉄
板による遮蔽効果と同等の効果をもたらすことを意味す
る。また、この方法では鋼種変更時の鋳造速度の低減は
不要であり、従来の鉄板挿入法での問題は解消される。
Therefore, in order to solve this problem, FIG.
As shown in FIG. 2, a pair of magnets 8 are arranged in the mold 4 on opposite sides or behind them, and a DC magnetic flux is applied across the width of the wide surface in a direction that traverses the thickness of the slab. The static magnetic field zone 2 is formed by the direct current magnetic flux in the direction, and molten steel is injected into the upper casting space. Table 1 shows the effect of reducing the depth of penetration of molten steel discharged from the dipping nozzle into the strand pool when a static magnetic field is applied by this method. However, the penetration depth is significantly shortened by the application of a static magnetic field. I understand that When operated most efficiently, the penetration depth is reduced to a depth that approximately corresponds to the position of the static magnetic field band. This is because the static magnetic field exerts a braking effect on the molten steel flow discharged from the nozzle by the Lorentz force, which means that the static magnetic field provides an effect equivalent to the shielding effect by the conventional iron plate. Further, with this method, it is not necessary to reduce the casting speed when changing the steel type, and the problems of the conventional iron plate insertion method are solved.

【0015】[0015]

【表1】 [Table 1]

【0016】つぎに、ストランドプール内での溶鋼の密
度差による対流混合の影響について、表2に静磁場によ
る成分混合域の短縮効果を調査した結果の継目部の前鍋
側の混合域長さを示した。前鍋の溶鋼密度が後鍋の溶鋼
密度よりも大きな(c)では、静磁場を付与しなかった
(a)と比較して成分混合域の大幅な低減効果が認めら
れるが、逆に小さな(b)では成分混合域はそれほど短
縮されず、前記静磁場の効果が十分に維持されないこと
がわかる。これは、鋼種変更位置が静磁場帯を通過した
後、すなわち鋳型下方のストランドプール内で密度差対
流による溶鋼の混合が生じ、静磁場の効果が十分に活か
されないためである。つまり、異鋼種連々鋳を実施する
場合には、溶鋼の物性とくに密度を考慮した鋳造順とす
ることが重要である。
Next, with respect to the effect of convective mixing due to the difference in the density of molten steel in the strand pool, Table 2 shows the results of investigating the effect of shortening the component mixing region by the static magnetic field. showed that. In the case where the molten steel density of the front ladle is higher than that of the rear ladle (c), a large reduction effect of the component mixing region is recognized as compared with (a) where a static magnetic field is not applied, but it is conversely small ( In b), it can be seen that the component mixing region is not shortened so much and the effect of the static magnetic field is not sufficiently maintained. This is because the molten steel is mixed by the density difference convection after the steel type changing position passes through the static magnetic field zone, that is, in the strand pool below the mold, and the effect of the static magnetic field is not fully utilized. In other words, when casting different steel types one after another, it is important to set the casting order in consideration of the physical properties of the molten steel, especially the density.

【0017】[0017]

【表2】 [Table 2]

【0018】さらに、密度差を考慮した鋳造順とし、継
目部で静磁場を付与し前記ストランドプール内での対流
混合を最小化した条件で鋳片の厚み方向および幅方向の
成分濃度分布を詳細に調査した結果を図3に模式的にま
とめた。鋳片の厚み方向および幅方向とも後鍋溶鋼が鋳
造方向に凹型に前鍋溶鋼側に浸入している。この凹部は
通常最終鋳造部に見られる収縮孔(引け巣)の体積とほ
ぼ同等であり、鋳型内での鋼種変更時に既に連鋳機内に
あるストランドプール内の未凝固溶鋼すなわち前鍋溶鋼
の凝固収縮の影響により、後鍋溶鋼が下方に引き込まれ
て形成されたものと推定される。
Furthermore, the component concentration distribution in the thickness direction and the width direction of the cast slab is detailed under the conditions that the casting order is set in consideration of the difference in density, and the static magnetic field is applied at the seam to minimize convective mixing in the strand pool. The results of the investigation are summarized in FIG. In both the thickness direction and width direction of the slab, the rear ladle molten steel penetrates into the front ladle molten steel side in a concave shape in the casting direction. This recess is almost the same as the volume of shrinkage holes (shrinkage cavities) usually found in the final casting part, and when the steel type in the mold is changed, the unsolidified molten steel in the strand pool already in the continuous casting machine, that is, the solidified molten steel in the front ladle It is presumed that the molten steel in the rear pan was drawn downward due to the effect of shrinkage.

【0019】鋼の場合、凝固収縮率(固相から液相に変
態するさいの体積変化率)は約4%であるので、ストラ
ンドプールの長さをLとすれば、前記凹部の深さΔLは
数1で表される。
In the case of steel, the solidification shrinkage rate (volume change rate when transforming from solid phase to liquid phase) is about 4%, so if the length of the strand pool is L, the depth ΔL of the recess is Is expressed by Equation 1.

【0020】[0020]

【数1】ΔL=0.04L ・・・[1][Formula 1] ΔL = 0.04L ... [1]

【0021】また、鋼の凝固厚みd(mm)は、一般に
凝固係数K(mm/min-0.5)と凝固開始からの時間
t(min)を用いて数2のように表される。
Further, the solidification thickness d (mm) of steel is generally expressed by the equation 2 using the solidification coefficient K (mm / min -0.5 ) and the time t (min) from the start of solidification.

【0022】[0022]

【数2】d=K√t ・・・[2]## EQU2 ## d = K√t ... [2]

【0023】したがって、鋳片厚みをD(mm)、鋳造
速度をVc(m/min)とすれば、数3が成り立つこ
とになる。
Therefore, assuming that the thickness of the cast piece is D (mm) and the casting speed is Vc (m / min), the following equation 3 is established.

【0024】[0024]

【数3】1/2D=K√(L/Vc) ・・・[3][Equation 3] 1 / 2D = K√ (L / Vc) ... [3]

【0025】これより、数4となる。From this, Equation 4 is obtained.

【0026】[0026]

【数4】L=Vc・(D/2K)2 ・・・[4][Formula 4] L = Vc · (D / 2K) 2・ ・ ・ [4]

【0027】すなわち、凝固係数Kは連鋳機に固有の値
をとり、K=25mm/min-0.5程度であるから、ス
トランドプール長さLは鋳片厚みDと鋳造速度Vcで一
義的に決まる。例えば、245mm厚のスラブを鋳造速
度1m/minで鋳造する場合、ストランドプール長さ
は[4]式よりL=24mと見積もられ、収縮長さは
[1]式よりΔL=0.96mと推定される。
That is, the solidification coefficient K takes a value peculiar to the continuous casting machine and is about K = 25 mm / min -0.5. Therefore , the strand pool length L is uniquely determined by the slab thickness D and the casting speed Vc. . For example, when casting a 245 mm thick slab at a casting speed of 1 m / min, the strand pool length is estimated to be L = 24 m from the equation [4], and the shrinkage length is ΔL = 0.96 m from the equation [1]. Presumed.

【0028】この凝固収縮による溶鋼の移動を防止する
方法としては、未凝固鋳片に対する厚み方向への軽圧下
が有効なことが知られており、軽圧下量としては鋳片の
凝固収縮に対応した量が最も望ましく、極端な過不足が
生じた場合には効果が十分に及ばない。図4は、異鋼種
連々鋳時に、前鍋側に相当する鋳片の凝固部を厚み方向
に圧下しながら鋳造したときの鋳片の成分分布を模式的
に示した図である。未凝固圧下により鋳片厚み方向およ
び幅方向の凹型の濃度分布が改善され、実質的な混合域
が短くなる。
As a method for preventing the movement of molten steel due to this solidification shrinkage, it is known that a light reduction in the thickness direction with respect to an unsolidified cast piece is effective, and the light reduction amount corresponds to the solidification shrinkage of the cast piece. The amount is most desirable, and the effect is not fully exerted when extreme excess or deficiency occurs. FIG. 4 is a diagram schematically showing the component distribution of a slab when it is cast while continuously casting different steel types while pressing the solidified portion of the slab corresponding to the front ladle side in the thickness direction. The unsolidified pressure improves the concave concentration distribution in the slab thickness direction and width direction, and shortens the substantial mixing region.

【0029】以上をまとめると、異鋼種連々鋳にあたり
成分混合域を低減するためには、ストランドプール内で
の対流混合の抑制と凝固収縮による溶鋼の移動を防止す
ることが重要である。
To summarize the above, in order to reduce the component mixing region in continuous casting of different steel types, it is important to suppress convective mixing in the strand pool and prevent molten steel from moving due to solidification shrinkage.

【0030】[0030]

【実施例】図1,2に示すように対向する広面の後方に
一対の磁石8を配設した鋳型4を有する連続鋳造装置を
用い、異鋼種連々鋳を実施した。
EXAMPLE As shown in FIGS. 1 and 2, continuous casting equipment having a mold 4 in which a pair of magnets 8 were arranged behind the opposing wide surfaces was used to continuously cast different steel types.

【0031】鋳型形状は245mm(厚)×1500m
m(幅)、鋳造速度は1.0m/minとした。静磁場
帯2の位置は鋳型4内メニスカスより450〜700m
mの範囲とし、直流磁束の強度は最大0.35テスラと
した。溶鋼はこの静磁場帯2の上側鋳造空間に注入し
た。
The mold shape is 245 mm (thickness) x 1500 m
The m (width) and the casting speed were 1.0 m / min. The position of the static magnetic field band 2 is 450 to 700 m from the meniscus in the mold 4.
The range of m was set, and the intensity of the DC magnetic flux was set to 0.35 tesla at maximum. Molten steel was poured into the upper casting space of the static magnetic field zone 2.

【0032】凝固収縮の補償として、図5に示すように
連続鋳造装置の鋳型4下に圧下ロール6による圧下機構
を付与し、鋳片を厚み方向に1mm/mで圧下しながら
鋳造した。
As a compensation for solidification shrinkage, as shown in FIG. 5, a reduction mechanism by a reduction roll 6 was provided below the mold 4 of the continuous casting apparatus, and the slab was cast while being pressed at 1 mm / m in the thickness direction.

【0033】鋳造後、得られたスラブ内の溶質濃度分布
を調査し、成分混合領域の長さを求めた。表3に鋳造条
件と成分混合領域の長さの関係を示す。本発明例では、
比較例に比べて成分混合領域の大幅な低減効果が得られ
た。
After casting, the solute concentration distribution in the obtained slab was investigated to determine the length of the component mixing region. Table 3 shows the relationship between the casting conditions and the length of the component mixing region. In the present invention example,
A large reduction effect of the component mixing region was obtained as compared with the comparative example.

【0034】[0034]

【表3】 注1)溶鋼密度差=前鍋溶鋼密度−後鍋溶鋼密度 注2)成分混合長さ:継目部の前鍋側の混合域長さ[Table 3] Note 1) Molten steel density difference = Front ladle molten steel density-Rear ladle molten steel density Note 2) Component mixing length: Mixing zone length on the front ladle side of the seam

【0035】[0035]

【発明の効果】本発明によれば、異鋼種連々鋳の際の継
目部の成分混合領域を生産性を損なわずに低減すること
ができ、製造コストの低減など効果は大きい。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reduce the component mixing region of the seam during continuous casting of different steel types without impairing the productivity, and it is possible to greatly reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型内鋳造方向に静磁場帯を付与する連続鋳造
装置の見取図である。
FIG. 1 is a schematic view of a continuous casting apparatus that applies a static magnetic field band in a casting direction in a mold.

【図2】鋳型内鋳造方向に静磁場帯を付与する連続鋳造
装置の鋳片幅方向の断面図である。
FIG. 2 is a sectional view in the width direction of a slab of a continuous casting device that applies a static magnetic field band in the casting direction in the mold.

【図3】異鋼種連々鋳時の前鍋溶鋼の凝固収縮による成
分混合を模式的に示す図である。なお、後鍋成分濃度>
前鍋成分濃度のときは実線が後鍋の下限保証濃度であ
り、破線が前鍋の上限保証濃度である。また、後鍋成分
濃度<前鍋成分濃度のときは実線が後鍋の上限保証濃度
であり、破線が前鍋の下限保証濃度である。
FIG. 3 is a diagram schematically showing component mixing due to solidification shrinkage of the front ladle molten steel during continuous casting of different steel types. In addition, rear pan component concentration>
In the case of the concentration of components in the front pot, the solid line is the lower limit guaranteed concentration of the rear pot, and the broken line is the upper limit guaranteed concentration of the front pot. Further, when the concentration of the rear pan component <the concentration of the front pan component, the solid line is the upper guaranteed concentration of the rear pan, and the broken line is the lower guaranteed concentration of the front pan.

【図4】異鋼種連々鋳時の前鍋溶鋼の凝固収縮を補償し
た場合の成分混合の低減を模式的に示す図である。な
お、後鍋成分濃度>前鍋成分濃度のときは実線が後鍋の
下限保証濃度であり、破線が前鍋の上限保証濃度であ
る。また、後鍋成分濃度<前鍋成分濃度のときは実線が
後鍋の上限保証濃度であり、破線が前鍋の下限保証濃度
である。
FIG. 4 is a diagram schematically showing reduction of component mixing when compensating for solidification shrinkage of molten steel in the front ladle during continuous casting of different steel types. When the concentration of rear pan component> the concentration of front pan component, the solid line is the lower guaranteed concentration of the rear pan, and the broken line is the upper guaranteed concentration of the front pan. Further, when the concentration of the rear pan component <the concentration of the front pan component, the solid line is the upper guaranteed concentration of the rear pan, and the broken line is the lower guaranteed concentration of the front pan.

【図5】実施例で使用した連続鋳造装置を示す図であ
る。
FIG. 5 is a diagram showing a continuous casting apparatus used in Examples.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル 2 静磁場帯 3 鋳型長辺 4 鋳型 5 整流化 6 圧下ロール 7 未凝固部 8 磁石 1 Immersion Nozzle 2 Static Magnetic Field Band 3 Long Side of Mold 4 Mold 5 Rectification 6 Rolling Roll 7 Unsolidified Part 8 Magnet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22D 27/09 A 7011−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B22D 27/09 A 7011-4E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼成分が互いに異なる鋼を連続的に鋳
造するにあたり、鋳型内で鋼種変更が行われる以前に鋳
造した鋼のストランド内未凝固部を厚み方向に圧下しな
がら鋳造することを特徴とする鋼の連続鋳造方法。
1. When continuously casting steels having different molten steel components, the unsolidified portion in the strand of the cast steel is cast while being pressed in the thickness direction before the steel type is changed in the mold. Continuous steel casting method.
【請求項2】 溶鋼成分が互いに異なる鋼を連続的に鋳
造するにあたり、溶鋼密度の大きい鋼種から小さい鋼種
へと順に鋳造し、鋳型内で鋼種変更が行われる以前に鋳
造した溶鋼密度の大きい鋼のストランド内未凝固部を厚
み方向に圧下しながら鋳造することを特徴とする鋼の連
続鋳造方法。
2. When continuously casting steels having different molten steel components, steels having a large molten steel density are cast in order from a steel having a high molten steel density, and steels having a high molten steel density cast before the steel grade is changed in the mold. The continuous casting method for steel, wherein the unsolidified portion in the strand is cast while being pressed in the thickness direction.
【請求項3】 溶鋼成分が互いに異なる鋼を連続的に鋳
造するにあたり、鋳型内の対向する広面またはその後方
に一対の磁石を配設し、鋳片の厚みを横切る方向に直流
磁束を広面全幅に亙って付与して鋳型内鋳造方向に該直
流磁束による静磁場帯を形成し、その上側鋳造空間に溶
鋼を注入して溶鋼密度の大きい鋼種から小さい鋼種へと
順に鋳造し、鋳型内で鋼種変更が行われる以前に鋳造し
た溶鋼密度の大きい鋼のストランド内未凝固部を厚み方
向に圧下しながら鋳造することを特徴とする鋼の連続鋳
造方法。
3. When continuously casting steels having different molten steel components, a pair of magnets are arranged in the mold opposite to each other or behind the wide surfaces, and a DC magnetic flux is wide across the width of the wide surface in a direction crossing the thickness of the cast piece. Applied to form a static magnetic field band by the DC magnetic flux in the casting direction in the mold, injecting molten steel into the upper casting space and casting in order from a steel type with a high molten steel density to a small steel type, in the mold A continuous casting method for steel, characterized in that the unsolidified portion in a strand of a steel having a high molten steel density cast before the steel type is changed is cast while being pressed in the thickness direction.
JP9652693A 1993-04-01 1993-04-01 Method for continuously casting steel Pending JPH06285596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9652693A JPH06285596A (en) 1993-04-01 1993-04-01 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9652693A JPH06285596A (en) 1993-04-01 1993-04-01 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH06285596A true JPH06285596A (en) 1994-10-11

Family

ID=14167589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9652693A Pending JPH06285596A (en) 1993-04-01 1993-04-01 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH06285596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247160A (en) * 2009-04-10 2010-11-04 Sumitomo Metal Ind Ltd Method for continuously casting steel and cast slab produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247160A (en) * 2009-04-10 2010-11-04 Sumitomo Metal Ind Ltd Method for continuously casting steel and cast slab produced by the method

Similar Documents

Publication Publication Date Title
US4010793A (en) Method for changing width of cast slabs during continuous casting
WO1996034709A1 (en) Casting steel strip
JPH0320295B2 (en)
JPH06285596A (en) Method for continuously casting steel
JP3237177B2 (en) Continuous casting method
JPH03155441A (en) Vertical continuous casting method and apparatus thereof
JP3380412B2 (en) Mold for continuous casting of molten steel
JP2898199B2 (en) Manufacturing method of continuous cast slab
JPS5945458B2 (en) How to expand slab width in continuous casting
JP2969579B2 (en) Steel continuous casting method
JPH0628790B2 (en) Continuous casting method
JP2979278B2 (en) Continuous casting method of molten metal with different components
JP2770691B2 (en) Steel continuous casting method
JPH11347701A (en) Continuous casting method and continuous caster
JPH1177259A (en) Method for continuously casting steel
JPH0839196A (en) Production of continuously cast slab
JPH04309436A (en) Continuous casting method for double layer cast billet
JP2000190058A (en) Light pressurizing method for cast piece
JPH0692022B2 (en) Light reduction method for continuous cast slab
JP3206426B2 (en) Continuous casting of ultra-low carbon steel
JPH05185186A (en) Method for continuously casting steel
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPH0577010A (en) Method for controlling segregation in continuously cast slab
JPH11342456A (en) Method of sequence casting of different grades with less component mixing area
JPH08224642A (en) Method of continuous casting for steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001010