JPH06283746A - Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it - Google Patents

Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it

Info

Publication number
JPH06283746A
JPH06283746A JP5068524A JP6852493A JPH06283746A JP H06283746 A JPH06283746 A JP H06283746A JP 5068524 A JP5068524 A JP 5068524A JP 6852493 A JP6852493 A JP 6852493A JP H06283746 A JPH06283746 A JP H06283746A
Authority
JP
Japan
Prior art keywords
zno
film
group
atoms
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5068524A
Other languages
Japanese (ja)
Inventor
Shigemi Furubiki
重美 古曵
Mikihiko Nishitani
幹彦 西谷
Takahiro Wada
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5068524A priority Critical patent/JPH06283746A/en
Publication of JPH06283746A publication Critical patent/JPH06283746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To provide a low-resistance ZnO transparent conductive film whose controllability is good and which has been doped with impurities, to provide its manufacturing method and to provide the manufacturing method of a photoelectric-conversion semiconductor device using it. CONSTITUTION:An element which is provided with a CuInSe2 thin film and with a ZnO thin film is manufactured on an Mo lower-part electrode, the element is irradiated with an accelerated Ca atomic ion beam, the resistance of the ZnO thin film is lowered, a homojunction is formed in the CuInSe2 thin film, and a photoelectric-conversion semiconductor device is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高効率太陽電池あるいは
表示装置等に利用され得る伝導率の制御性の良い透明導
電膜とその製造法およびその応用に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film which can be used in a high-efficiency solar cell or a display device and has a good controllability of conductivity, a method for producing the same, and its application.

【0002】[0002]

【従来の技術】従来、ネサ膜(SnO2)やITO膜な
どが透明導電膜として知られている。ZnO膜を透明導
電膜として用いる動きは最近さかんとなった。ZnO膜
はネサ膜やITO膜に比べると安価であるが、透明導電
膜としての歴史が浅くネサ膜やITO膜に比べると必ず
しも高性能であるとは言えない。現在、ZnO膜の高性
能化を実現することが要求されている。この高性能化の
基盤となる不純物ドーピングによる伝導機構についての
知見も十分であるとは言えない状態である。
2. Description of the Related Art Hitherto, a Nesa film (SnO 2 ) or an ITO film has been known as a transparent conductive film. The movement of using a ZnO film as a transparent conductive film has recently become vigorous. Although the ZnO film is cheaper than the Nesa film or the ITO film, it cannot be said that the ZnO film is necessarily high in performance as compared with the Nesa film or the ITO film since it has a short history as a transparent conductive film. At present, it is required to realize a high performance ZnO film. It cannot be said that the knowledge about the conduction mechanism by the impurity doping, which is the basis of this high performance, is sufficient.

【0003】[0003]

【発明が解決しようとする課題】通常、ZnOは非化学
量論比組成となりZn過剰でn型伝導を示すと言われて
いる。しかし、例えばよく用いられるスパッタ法により
作製したZnO膜は、基板温度を300℃以上にしない
限り10ー8/Ωcm程度の導電率となり、高抵抗とな
る。この機構についての明瞭な説明はまだないが、この
事実は過剰Znの存在の有無や自己補償効果について詳
しく調べられなければならないことを示している。とは
いえ、これまでにZnO結晶中で母体となるIIB族Zn
原子をIIIA族原子で置き換えると、電気抵抗が減少する
事は知られている。
It is generally said that ZnO has a non-stoichiometric composition and exhibits n-type conduction when Zn is in excess. However, for example, a ZnO film produced by a sputtering method, which is often used, has a conductivity of about 10 −8 / Ωcm and a high resistance unless the substrate temperature is set to 300 ° C. or higher. Although there is no clear explanation for this mechanism yet, this fact indicates that the presence or absence of excess Zn and the self-compensation effect must be investigated in detail. However, the group IIB Zn that has become the host in ZnO crystals so far.
It is known that replacing atoms with Group IIIA atoms reduces electrical resistance.

【0004】本発明は薄膜作製温度で決まる、制御性の
良くない、非化学量論組成に基ずく電気伝導ではなく、
制御性のよい不純物ドーピングに基ずく低抵抗化透明導
電膜の製造方法と、それを用いた半導体装置の製造方法
を提供することを目的とする。
The present invention is not based on the non-stoichiometric composition, which has poor controllability, which is determined by the thin film forming temperature, and not electric conduction.
An object of the present invention is to provide a method for manufacturing a low resistance transparent conductive film based on impurity control with good controllability and a method for manufacturing a semiconductor device using the same.

【0005】[0005]

【課題を解決するための手段】加速したIA族、IIIA族、
またはVIIA族の何れかの原子のイオン線を、単独または
複合して、ZnO中の所望の位置に、所望の濃度でこの
原子を存在させた透明導電膜と、ヘテロ接合、またはホ
モ接合を形成する半導体膜を基体とし、この基体上に形
成したZnO膜に加速したIA族、IIIA族、またはVIIA族
の何れかの原子のイオン線を単独または複合して用い、
ZnO中の所望の位置に所望の濃度でこの原子を存在さ
せ電気抵抗を低減化する光電変換半導体装置の製造方
法、ZnO中の位置に所望の濃度でこの原子を存在させ
電気抵抗を低減化すると同時に、このイオン線の速度を
制御し基体の任意の深さまで電荷担体のドーピングを行
う光電変換半導体装置の製造方法、または透明基体上に
形成したZnO膜に加速したIA族、IIIA族、またはVIIA
族の何れかの原子のイオン線を単独または複合して用
い、ZnO中の所望の位置に所望の濃度で前記原子を存
在させ電気抵抗を低減化し、ZnO膜上にヘテロ接合、
またはホモ接合を形成する半導体膜を形成する光電変換
半導体装置の製造方法で、従来の課題を解決した。
[Means for solving the problem] Accelerated IA, IIIA,
Alternatively, an ion beam of any atom of group VIIA is used alone or in combination to form a heterojunction or homojunction with a transparent conductive film in which this atom is present at a desired concentration in ZnO at a desired position. Using a semiconductor film as a base, and using an accelerated ion beam of any one of IA, IIIA, or VIIA atoms in a ZnO film formed on the base, alone or in combination.
A method for manufacturing a photoelectric conversion semiconductor device in which ZnO is present at a desired position at a desired concentration to reduce electric resistance, and a method for manufacturing a photoelectric conversion semiconductor device in which ZnO is present at a desired concentration in ZnO to reduce electric resistance At the same time, a method for manufacturing a photoelectric conversion semiconductor device in which the velocity of the ion beam is controlled to dope charge carriers to an arbitrary depth of the substrate, or a group IA, IIIA, or VIIA accelerated to a ZnO film formed on a transparent substrate is used.
Using an ion beam of any atom of the group alone or in combination, the atom is present at a desired position in ZnO at a desired concentration to reduce electric resistance, and a heterojunction is formed on the ZnO film,
Alternatively, a conventional method has been solved by a method for manufacturing a photoelectric conversion semiconductor device in which a semiconductor film forming a homojunction is formed.

【0006】[0006]

【作用】例えば、スパッタ法により作製したZnO膜は
10ー8/Ωcm程度導電率を示す。ZnO膜膜中には過
剰Znが存在するとも言われているが、この高抵抗化の
機構についての明瞭な説明はまだない。この事実は自己
補償効果が顕著に現れているものと解釈できる。とはい
え、これまでにZnO結晶中で母体となるIIB族Zn原
子をIIIA族原子で置き換えると電気抵抗が減少する事が
知られており、この自己補償効果を上回るだけの不純物
ドーピングをおこなうことができれば低温で作製したZ
nO膜に電荷担体をドーピングできる事になる。同様に
VI族O原子をVIIA族原子で置換することによりZnO膜
に電荷担体をドーピングすることもできる。このZnま
たはO原子のIIIA族原子またはVIIA族原子による置換は
それぞれ、伝導帯を構成するZn−Os−pシグマ反結
合軌道に電子を注入、またはZn−Os−pシグマ結合
軌道にホールを注入すると言う意味を持つ。
For example, the ZnO film formed by the sputtering method has a conductivity of about 10 −8 / Ωcm. It is said that excess Zn exists in the ZnO film, but there is no clear explanation for the mechanism of this increase in resistance. This fact can be interpreted that the self-compensation effect is prominent. However, it has been known that replacing the host IIB group Zn atom in the ZnO crystal with the group IIIA atom reduces the electrical resistance, and the impurity doping should exceed the self-compensation effect. If possible, Z made at low temperature
The nO film can be doped with charge carriers. As well
It is also possible to dope the ZnO film with charge carriers by substituting Group VI O atoms with Group VIIA atoms. The substitution of the Zn or O atom with the IIIA group atom or the VIIA group atom injects an electron into the Zn-Os-p sigma antibonding orbital or a hole into the Zn-Os-p sigma bond orbital, which forms the conduction band, respectively. It has the meaning to say.

【0007】IA族(H)のZnO膜への注入ではその質
量、イオン半径の違いから、IIIA族またはVIIA族原子の
注入と異なり原子置換による電荷担体のドーピングを実
現することができず、ZnOの格子間位置にHが侵入し
局部的なH−Os−p軌道混成を通じて伝導帯に伝導電
子を注入することとなる。
In the implantation of a Group IA (H) ZnO film, due to the difference in mass and ionic radius, the doping of charge carriers by atomic substitution cannot be realized, unlike the implantation of Group IIIA or Group VIIA atoms. H invades into the interstitial position of H, and conduction electrons are injected into the conduction band through local H-Os-p orbital hybridization.

【0008】加速したイオン線を用いるイオン注入技術
では、イオンの加速エネルギを制御する事によりドープ
した不純物原子の深さ方向分布を制御し、イオンのドー
ズ量を制御する事によりドープした不純物原子の濃度を
制御することができる。
In the ion implantation technique using an accelerated ion beam, the depthwise distribution of the doped impurity atoms is controlled by controlling the acceleration energy of the ions, and the impurity amount of the doped impurity atoms is controlled by controlling the dose amount of the ions. The concentration can be controlled.

【0009】したがってイオン種、加速エネルギ、ドー
ズ量を各種組み合わせることにより任意の場所で任意の
導電率を実現することができ、加速したイオン線を用い
るZnO薄膜を透明導電膜として使用すれば太陽電池あ
るいは表示装置等のデバイス特性が改善される。
Therefore, by combining various kinds of ion species, acceleration energy, and dose amount, it is possible to realize an arbitrary conductivity at an arbitrary place. If a ZnO thin film using an accelerated ion beam is used as a transparent conductive film, a solar cell is obtained. Alternatively, the device characteristics of the display device or the like are improved.

【0010】[0010]

【実施例】IA族(H)、IIIA族(B,Al,Ga,I
n)、またはVIIA族(F,Cl,I,Br)の何れかの
原子のイオン線を加速し、基体上に作製したZnO膜に
衝突させ前記原子を膜中に分布させZnOへの不純物ド
ーピングを行う。前記原子のイオン線の加速の程度によ
り膜中の不純物分布を制御することができ、また、イオ
ン線の照射量の程度により制御しながら電気抵抗の低減
化を実現できる。
EXAMPLES Group IA (H), Group IIIA (B, Al, Ga, I
n) or VIIA (F, Cl, I, Br) atom ion beam is accelerated to collide with the ZnO film formed on the substrate to distribute the atom in the film, thereby doping the ZnO with impurities. I do. The impurity distribution in the film can be controlled by the degree of acceleration of the ion beam of the atoms, and the electric resistance can be reduced while controlling by the degree of ion beam irradiation.

【0011】ヘテロ接合、またはホモ接合を形成する半
導体膜を基体とし、前記基体上に形成したZnO膜に加
速したIA族、IIIA族、またはVIIA族の何れかの原子のイ
オン線を用い透明導電膜の電気抵抗を低減化すると同時
に、イオン線の速度を制御することにより基体である半
導体膜の任意の深さまでの電荷担体のドーピングを行な
うことも可能であり光電変換半導体装置の製造工程の簡
略化をも実現できる。
A semiconductor film forming a heterojunction or a homojunction is used as a substrate, and a ZnO film formed on the substrate is subjected to a transparent conductivity using an accelerated ion beam of any one of the atoms of group IA, group IIIA, or group VIIA. It is possible to reduce the electric resistance of the film and at the same time dope the charge carriers to an arbitrary depth of the semiconductor film which is the base by controlling the velocity of the ion beam, which simplifies the manufacturing process of the photoelectric conversion semiconductor device. Can also be realized.

【0012】(実施例1)真空中でZnO粉末焼結体を
対向ターゲットとし、Ar80%+O220%の組成を
有するガスを用い1kWで高周波スパッタを行い、常温
に保持したガラス基板上にZnO薄膜を2.5μmの厚
みで堆積する。一方、やはり真空中で、H 2ガスを原料
として熱電子を用いてイオン化しイオン加速器により、
所定の速度に加速したH+イオンを常温に保持したこの
ZnO膜に注入する。注入量は微小電流計により計測し
所定の注入量に達したらイオン注入を停止する。
Example 1 A ZnO powder sintered body was vacuumed.
Ar target 80% + O220% composition
High-frequency sputtering at 1 kW using the gas that it has, at room temperature
ZnO thin film 2.5 μm thick on the glass substrate
Only deposit. On the other hand, H 2Gas as raw material
Ionization using thermoelectrons as an ion accelerator
H accelerated to a predetermined speed+This ion that keeps the ions at room temperature
Implant into ZnO film. Injection volume is measured by a micro ammeter
When the predetermined implantation amount is reached, the ion implantation is stopped.

【0013】図1に、H+イオンを加速エネルギ100
keVで、ドーズ量1×1016個/cm2注入したZn
O薄膜の導電率を示した。図2に、Hの注入分布とイオ
ン注入に伴う結晶欠陥の密度分布を示した。
In FIG. 1, H + ions are accelerated with an acceleration energy of 100.
Zn implanted at a dose of 1 × 10 16 pieces / cm 2 at keV
The conductivity of the O thin film is shown. FIG. 2 shows the distribution of H implantation and the density distribution of crystal defects due to ion implantation.

【0014】高密度の結晶欠陥を含むイオン注入直後の
状態でも、導電率は注入前に比べ約8桁改善されてい
る。結晶欠陥の回復と不純物(H)の拡散を目的とする
2ガス中での熱処理を行うと、更に導電率が向上す
る。
Even in the state immediately after the implantation of ions containing high-density crystal defects, the conductivity is improved by about 8 digits as compared with that before the implantation. Conducting heat treatment in N 2 gas for the purpose of recovery of crystal defects and diffusion of impurities (H) further improves the conductivity.

【0015】この熱処理は、図1に示したように、40
0℃N のそれよりも200℃N のほうがより効果的であ
る。これは、400℃N でのHの拡散が、200℃N の
それよりも大きく、また侵入型の不純物となるHの場
合、結晶欠陥の回復には200℃N 程度の低温で充分で
あることを示している。これは、低温プロセスが可能で
あることを意味しており、太陽電池や表示装置等への応
用においての大きな利点となる。
This heat treatment, as shown in FIG.
200 ° C N is more effective than that of 0 ° C N. This is because the diffusion of H at 400 ° C N is larger than that at 200 ° C, and in the case of H which becomes an interstitial impurity, a low temperature of about 200 ° C is sufficient to recover crystal defects. Is shown. This means that a low temperature process is possible, which is a great advantage in application to solar cells, display devices, and the like.

【0016】(実施例2)真空中でZnO粉末焼結体を
対向ターゲットとしAr80%+O220%の組成を有
するガスを用い1kWで高周波スパッタを行い、常温に
保持したガラス基板状にZnO薄膜を2.5μmの厚み
で堆積する。一方、やはり真空中で、固体を原料として
スパッタにより原子化を行い、更に熱電子を用いてイオ
ン化しイオン加速器により、所定の速度に加速した
+,Al+,Ga+イオンを常温に保持したZnO膜に
注入する。注入量は、微小電流計により計測し所定の注
入量に達したらイオン注入を停止する。
(Example 2) In a vacuum, a ZnO powder sintered body was used as a counter target and a high frequency sputtering was performed at 1 kW using a gas having a composition of Ar 80% + O 2 20%, and a ZnO thin film was formed on a glass substrate kept at room temperature. Is deposited to a thickness of 2.5 μm. On the other hand, in a vacuum, B + , Al + , and Ga + ions, which are atomized by sputtering using solid as a raw material and further ionized by using thermoelectrons and accelerated to a predetermined speed by an ion accelerator, are kept at room temperature. Implant into ZnO film. The implantation amount is measured by a minute ammeter, and when the prescribed implantation amount is reached, the ion implantation is stopped.

【0017】図1に、B+,Al+,Ga+イオンをそれ
ぞれ加速エネルギ500、1000、2000keV
で、ドーズ量1x1016個/cm2注入したZnO薄膜
の導電率を示した。図3、図4、図5にそれぞれB,A
l,Gaの注入分布とイオン注入に伴う結晶欠陥の密度
分布を示した。高密度の結晶欠陥を含むイオン注入直後
の状態でも、導電率は注入前に比べ改善されてはいる
が、2〜3桁程度であり、侵入型不純物となるHの場合
に比べて置換型の不純物となるB,Al,Gaでは、注
入直後での効果は大きくない。結晶欠陥の回復と注入し
た不純物(B,Al,Ga)の格子Znの置換を目的と
するN2ガス中での熱処理を行うと、導電率が向上す
る。
In FIG. 1, the acceleration energies of B + , Al + and Ga + ions are 500, 1000 and 2000 keV, respectively.
Shows the conductivity of the ZnO thin film implanted with a dose of 1 × 10 16 atoms / cm 2 . B, A in FIGS. 3, 4, and 5, respectively.
The distributions of 1 and Ga implantation and the density distribution of crystal defects accompanying ion implantation are shown. Even in the state immediately after the ion implantation including the high-density crystal defects, the conductivity is about 2 to 3 orders of magnitude higher than that before the implantation, and the conductivity of the substitutional type is higher than that of H which is an interstitial impurity. With B, Al, and Ga that are impurities, the effect immediately after implantation is not great. Conducting heat treatment in N 2 gas for the purpose of recovering crystal defects and replacing the lattice Zn of the implanted impurities (B, Al, Ga) improves the conductivity.

【0018】この熱処理は、図1に示したように、40
0℃N のほうが200℃N のそれよりも著しく効果的で
ある。これは、格子位置の原子の置換には400℃N 程
度の温度が必要なことを示している。この400℃N で
の熱処理により、導電率は注入前に比べ約8桁改善され
る。使用中に高温となる可能性のある半導体装置にZn
O透明導電膜を適用する場合、B,Al,Gaなど置換
型不純物のドーピングが安定性の面から有効であること
がわかる。
This heat treatment, as shown in FIG.
0 ° C N is significantly more effective than that at 200 ° C. This indicates that a temperature of about 400 ° C. N is required to replace atoms at lattice positions. By this heat treatment at 400 ° C. N, the conductivity is improved by about 8 orders of magnitude as compared with that before the injection. Zn is used for semiconductor devices that may become hot during use.
When the O transparent conductive film is applied, it can be seen that doping of substitutional impurities such as B, Al and Ga is effective from the viewpoint of stability.

【0019】(実施例3)真空中でZnO粉末焼結体を
対向ターゲットとし、Ar80%+O220%の組成を
有するガスを用い1kWで高周波スパッタを行い、常温
に保持したガラス基板状にZnO薄膜を2.5μmの厚
みで堆積する。一方、やはり真空中で、H 2ガスを原料
として熱電子を用いてイオン化し、イオン加速器により
所定の速度に加速したH+イオンを、常温に保持したZ
nO膜に注入する。注入量は、微小電流計により計測し
所定の注入量に達したらイオン注入を停止する。
(Example 3) A ZnO powder sintered body was prepared in a vacuum.
Ar target 80% + O220% composition
High-frequency sputtering at 1 kW using the gas that it has, at room temperature
ZnO thin film with a thickness of 2.5 μm on the glass substrate
Only deposit. On the other hand, H 2Gas as raw material
Ionization using thermoelectrons as
H accelerated to a predetermined speed+Z with ions kept at room temperature
Implant into the nO film. The injection volume is measured with a micro ammeter.
When the predetermined implantation amount is reached, the ion implantation is stopped.

【0020】H+イオンを加速エネルギ10、30、6
0、100、150、200keVで、それぞれドーズ
量1×1015個/cm2注入したZnO薄膜の導電率を
図6に示し、図7にHの注入分布をそれぞれ示した。
Acceleration energy of H + ions is 10, 30, 6
In 0,100,150,200KeV, each dose of 1 × 10 15 / cm 2 implanted conductivity of the ZnO thin film shown in FIG. 6, showing implantation distribution of H respectively in Fig.

【0021】ドーズ量が図1の場合に比べて1桁小さい
ので、N2ガス中の熱処理の後でも導電率は図1の場合
に比べて小さい。しかし、H+イオンを用いると、図8
にHのSIMSによる測定結果を示したように、200
keV以下の低加速エネルギで実用に供され得る2.5
μm厚をカバーする事が出来るので、ドーズ量を1×1
16個/cm2にすれば、ZnO膜厚全域に渡り低温プ
ロセスによる低抵抗化を実現できる。
Since the dose amount is smaller than that in the case of FIG. 1 by one digit, the conductivity is smaller than that in the case of FIG. 1 even after the heat treatment in N 2 gas. However, using H + ions
As shown in the H measurement results of SIMS,
2.5 that can be put to practical use with a low acceleration energy of keV or less
Since it can cover μm thickness, the dose amount is 1 × 1
If it is set to 0 16 pieces / cm 2 , the resistance can be reduced by the low temperature process over the entire ZnO film thickness.

【0022】(実施例4)図9に示すように真空中でガ
ラス基板上にMo電極を構成し、その上にカルコパイラ
イト構造化合物半導体CuInSe2薄膜、さらにその
上にウルツアイト構造化合物半導体CdS薄膜を作製
し、p−nヘテロ接合を形成する。
(Example 4) As shown in FIG. 9, a Mo electrode was formed on a glass substrate in a vacuum, a chalcopyrite structure compound semiconductor CuInSe 2 thin film was formed thereon, and a wurtzite structure compound semiconductor CdS thin film was formed thereon. Fabricate and form a pn heterojunction.

【0023】この半導体膜上にZnO粉末焼結体を対向
ターゲットとし、Ar80%+O220%の組成を有す
るガスを用い、1kWで高周波スパッタを行い、常温に
保持したガラス基板上に、ZnO薄膜を2.5μmの厚
みで堆積する。
On this semiconductor film, a ZnO powder sintered body was used as a counter target, a gas having a composition of Ar 80% + O 2 20% was used, high frequency sputtering was performed at 1 kW, and a ZnO thin film was formed on a glass substrate kept at room temperature. Is deposited to a thickness of 2.5 μm.

【0024】H2ガスを原料として、熱電子を用いてイ
オン化し、イオン加速器により所定の速度に加速したH
+イオンを、常温に保持したZnO膜に注入する。注入
量は、微小電流計により計測し、所定の注入量に達した
らイオン注入を停止する。
H 2 gas is used as a raw material, ionized by using thermoelectrons, and accelerated to a predetermined speed by an ion accelerator.
+ Ions are implanted into the ZnO film kept at room temperature. The implantation amount is measured by a minute ammeter, and when the prescribed implantation amount is reached, the ion implantation is stopped.

【0025】H+イオンを加速エネルギ10、30、6
0、100、150、200keVで、それぞれドーズ
量1×1016個/cm2注入し、低抵抗の透明導電膜と
し、太陽電池を構成する。
Accelerating energy of H + ions to 10, 30, 6
A solar cell is formed by injecting a dose of 1 × 10 16 cells / cm 2 at 0, 100, 150, and 200 keV to form a low-resistance transparent conductive film.

【0026】(実施例5)図10に示すように真空中で
ガラス基板上にMo電極を構成し、その上にp型伝導を
示すカルコパイライト構造化合物半導体CuInSe2
薄膜を作製する。この半導体膜上にZnO粉末焼結体を
対向ターゲットとし、Ar80%+O220%の組成を
有するガスを用い、1kWで高周波スパッタを行い、常
温に保持したガラス基板上に、ZnO薄膜を2.5μm
の厚みで堆積する。
(Embodiment 5) As shown in FIG. 10, a Mo electrode is formed on a glass substrate in vacuum, and a chalcopyrite structure compound semiconductor CuInSe 2 showing p-type conduction is formed on the Mo electrode.
Make a thin film. On this semiconductor film, a ZnO powder sintered body was used as a facing target, a gas having a composition of Ar 80% + O 2 20% was used, high frequency sputtering was performed at 1 kW, and a ZnO thin film was formed on a glass substrate kept at room temperature. 5 μm
Deposited at a thickness of.

【0027】固体を原料として、スパッタにより原子化
を行い、更に熱電子を用いてイオン化しイオン加速器に
より所定の速度に加速したGa+イオンを、常温に保持
したZnO膜上から半導体膜にかけて注入する。注入量
は、微小電流計により計測し、所定の注入量に達したら
イオン注入を停止する。
Ga + ions, which are atomized by sputtering using a solid as a raw material and further ionized by using hot electrons and accelerated to a predetermined speed by an ion accelerator, are injected from above the ZnO film kept at room temperature to the semiconductor film. . The implantation amount is measured by a minute ammeter, and when the prescribed implantation amount is reached, the ion implantation is stopped.

【0028】Ga+イオンをそれぞれ加速エネルギ10
0、250、500、750、1000、1250、1
500、1750、2000、2250、2500、2
750、3000、3250keVで、ドーズ量1×1
16個/cm2注入する。
The acceleration energy of each Ga + ion is 10
0, 250, 500, 750, 1000, 1250, 1
500, 1750, 2000, 2250, 2500, 2
750, 3000, 3250 keV, dose 1 × 1
Inject 16 cells / cm 2 .

【0029】N2ガス中で400N の熱処理を10分行
うと、低抵抗ZnO透明導電膜が実現する。これととも
に、ZnO透明導電膜下のp型CuInSe2のZnO
との界面付近では、CuInSe2Gaがドープされ、
n−型伝導のCuInSe2層が形成されp−nホモ接
合が実現する。
When a heat treatment of 400 N is performed in N 2 gas for 10 minutes, a low resistance ZnO transparent conductive film is realized. Along with this, ZnO of p-type CuInSe 2 under the ZnO transparent conductive film
In the vicinity of the interface with CuInSe 2 Ga,
An n-type conductive CuInSe 2 layer is formed to realize a pn homojunction.

【0030】実施例4において既に述べたが、従来はC
uInSe2とCdSのヘテロ接合により太陽電池が構
成されていた。これは有毒物質、公害物質であるCdを
用いており、地球環境問題の観点からも、またヘテロ接
合界面での格子不整合と、それによる再結合センターに
よる特性上の制約というエネルギー問題の観点からも好
ましい構造ではない。
As already described in the fourth embodiment, the conventional method is C
A solar cell was composed of a heterojunction of uInSe 2 and CdS. This uses Cd, which is a toxic substance and a pollutant, from the viewpoint of the global environment, and also from the viewpoint of the lattice mismatch at the heterojunction interface and the energy problem of the characteristic restriction due to the recombination center. Is also not a preferred structure.

【0031】一方、本発明の光電変換半導体装置の作製
方法では、ZnO薄膜の低抵抗化と同時にCuInSe
2ホモ接合の作製がおこなわれる。この製造方法を用い
ることにより、有毒物質、公害物質であるCdを使用せ
ず、さらに接合界面での格子不整合と、それによる再結
合センターによる特性上の制約を減少させる新規な無公
害、高性能の太陽電池が構成される。
On the other hand, in the method of manufacturing the photoelectric conversion semiconductor device of the present invention, the resistance of the ZnO thin film is lowered and at the same time CuInSe is formed.
2 Homozygotes are produced. By using this manufacturing method, Cd, which is a toxic substance and a pollutant, is not used, and further, a lattice-mismatch at the bonding interface and a new pollution-free property which reduces the restriction on the characteristics due to the recombination center. A high performance solar cell is constructed.

【0032】以上にその典型的な例を示したが、加速し
たIA族、IIIA族、またはVIIA族の何れかの原子のイオン
線を単独または複合して用い、低抵抗化ZnO透明導電
膜および半導体膜のホモ接合形成を実現するに用いるイ
オン線の加速エネルギーは、最大でZnO膜を通過し、
半導体膜中で所望の深さでホモ接合を形成するのに必要
なエネルギーであれば良く、また、イオンのドーズ量は
所望のZnOの導電率を得、半導体膜中で確実に伝導型
の変化を生じるのに充分な量であれば良い。したがっ
て、このドーズ量は、はじめに構造を形成した素子中の
ZnO膜、半導体膜の結晶性の善し悪しより変動するこ
とは自明である。
Typical examples thereof have been shown above. A low resistance ZnO transparent conductive film and a low resistance ZnO transparent conductive film are prepared by using an accelerated ion beam of any one of atoms of group IA, group IIIA or group VIIA. The acceleration energy of the ion beam used to realize the homojunction formation of the semiconductor film passes through the ZnO film at the maximum,
It suffices that the energy is necessary to form a homojunction at a desired depth in the semiconductor film, and the dose of ions obtains the desired conductivity of ZnO, so that the conductivity type is surely changed in the semiconductor film. It is sufficient if the amount is sufficient to cause Therefore, it is obvious that this dose amount varies depending on whether the crystallinity of the ZnO film or the semiconductor film in the element in which the structure is first formed is good or bad.

【0033】ドーピング工程の一部として、イオン注入
後のアニール工程が含まれることは自明であり、このア
ニールの条件がイオン注入時の加速エネルギー、ドーズ
量、はじめのZnO膜、半導体膜の結晶性など、色々な
条件でさまざまに変化することも自明である。
It is obvious that an annealing step after ion implantation is included as part of the doping step, and the conditions of this annealing are acceleration energy at ion implantation, dose amount, initial ZnO film, and crystallinity of semiconductor film. It is also obvious that various changes can be made under various conditions.

【0034】なお、本実施例ではGaで置換した場合に
ついて述べたが、Al,In,Bを用いることもでき
る。このように、本発明の光電変換半導体装置の製造方
法は、光電変換半導体装置の基本構成を作製した後で、
イオン注入によってホモ接合を形成するため、製造工程
が簡略化でき、また、光電変換半導体装置の変換効率の
微調整等にも応用できるため、歩留まりが向上できる効
果もある。
In this embodiment, the case of substituting with Ga has been described, but Al, In, B can also be used. Thus, the method for manufacturing a photoelectric conversion semiconductor device of the present invention, after the basic structure of the photoelectric conversion semiconductor device is produced,
Since a homojunction is formed by ion implantation, the manufacturing process can be simplified, and since it can be applied to fine adjustment of conversion efficiency of a photoelectric conversion semiconductor device, the yield can be improved.

【0035】[0035]

【発明の効果】本発明は IA族(H)、IIIA族(B,A
l,Ga,In)、またはVIIA族(F,Cl,I,B
r)の何れかの原子のイオン線を加速し、基体上に作製
したZnO膜に衝突させ前記原子を膜中に分布させ電気
抵抗の低減化を実現するものであるため、前記原子のイ
オン線の種類と加速の程度により膜中の不純物分布を制
御することができ、また、イオン線の照射量の程度によ
り電気抵抗を制御できる。
INDUSTRIAL APPLICABILITY The present invention relates to group IA (H) and group IIIA (B, A).
l, Ga, In), or VIIA group (F, Cl, I, B)
The ion beam of any of the atoms of r) is accelerated so as to collide with the ZnO film formed on the substrate to distribute the atom in the film and reduce the electric resistance. The distribution of impurities in the film can be controlled by the type and the degree of acceleration, and the electric resistance can be controlled by the degree of ion beam irradiation.

【0036】本法により電気抵抗の低減化をもたらす不
純物原子のドーピングを、導電率とその空間分布の観点
から制御性良く行うことができ、あらかじめスパッタ成
膜ターゲットに成分として、不純物元素の酸化物を混ぜ
ておく従来の方法よりも複雑な構成となる半導体装置製
造における適用性が大きく、新規な光電変換半導体装置
製造工程をも提供し得るものである。
According to this method, the doping of the impurity atom which brings about the reduction of the electric resistance can be carried out with good controllability from the viewpoint of the electric conductivity and the spatial distribution thereof, and the oxide of the impurity element is preliminarily used as a component for the sputtering film formation target. The present invention has a greater applicability in manufacturing a semiconductor device having a more complicated structure than the conventional method of mixing, and can provide a novel photoelectric conversion semiconductor device manufacturing process.

【0037】光電変換半導体装置の製造においては、Z
nO透明導電膜の電気抵抗低減化のみならず、加速した
原子のイオン線の速度を制御することにより、基体であ
る半導体膜の任意の深さまでの電荷担体のドーピングを
行ない、ホモ接合を形成することも可能であり、光電変
換半導体装置の製造工程の簡略化をも実現できる。
In manufacturing a photoelectric conversion semiconductor device, Z
In addition to reducing the electric resistance of the nO transparent conductive film, by controlling the speed of the accelerated ion beam of atoms, the charge carriers are doped to an arbitrary depth of the semiconductor film as the base to form a homojunction. It is also possible to simplify the manufacturing process of the photoelectric conversion semiconductor device.

【0038】カルコパイライト構造薄膜中にホモ接合を
形成するこの技術を用いることにより、従来用いられて
いたヘテロ接合形成による格子不整合と、それにともな
う再結合センターによる特性劣化の問題を解決し、さら
に有害物質、公害物質であるCdを使用しない無公害太
陽電池を実現し、エネルギーや地球環境などの問題解決
にも貢献できる効果もある。
By using this technique of forming a homojunction in a chalcopyrite structure thin film, the problem of the lattice mismatch due to the formation of a heterojunction and the characteristic deterioration due to the recombination center accompanied therewith, which has been conventionally used, is solved. There is also an effect that a pollution-free solar cell that does not use Cd, which is a harmful substance or a pollutant, can be realized and can contribute to solving problems such as energy and the global environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ZnO:H,B,Al,Ga(注入量1
x1016個/cm2)膜の導電率
1] ZnO: H, B, Al, Ga of the present invention (implantation amount 1
x10 16 pieces / cm 2 ) conductivity of the film

【図2】Hを100keVでZnOに注入したときの原
子および結晶欠陥の分布
FIG. 2 Distribution of atoms and crystal defects when H is injected into ZnO at 100 keV

【図3】Bを500keVでZnOに注入したときの原
子および結晶欠陥の分布
FIG. 3 Distribution of atoms and crystal defects when B is injected into ZnO at 500 keV.

【図4】Alを1000keVでZnOに注入したとき
の原子および結晶欠陥の分布
FIG. 4 Distribution of atoms and crystal defects when Al is injected into ZnO at 1000 keV.

【図5】Gaを2000keVでZnOに注入したとき
の原子および結晶欠陥の分布
FIG. 5: Distribution of atoms and crystal defects when Ga is injected into ZnO at 2000 keV

【図6】本発明ZnO:H(注入量1x1015個/cm
2)膜の導電率
FIG. 6 ZnO: H of the present invention (implantation amount 1 × 10 15 pieces / cm 3
2 ) Membrane conductivity

【図7】Hを10,30,60,100,150,20
0keVでZnOに注入したときの原子の分布
FIG. 7: H is 10, 30, 60, 100, 150, 20
Distribution of atoms when injected into ZnO at 0 keV

【図8】2次イオン質量分析による、ZnOに10,3
0,60,100,150,200keVでHを注入し
た試料中での、Hの分布
FIG. 8 is a graph of ZnO of 10,3 by secondary ion mass spectrometry.
Distribution of H in samples injected with H at 0, 60, 100, 150 and 200 keV

【図9】本発明のHイオン注入を用いたヘテロ接合太陽
電池の製造工程
FIG. 9: Manufacturing process of heterojunction solar cell using H ion implantation of the present invention

【図10】本発明Gaイオン注入を用いたホモ接合太陽
電池の製造工程
FIG. 10: Manufacturing process of homojunction solar cell using Ga ion implantation of the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】加速したIA族、IIIA族、またはVIIA族の何
れかの原子のイオン線を、単独または複合して、ZnO
中の所望の位置に、所望の濃度で前記原子を存在させた
ことを特徴とする透明導電膜の製造方法。
1. An accelerated ion beam of an atom of any one of Group IA, Group IIIA, and Group VIIA, either alone or in combination, to form ZnO.
A method for producing a transparent conductive film, characterized in that the atoms are made to exist at a desired position in a desired concentration therein.
【請求項2】ヘテロ接合、またはホモ接合を形成する半
導体膜を基体とし、前記基体上に形成したZnO膜に加
速したIA族、IIIA族、またはVIIA族の何れかの原子のイ
オン線を単独または複合して用い、ZnO中の所望の位
置に所望の濃度で前記原子を存在させ電気抵抗を低減化
したことを特徴とする光電変換半導体装置の製造方法。
2. A semiconductor film that forms a heterojunction or a homojunction is used as a substrate, and an accelerated ion beam of any one of IA, IIIA, or VIIA atoms is independently applied to a ZnO film formed on the substrate. Alternatively, a method of manufacturing a photoelectric conversion semiconductor device, characterized in that the atoms are present at a desired concentration in ZnO at a desired concentration to reduce electric resistance, when used in combination.
【請求項3】ヘテロ接合、またはホモ接合を形成する半
導体膜を基体とし、前記基体上に形成したZnO膜に加
速したIA族、IIIA族、またはVIIA族の何れかの原子のイ
オン線を単独または複合して用い、ZnO中の所望の位
置に所望の濃度で前記原子を存在させ電気抵抗を低減化
すると同時に、イオン線の速度を制御することにより基
体である半導体膜の任意の深さまでの電荷担体のドーピ
ングを行なうことを特徴とする光電変換半導体装置の製
造方法。
3. A semiconductor film forming a heterojunction or a homojunction is used as a substrate, and an ion beam of any one of IA, IIIA, or VIIA atoms accelerated by a ZnO film formed on the substrate is used alone. Alternatively, they are used in combination to reduce the electric resistance by allowing the atoms to exist at a desired concentration in a desired position in ZnO and, at the same time, to control the ion beam speed to reach an arbitrary depth of the semiconductor film which is the substrate. A method for manufacturing a photoelectric conversion semiconductor device, which comprises doping charge carriers.
【請求項4】透明基体上に形成したZnO膜に加速した
IA族、IIIA族、またはVIIA族の何れかの原子のイオン線
を単独または複合して用い、ZnO中の所望の位置に所
望の濃度で前記原子を存在させ電気抵抗を低減化し、Z
nO膜上にヘテロ接合、またはホモ接合を形成する半導
体膜を形成することを特徴とする光電変換半導体装置の
製造方法。
4. A ZnO film formed on a transparent substrate is accelerated.
Using an ion beam of any atom of group IA, group IIIA, or group VIIA, alone or in combination, the atom is present at a desired position in ZnO at a desired concentration to reduce the electric resistance, and Z
A method of manufacturing a photoelectric conversion semiconductor device, comprising forming a semiconductor film forming a heterojunction or a homojunction on an nO film.
JP5068524A 1993-03-26 1993-03-26 Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it Pending JPH06283746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5068524A JPH06283746A (en) 1993-03-26 1993-03-26 Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5068524A JPH06283746A (en) 1993-03-26 1993-03-26 Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it

Publications (1)

Publication Number Publication Date
JPH06283746A true JPH06283746A (en) 1994-10-07

Family

ID=13376203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5068524A Pending JPH06283746A (en) 1993-03-26 1993-03-26 Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it

Country Status (1)

Country Link
JP (1) JPH06283746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010177B4 (en) * 1999-03-05 2010-04-08 Panasonic Corp., Kadoma Solar cell with a p-type light absorption layer and a Cd-free n-type layer, which has a larger bandgap and a greater electron affinity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010177B4 (en) * 1999-03-05 2010-04-08 Panasonic Corp., Kadoma Solar cell with a p-type light absorption layer and a Cd-free n-type layer, which has a larger bandgap and a greater electron affinity
DE10066271B4 (en) * 1999-03-05 2013-11-21 Panasonic Corporation solar cell
DE10066271B8 (en) * 1999-03-05 2014-03-20 Panasonic Corporation solar cell

Similar Documents

Publication Publication Date Title
US5626688A (en) Solar cell with chalcopyrite absorber layer
CN101517122B (en) Method for depositing an oxide layer on absorbers of solar cells, solar cell and use of the method
JP2004158619A (en) Electronic device and manufacturing method therefor
CN110400879A (en) A kind of perovskite solar cell and preparation method thereof of gradient isoelectric transport layer
KR101628312B1 (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
EP0612112B1 (en) Process of producing a chalcopyrite semiconductor film
JP3874429B2 (en) Semiconductor component, in particular solar cell, and method of manufacturing the same
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JP3061342B2 (en) Method for manufacturing transparent conductive film and photoelectric conversion semiconductor device
US10991843B2 (en) Solar cell and method for preparing same
CN107523879B (en) Preparation method of room-temperature ferromagnetic ZnO single crystal film induced by ion implantation defects
EP0007192B1 (en) Process for preparing hetrojunction solar-cell devices
JP3337494B2 (en) Method of manufacturing solar cell and thin-film solar cell
JPH06283746A (en) Manufacture of transparent conductive film and manufacture of photoelectric-conversion semiconductor device using it
Aranovich et al. High conductivity ZnSe films
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
KR100936487B1 (en) Manufacturing method of cds/cdte thin film solar cells
Tanaka et al. Effect of Mg ion implantation on electrical properties of CuInSe 2 thin films
CA1077812A (en) Producing p-type conductivity in self-compensating semiconductor material
JP2000150932A (en) Manufacture of solar battery
KR101552968B1 (en) Fabrication Method of CIGS Thin Films and its application to Thin Film Solar Cells
KR101136440B1 (en) Apparatus and Method for manufacturing CuInGaSe layer
JPH07331413A (en) Transparent electrically conductive film, transparent insulating film and production of photoelectric converting semiconductor device using the same
JPH11298024A (en) Photovoltaic device and manufacture thereof