JP2979278B2 - Continuous casting method of molten metal with different components - Google Patents

Continuous casting method of molten metal with different components

Info

Publication number
JP2979278B2
JP2979278B2 JP5120443A JP12044393A JP2979278B2 JP 2979278 B2 JP2979278 B2 JP 2979278B2 JP 5120443 A JP5120443 A JP 5120443A JP 12044393 A JP12044393 A JP 12044393A JP 2979278 B2 JP2979278 B2 JP 2979278B2
Authority
JP
Japan
Prior art keywords
molten metal
continuous casting
magnetic field
mold
different components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5120443A
Other languages
Japanese (ja)
Other versions
JPH06304718A (en
Inventor
寛 原田
栄一 竹内
敦 山中
健 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5120443A priority Critical patent/JP2979278B2/en
Publication of JPH06304718A publication Critical patent/JPH06304718A/en
Application granted granted Critical
Publication of JP2979278B2 publication Critical patent/JP2979278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属の連続鋳造に
おいて、鋳型内に鉄板等を挿入することなく、成分が異
なる溶融金属を連続して鋳造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting molten metal having different components without inserting an iron plate or the like into a mold in continuous casting of molten metal.

【0002】[0002]

【従来の技術】連続鋳造法において成分の異なる溶融金
属を連続して鋳造する際には、成分が変化する部位に仕
切板を挿入して溶融金属を遮断し、成分混合域を最小に
する方法が行われている。このような方法は鋳造を一時
的に中断し、人力あるいは機械により鋳型内に鉄板を挿
入した後、鋳造を再開することになる。
2. Description of the Related Art In a continuous casting method, when continuously casting molten metal having different components, a method of inserting a partition plate at a portion where the component changes to block the molten metal and thereby minimize a component mixing zone. Has been done. In such a method, the casting is temporarily interrupted, and the casting is restarted after the iron plate is inserted into the mold manually or by a machine.

【0003】[0003]

【発明が解決しようとする課題】この作業には、鋳型内
溶融スラグの除去作業が必要なこと、重量物の鉄板挿入
の取扱いが非常に危険なこと、作業性が非常に悪いこ
と、仕切板のコストがかかることなどの問題がある。ま
た、一時的に鋳造を中断するため、生産性の低下や鋳片
の表面性状及び内部品質の劣化を引き起こす可能性が高
いだけでなく、ストッパーあるいはスライディングノズ
ルを全閉し、注入流を一時的にストップさせるため、溶
融金属の温度が低い場合などは注入中断時ストッパーあ
るいはスライディングノズル近傍の溶鋼が凝固し、再度
鋳造を継続するのが困難となる等の問題がある。
This operation requires the removal of molten slag in the mold, the handling of inserting heavy iron plates is extremely dangerous, the workability is very poor, the partition plate There is a problem that costs are high. In addition, since the casting is temporarily interrupted, not only is there a high possibility that the productivity will decrease or the slab surface properties and internal quality will deteriorate, but also the stopper or sliding nozzle will be fully closed to temporarily stop the injection flow. When the temperature of the molten metal is low, there is a problem that the molten steel near the stopper or the sliding nozzle at the time of pouring is solidified and it becomes difficult to continue casting again.

【0004】そこで、本発明は、仕切板等を鋳型内に挿
入することなく、かつ鋳造の中断時間を最小にして成分
の異なる溶融金属の連続鋳造を可能とする方法を提供す
ることを目的としている。
Accordingly, an object of the present invention is to provide a method for continuously casting molten metals having different components without inserting a partition plate or the like into a mold and minimizing the interruption time of casting. I have.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、ある成
分の溶融金属の連続鋳造が終了してそれとは成分の異な
る溶融金属を続けて連続鋳造する際に、鋳型内の溶融金
属メニスカスよりも下方の位置に、幅方向の磁束密度分
布がその平均値に対して±15%以内のほぼ均一な磁束
密度分布を有する直流磁場を、鋳型の幅方向全体にわた
り鋳片厚さ方向に印加して直流磁場帯を形成し、同時に
ノズルからの溶融金属吐出流を磁力線に平行な方向に流
しながら、連続鋳造を中断することなく成分の異なる2
種類の溶融金属を続けて連続鋳造することを特徴とする
成分の異なる溶融金属の連続鋳造方法である。これによ
って直流磁場帯下側プールの水平断面における溶融金属
下降流の幅方向分布を均一化し、成分混合域長さを最小
にする。
SUMMARY OF THE INVENTION The gist of the present invention is that when continuous casting of a molten metal of a certain component is completed and continuous casting of a molten metal having a different component is performed, the molten metal meniscus in the mold is removed. A DC magnetic field having a substantially uniform magnetic flux density distribution whose magnetic flux density distribution in the width direction is within ± 15% of its average value is applied to the slab thickness direction over the entire width direction of the mold. To form a direct current magnetic field zone, and at the same time, while flowing the molten metal discharge flow from the nozzle in a direction parallel to the magnetic field lines, the components having different components without interrupting the continuous casting.
A continuous casting method for molten metals having different components, characterized by continuously casting molten metals of various types. Thereby, the widthwise distribution of the downflow of the molten metal in the horizontal section of the lower pool of the DC magnetic field band is made uniform, and the length of the component mixing zone is minimized.

【0006】[0006]

【作用】本発明は、鋳型の幅方向全体にわたってその幅
方向の磁束密度分布が平均値に対し±15%以内のほぼ
均一な磁束密度を有する直流磁場を厚み方向に加えて鋳
型内流動を制御する。
According to the present invention, the flow in the mold is controlled by applying a DC magnetic field having a substantially uniform magnetic flux density within ± 15% of the average value in the width direction over the entire width direction of the mold in the thickness direction. I do.

【0007】この方法において重要なノズル吐出方向の
影響を明らかにするため、実機の約1/2スケールに相
当する水銀を用いたモデル実験を行った。直流磁場は、
例えば図1に示すようにコの字型の鉄芯1の相対する位
置の一対のコイル2に直流電流を通じることによって得
られる。また、磁極3の幅を鋳型4の幅以上にすること
で幅方向に均一な磁束密度を有する直流磁場を得ること
ができる。磁束密度の高さ方向分布は、図2に示すよう
に、磁極の高さ方向中心位置で最大値をとる放物線状の
分布となる。また、磁極内では磁界の高さ方向中心での
磁束密度の80%以上の磁束密度が加えられる。
In order to clarify the influence of the nozzle discharge direction which is important in this method, a model experiment using mercury equivalent to about 1/2 scale of an actual machine was conducted. DC magnetic field
For example, as shown in FIG. 1, it is obtained by passing a direct current through a pair of coils 2 at opposite positions of a U-shaped iron core 1. Further, by setting the width of the magnetic pole 3 to be equal to or larger than the width of the mold 4, a DC magnetic field having a uniform magnetic flux density in the width direction can be obtained. As shown in FIG. 2, the distribution of the magnetic flux density in the height direction is a parabolic distribution having a maximum value at the center of the magnetic pole in the height direction. In the magnetic pole, a magnetic flux density of 80% or more of the magnetic flux density at the center of the magnetic field in the height direction is applied.

【0008】調査したノズル吐出流の方向と磁力線の方
向の関係を図3に、また浸漬ノズルと磁極との位置関係
を図4に示す。ここで、磁場位置は、どの条件でもノズ
ル吐出流が鋳型長辺あるいは鋳型短辺に衝突する位置よ
りも下側とした。その結果、磁極の高さ方向中心での磁
束密度の80%以上が加えられている領域(以下、磁場
帯と称する)よりも下方のプール水平断面での下降流分
布の均一度がノズル吐出方向により大きく異なることが
分かった。結果を表1に示す。ここで、均一とは、磁場
帯下方で循環流が形成されずに、プール水平断面内の下
降流速が全てノズル吐出流量をプール水平断面積でわっ
た値(鋳造速度に相当する)の3倍以内にはいることを
いう。
FIG. 3 shows the relationship between the direction of the nozzle discharge flow and the direction of the line of magnetic force, and FIG. 4 shows the positional relationship between the immersion nozzle and the magnetic pole. Here, the magnetic field position was below the position where the nozzle discharge flow collides with the long side or short side of the mold under any conditions. As a result, the uniformity of the downward flow distribution in the horizontal section of the pool below the region where the magnetic flux density at the center of the magnetic pole in the height direction is 80% or more (hereinafter referred to as the magnetic field zone) is determined by the nozzle discharge direction. It turned out to be very different. Table 1 shows the results. Here, the term “uniform” means that the circulating flow is not formed below the magnetic field zone, and the descending flow rate in the horizontal section of the pool is three times the value obtained by dividing the nozzle discharge flow rate by the pool horizontal sectional area (corresponding to the casting speed). It means that you are within.

【0009】[0009]

【表1】 [Table 1]

【0010】ノズル吐出方向が磁力線の方向と垂直な場
合と垂直+水平(4方向吐出)の場合、磁場帯下方での
下降流の水平断面内での分布は均一化されないが、ノズ
ル吐出流の方向を磁力線の方向と平行とすることで下降
流の分布を均一化することができることが分かった。
When the nozzle discharge direction is perpendicular to the direction of the line of magnetic force and in the case of vertical + horizontal (four-way discharge), the distribution of the descending flow below the magnetic field zone in the horizontal section is not uniform, but the nozzle discharge flow is not uniform. It was found that the distribution of the downflow can be made uniform by making the direction parallel to the direction of the magnetic field lines.

【0011】[0011]

【実施例】サイズが幅570mm×厚360mm、成分
(%)がC:0.13、Mn:1.40、Si:0.
2、P:0.018、S:0.005、Sol−Al:
0.025、残部Fe及び不可避的不純物からなる溶鋼
を鋳造し、その末期、すなわちタンディッシュ内の溶鋼
量が4t程度となった時、鋳造を停止することなく、引
き続き成分(%)がC:0.45、Mn:0.75、S
i:0.30、P:0.020、S:0.005、So
l−Al:0.025、残部Fe及び不可避的不純物か
らなる溶鋼をタンディッシュ内に注入し、鋳造を続け
た。鋳造条件及び結果を表2に示す。成分混合域の長さ
については、仕切り板を挿入しなかった場合に比べ、ノ
ズル吐出流の方向を磁力線の方向と平行とした場合に最
も小さくなった。一方、ノズル吐出流の方向と磁力線の
方向が垂直な場合と垂直+水平(4方向吐出)の場合、
成分混合域の長さは仕切板を挿入しない場合とほぼ同程
度で、磁場を加えた効果はあまり見られなかった。
EXAMPLE The size is 570 mm in width × 360 mm in thickness, the component (%) is C: 0.13, Mn: 1.40, Si: 0.
2, P: 0.018, S: 0.005, Sol-Al:
At the end of the process, that is, when the amount of molten steel in the tundish is about 4 t, the casting is not stopped and the component (%) is continuously changed to C: 0.025, with the balance being Fe and unavoidable impurities. 0.45, Mn: 0.75, S
i: 0.30, P: 0.020, S: 0.005, So
1-Al: 0.025, molten steel consisting of the balance Fe and inevitable impurities was injected into the tundish, and casting was continued. Table 2 shows the casting conditions and results. The length of the component mixing area was smallest when the direction of the nozzle discharge flow was parallel to the direction of the line of magnetic force, as compared with the case where the partition plate was not inserted. On the other hand, when the direction of the nozzle discharge flow is perpendicular to the direction of the line of magnetic force and in the case of vertical + horizontal (four-direction discharge),
The length of the component mixing zone was almost the same as when the partition plate was not inserted, and the effect of applying a magnetic field was not so much observed.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】本発明の方法により、仕切板等を鋳型内
に挿入することなく磁場帯下方での下降流の水平断面分
布を均一化させ、成分混合域を最短にすることが可能と
なる。また、仕切板等を鋳型内に挿入することがないた
め、作業が極めて簡単となる。そのうえ、鋳造を一旦停
止することがないため生産性の向上が図られ、且つノズ
ル閉塞等の心配がなくなるだけでなく、鋳片の表面性状
及び内部品質の劣化等もなくなる。
According to the method of the present invention, it is possible to make the horizontal cross-sectional distribution of the downward flow below the magnetic field zone uniform without inserting a partition plate or the like into the mold, and to minimize the component mixing zone. . In addition, since a partition plate or the like is not inserted into the mold, the operation becomes extremely simple. In addition, since the casting is not stopped once, the productivity is improved, and not only is there no fear of nozzle blockage or the like, but also the deterioration of the surface properties and internal quality of the slab is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するために使用する幅方向に均一
な磁束密度分布を持つ直流磁場を発生させる磁場コイル
の模式図である。
FIG. 1 is a schematic diagram of a magnetic field coil used to carry out the present invention, which generates a DC magnetic field having a uniform magnetic flux density distribution in a width direction.

【図2】幅方向に均一な磁束密度分布を有する磁場の高
さ方向の磁束密度分布図である。
FIG. 2 is a diagram illustrating a magnetic flux density distribution in a height direction of a magnetic field having a uniform magnetic flux density distribution in a width direction.

【図3】磁力線の方向とノズル吐出流の方向との関係を
示す図である。
FIG. 3 is a diagram illustrating a relationship between a direction of a line of magnetic force and a direction of a nozzle discharge flow.

【図4】浸漬ノズルと磁場帯との位置関係を示す図であ
る。
FIG. 4 is a diagram showing a positional relationship between an immersion nozzle and a magnetic field zone.

【符号の説明】[Explanation of symbols]

1 鉄芯 2 コイル 3 磁極 4 鋳型 5 浸漬ノズル 6 長辺 7 短辺 8 磁場帯 DESCRIPTION OF SYMBOLS 1 Iron core 2 Coil 3 Magnetic pole 4 Mold 5 Immersion nozzle 6 Long side 7 Short side 8 Magnetic field band

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 健 北海道室蘭市仲町12 新日本製鐵株式会 社 室蘭製鐵所内 (56)参考文献 特開 平3−94959(JP,A) 特開 平4−52057(JP,A) 特開 昭61−1459(JP,A) 特開 昭60−121052(JP,A) 特開 平5−96346(JP,A) 実開 平4−104251(JP,U) (58)調査した分野(Int.Cl.6,DB名) B22D 11/10 B22D 11/10 350 B22D 11/04 311 B22D 27/02 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ken Sugawara 12 Nakamachi, Muroran-shi, Hokkaido Inside Nippon Steel Corporation Muroran Works (56) References JP-A-3-94959 (JP, A) JP-A-4 JP-A-52057 (JP, A) JP-A-61-1459 (JP, A) JP-A-60-121052 (JP, A) JP-A-5-96346 (JP, A) JP-A-4-104251 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) B22D 11/10 B22D 11/10 350 B22D 11/04 311 B22D 27/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ある成分の溶融金属の連続鋳造が終了し
てそれとは成分の異なる溶融金属を続けて連続鋳造する
際に、鋳型内の溶融金属メニスカスよりも下方の位置
に、幅方向の磁束密度分布がその平均値に対して±15
%以内のほぼ均一な磁束密度分布を有する直流磁場を、
鋳型の幅方向全体にわたり鋳片厚さ方向に印加して直流
磁場帯を形成し、同時にノズルからの溶融金属吐出流を
磁力線に平行な方向に流しながら、連続鋳造を中断する
ことなく成分の異なる2種類の溶融金属を続けて連続鋳
造することを特徴とする成分の異なる溶融金属の連続鋳
造方法。
When a continuous casting of a molten metal of a certain component is completed and a continuous casting of a molten metal having a different component is performed, a magnetic flux in a width direction is positioned below a molten metal meniscus in a mold. The density distribution is ± 15 with respect to the average value.
% DC magnetic field having a substantially uniform magnetic flux density distribution within
A direct current magnetic field zone is formed by applying in the slab thickness direction over the entire width direction of the mold, and at the same time, the molten metal discharge flow from the nozzle flows in a direction parallel to the line of magnetic force, and the components are different without interrupting continuous casting A continuous casting method for molten metals having different components, wherein two types of molten metals are continuously cast.
JP5120443A 1993-04-26 1993-04-26 Continuous casting method of molten metal with different components Expired - Lifetime JP2979278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120443A JP2979278B2 (en) 1993-04-26 1993-04-26 Continuous casting method of molten metal with different components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120443A JP2979278B2 (en) 1993-04-26 1993-04-26 Continuous casting method of molten metal with different components

Publications (2)

Publication Number Publication Date
JPH06304718A JPH06304718A (en) 1994-11-01
JP2979278B2 true JP2979278B2 (en) 1999-11-15

Family

ID=14786338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120443A Expired - Lifetime JP2979278B2 (en) 1993-04-26 1993-04-26 Continuous casting method of molten metal with different components

Country Status (1)

Country Link
JP (1) JP2979278B2 (en)

Also Published As

Publication number Publication date
JPH06304718A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
US3789911A (en) Process for continuous continuous casting of hot liquid metals
JP2979278B2 (en) Continuous casting method of molten metal with different components
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
CN109794589A (en) A kind of process control method preventing CSP continuous casting billet lobe defect
EP0568699B1 (en) Method of continuously casting steel slabs by use of electromagnetic field
JP4757661B2 (en) Vertical continuous casting method for large section slabs for thick steel plates
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP2937707B2 (en) Steel continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP3237177B2 (en) Continuous casting method
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JPH09271910A (en) Method for continuously casting different kinds of steels and immersion nozzle for continuous casting
JP3583954B2 (en) Continuous casting method
JPH07214262A (en) Method for preventing center segregation of continuous casting slab
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JP3238090B2 (en) Continuous casting method of steel slab
JP3147824B2 (en) Continuous casting method
JP2888312B2 (en) Continuous casting method of steel slab by static magnetic field
JP4872723B2 (en) Steel continuous casting method
JP3351976B2 (en) Continuous casting method of molten stainless steel
JP2750320B2 (en) Continuous casting method using static magnetic field
JPH06285596A (en) Method for continuously casting steel
JP2859764B2 (en) Continuous casting method of steel slab using static magnetic field
JPH0584551A (en) Method for continuously casting steel using static magnetic field

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817