JPH06283740A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH06283740A
JPH06283740A JP5067856A JP6785693A JPH06283740A JP H06283740 A JPH06283740 A JP H06283740A JP 5067856 A JP5067856 A JP 5067856A JP 6785693 A JP6785693 A JP 6785693A JP H06283740 A JPH06283740 A JP H06283740A
Authority
JP
Japan
Prior art keywords
amount
germanium
hydrogen
photovoltaic device
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5067856A
Other languages
Japanese (ja)
Inventor
Keiichi Sano
景一 佐野
Yoichiro Aya
洋一郎 綾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5067856A priority Critical patent/JPH06283740A/en
Publication of JPH06283740A publication Critical patent/JPH06283740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To form a stable photovoltaic device which is provided with a desired photovoltaic characteristic by providing a hydrogenated amorphous silicon germanium layer in which the amount of germanium and the amount of hydro gen have been controlled according to a desired optical gap. CONSTITUTION:A transparent electrode 34 is formed on a glass substrate 32, and a semiconductor layer 36 composed of an a-SiGe:H film is formed on it and between them. A back electrode 38 is formed on the semiconductor layer 36, the back electrode 38 is connected to the transparent electrode 34, and individual elements are connected in series. The semiconductor layer 36 is formed by using a plasma CVD apparatus. When the mixture ratio of a mixed gas is controlled, the amount of germanium becomes large when the ratio of GeH4 to SiH4 is made large. When a substrate temperature is made high, the amount of hydrogen is made small. When an RF output is made large, the amount of hydrogen becomes large. When a gas pressure is made large, the amount of germanium is made small. When a desired optical gap is decided, individual parameters are controlled, and a stable photovoltaic device can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光起電力装置に関し、
特にたとえば水素化アモルファスシリコンゲルマニウム
(a−SiGe:H)層を有する積層型太陽電池のよう
な光起電力装置に関する。
This invention relates to photovoltaic devices,
In particular, it relates to a photovoltaic device such as a stacked solar cell having a hydrogenated amorphous silicon germanium (a-SiGe: H) layer.

【0002】[0002]

【従来の技術】この種の光起電力装置においては、ゲル
マニウム量とシリコン量との比が光学ギャップ(Eopt
)に影響を与えることが知られていて、したがって、
従来、ゲルマニウム量を変化して光学ギャップを制御し
ていた。
2. Description of the Related Art In this type of photovoltaic device, the ratio of the amount of germanium to the amount of silicon is the optical gap (Eopt).
) Is known to affect
Conventionally, the amount of germanium was changed to control the optical gap.

【0003】[0003]

【発明が解決しようとする課題】ところが、ゲルマニウ
ム量を変化すると、a−SiGe:H膜に欠陥を生じた
り、膜質を損なうことがあった。したがって、光起電力
装置の特性が不安定になるという問題があった。それゆ
えに、この発明の主たる目的は、所望の光起電力特性を
有しかしかも安定な光起電力装置を提供することであ
る。
However, when the amount of germanium is changed, defects may occur in the a-SiGe: H film or the quality of the film may be impaired. Therefore, there is a problem that the characteristics of the photovoltaic device become unstable. Therefore, a main object of the present invention is to provide a photovoltaic device which has desired photovoltaic characteristics and is stable.

【0004】[0004]

【課題を解決するための手段】この発明は、所望の光学
ギャップに従って制御されたゲルマニウム量および水素
量を有する水素化アモルファスシリコンゲルマニウム層
を備える、光起電力装置である。
The present invention is a photovoltaic device comprising a hydrogenated amorphous silicon germanium layer having controlled germanium and hydrogen contents according to a desired optical gap.

【0005】[0005]

【作用】a−SiGe:Hの光学ギャップは、水素量お
よびゲルマニウム量に依存するが、それらを適当に制御
することによって、所望の光学ギャップが得られる。こ
のとき、ゲルマニウム量を極力少なくすることによって
ゲルマニウム原子に起因する欠陥を少なくし、また、水
素量を十分少なくすることによって膜中における水素原
子の移動に起因する不安定性を減じる。
The optical gap of a-SiGe: H depends on the amount of hydrogen and the amount of germanium, but by controlling them properly, the desired optical gap can be obtained. At this time, by reducing the germanium amount as much as possible, defects due to germanium atoms are reduced, and by sufficiently reducing the hydrogen amount, instability due to movement of hydrogen atoms in the film is reduced.

【0006】なお、ゲルマニウム量および水素量を制御
するためには、a−SiGe:H膜を生成するプラズマ
CVD装置において、たとえば、材料ガスの混合比(S
iH 4 :GeH4 :H2 ),基板温度(Ts)あるいは
成膜速度すなわちRF出力などを制御すればよい。
The amount of germanium and the amount of hydrogen are controlled
In order to achieve this, a plasma that forms an a-SiGe: H film
In a CVD apparatus, for example, the mixing ratio of material gases (S
iH Four: GeHFour: H2), Substrate temperature (Ts) or
The film forming speed, that is, the RF output may be controlled.

【0007】[0007]

【発明の効果】この発明によれば、欠陥や膜質の低下を
生じない範囲でゲルマニウム量および水素量が所望の光
学ギャップに従って制御されているので、特性のよい光
起電力装置が得られる。この発明の上述の目的,その他
の目的,特徴および利点は、図面を参照して行う以下の
実施例の詳細な説明から一層明らかとなろう。
According to the present invention, the amount of germanium and the amount of hydrogen are controlled in accordance with the desired optical gap within a range that does not cause defects and deterioration of film quality, so that a photovoltaic device having excellent characteristics can be obtained. The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0008】[0008]

【実施例】図1に示すプラズマCVD装置10は、チャ
ンバ12を含み、このチャンバ12の中に基板ホルダ1
4が配置され、この基板ホルダ14にはヒータ16が内
蔵されている。ヒータ16の温度は、それに近接配置さ
れた熱電対18によって検知され、制御される。基板ホ
ルダ14上に基板20が載置される。したがって、ヒー
タ16によって基板20の温度Tsが制御される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plasma CVD apparatus 10 shown in FIG. 1 includes a chamber 12 in which a substrate holder 1 is placed.
4 is arranged, and a heater 16 is built in the substrate holder 14. The temperature of the heater 16 is sensed and controlled by a thermocouple 18 located close to it. The substrate 20 is placed on the substrate holder 14. Therefore, the temperature Ts of the substrate 20 is controlled by the heater 16.

【0009】チャンバ12内の基板ホルダ14の上方に
はRF電極22が配置され、このRF電極22はシール
ド電極24でシールドされる。RF電極22には、図示
しない高周波電源からRF出力が印加される。また、R
F電極22はまたパイプ状部22aを含み、このパイプ
状部22aから、SiH4 :GeH4 :H2 の混合ガス
のような材料ガスが導入される。RF電極22の前面に
は多数の子孔22bが形成されていて、材料ガスはチャ
ンバ12下部に結合されたポンプ(図示せず)に引かれ
て、多数の子孔22bからシャワー状になってプラズマ
領域26に導入される。
An RF electrode 22 is arranged above the substrate holder 14 in the chamber 12, and the RF electrode 22 is shielded by a shield electrode 24. An RF output is applied to the RF electrode 22 from a high frequency power source (not shown). Also, R
The F electrode 22 also includes a pipe-shaped portion 22a, and a material gas such as a mixed gas of SiH 4 : GeH 4 : H 2 is introduced from the pipe-shaped portion 22a. A large number of sub-holes 22b are formed on the front surface of the RF electrode 22, and the material gas is drawn by a pump (not shown) connected to the lower portion of the chamber 12 to form a shower shape from the plurality of sub-holes 22b. 26.

【0010】光起電力装置の一例が、図2に示される。
光起電力装置30は、ガラス基板32を含み、このガラ
ス基板32の上に透明電極34が形成され、その透明電
極34の上およびそれらの間に、図1のプラズマCVD
装置10によってa−SiGe:H膜からなる半導体層
36が形成される。すなわち、透明電極34が形成され
たガラス基板32を基板ホルダ14(図1)上に載せ
て、後述のようにしてプラズマCVDによって、半導体
層36を形成する。なお、半導体層36上には裏面電極
38が形成され、その裏面電極38が透明電極34と接
続され、各素子が直列接続される。
An example of a photovoltaic device is shown in FIG.
The photovoltaic device 30 includes a glass substrate 32, a transparent electrode 34 is formed on the glass substrate 32, and the plasma CVD of FIG. 1 is provided on and between the transparent electrodes 34.
The device 10 forms the semiconductor layer 36 made of an a-SiGe: H film. That is, the glass substrate 32 on which the transparent electrode 34 is formed is placed on the substrate holder 14 (FIG. 1), and the semiconductor layer 36 is formed by plasma CVD as described later. A back electrode 38 is formed on the semiconductor layer 36, the back electrode 38 is connected to the transparent electrode 34, and each element is connected in series.

【0011】上述のようなプラズマCVD装置10にお
いて、混合ガスの混合比を制御した場合、GeH4 /S
iH4 の比が大きくされると、ゲルマニウム量が大きく
なる。また、基板温度Tsが高くされると、水素量が小
さくなる。さらに、RF出力を大きくすると水素量が大
きくなる。そして、混合ガスのガス圧を大きくするとゲ
ルマニウム量が小さくなる。
In the plasma CVD apparatus 10 as described above, when the mixing ratio of the mixed gas is controlled, GeH 4 / S
When the ratio of iH 4 is increased, the amount of germanium increases. Moreover, when the substrate temperature Ts is increased, the amount of hydrogen decreases. Furthermore, when the RF output is increased, the amount of hydrogen increases. Then, when the gas pressure of the mixed gas is increased, the amount of germanium decreases.

【0012】そして、所望の光学ギャップが決まると、
ゲルマニウム量および水素量が上記各パラメータを制御
することによって決定される。より詳しく述べると、図
2のグラフのように、水素量に対するゲルマニウム量を
制御することによって、光学ギャップ(Eopt )を一定
に制御することができる。たとえば、Eopt =1.20
〜1.24eVにする場合、図2の線Aに従って水素量
とゲルマニウム量とを制御する。同様に、Eopt =1.
25〜1.29eV,Eopt =1.30〜1.34e
V,Eopt =1.35〜1.38eV,あるいはEopt
=1.39〜1.43eVにする場合、それぞれ、図2
の線B,C,D,あるいはEに従ってゲルマニウム量お
よび水素量を制御する。すなわち、光学ギャップは数1
で近似される。
When the desired optical gap is determined,
The amount of germanium and the amount of hydrogen are determined by controlling the above parameters. More specifically, as shown in the graph of FIG. 2, the optical gap (Eopt) can be controlled to be constant by controlling the amount of germanium with respect to the amount of hydrogen. For example, Eopt = 1.20
In the case of ˜1.24 eV, the amount of hydrogen and the amount of germanium are controlled according to the line A in FIG. Similarly, Eopt = 1.
25 to 1.29 eV, Eopt = 1.30 to 1.34 e
V, Eopt = 1.35 to 1.38 eV, or Eopt
= 1.39 to 1.43 eV, respectively.
The amount of germanium and the amount of hydrogen are controlled according to the line B, C, D, or E of the above. That is, the optical gap is
Is approximated by.

【0013】[0013]

【数1】Eopt =a・CH +b・CGe+c ただし、a,b,cは定数であり、CH は水素量であ
り、CGeはゲルマニウム量である。実験では、a−Si
Ge:H(Eopt =1.32eV)の膜を、次の各条件
で成膜し、各サンプルを得た。 (A) CH =5.5%:CGe=29% (B) CH =7.8%:CGe=32% (C) CH =8.9%:CGe=40% (D) CH =14%:CGe=45% これら各サンプルA〜Dについて、光学ギャップEopt
に対する吸収係数(cm−1)を測定した。その結果が
図3に示される。この図3においてEopt =1.3eV
以下の領域で吸収係数が小さいほど欠陥密度が小さい。
したがって、サンプルC>B>A>Dの順で膜質がよ
い。ところが、光照射後では、図4に示すように、A>
B>C>Dの順で安定であることがわかる。さらに、図
5には48℃の太陽光線を「R65」のフィルタを通し
て照射した際の規格化した光感度(σph/σd )と光照
射時間との関係が示されるが、このグラフから、A>B
>C>Dの順で安定であることがわかる。すなわち、図
4の結果と図5の結果とがよく一致している。したがっ
て、ゲルマニウム量が45%であるサンプルDは、あま
り好ましくないという結果になった。そこで、図2の各
線A〜Eのいずれかに従ってゲルマニウム量と水素量と
を上記数1に従って制御すればよいのであるが、好まし
くは、ゲルマニウム量が45%を超えない範囲、たとえ
ば図2における右下がりの斜線Fより内側(左側)の領
域でゲルマニウム量および水素量を決定する。
## EQU1 ## Eopt = aC H + bC Ge + c where a, b, and c are constants, C H is the amount of hydrogen, and C Ge is the amount of germanium. In the experiment, a-Si
A film of Ge: H (Eopt = 1.32 eV) was formed under each of the following conditions to obtain each sample. (A) C H = 5.5%: C Ge = 29% (B) C H = 7.8%: C Ge = 32% (C) C H = 8.9%: C Ge = 40% (D ) C H = 14%: C Ge = 45% For each of these samples A to D, the optical gap Eopt
The absorption coefficient (cm-1) was measured. The result is shown in FIG. In this FIG. 3, Eopt = 1.3 eV
In the region below, the smaller the absorption coefficient, the smaller the defect density.
Therefore, the film quality is good in the order of sample C>B>A> D. However, after the light irradiation, as shown in FIG.
It can be seen that the stability is in the order of B>C> D. Furthermore, FIG. 5 shows the relationship between the standardized photosensitivity (σ ph / σ d ) and the light irradiation time when 48 ° C. sun rays are radiated through the “R65” filter. A> B
It turns out that it is stable in the order of>C> D. That is, the result of FIG. 4 and the result of FIG. 5 are in good agreement. Therefore, the sample D having the germanium content of 45% was not so preferable. Therefore, the amount of germanium and the amount of hydrogen may be controlled in accordance with any one of the lines A to E in FIG. The amount of germanium and the amount of hydrogen are determined in the region inside (left side) of the downward diagonal line F.

【0014】なお、光学ギャップEopt を測定するに当
たっては、hν対(αhν)1/3 プロットから求めた
(h:プランク定数、ν:波数、α:吸収係数)。この
ような測定方法は、たとえば、Hishikawa et al. Appli
ed Physics Letter 57(8),20 August 1990 p.171〜173
に詳細に記述されている。
In measuring the optical gap Eopt, it was obtained from hν vs. (αhν) 1/3 plot (h: Planck's constant, ν: wave number, α: absorption coefficient). Such a measuring method is described in, for example, Hishikawa et al. Appli.
ed Physics Letter 57 (8), 20 August 1990 p.171-173
Are described in detail in.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従って光起電力装置を製造するのに
用いられるプラズマCVD装置の一例を示す図解図であ
る。
FIG. 1 is an illustrative view showing an example of a plasma CVD apparatus used for manufacturing a photovoltaic device according to the present invention.

【図2】この発明の一実施例を示す図解図である。FIG. 2 is an illustrative view showing one embodiment of the present invention.

【図3】光学ギャップをパラメータとしたゲルマニウム
量および水素量の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of germanium and the amount of hydrogen with the optical gap as a parameter.

【図4】各サンプルA〜Dの光学ギャップに対する吸収
係数を示すグラフ(光照射前)である。
FIG. 4 is a graph (before light irradiation) showing the absorption coefficient of each sample A to D with respect to the optical gap.

【図5】各サンプルA〜Dの光学ギャップに対する吸収
係数を示すグラフ(光照射後)である。
FIG. 5 is a graph (after light irradiation) showing absorption coefficients with respect to optical gaps of samples A to D.

【図6】各サンプルA〜Dの光照射時間に対する規格化
された光感度を示すグラフである。
FIG. 6 is a graph showing the normalized photosensitivity of each sample A to D with respect to the light irradiation time.

【符号の説明】[Explanation of symbols]

10 …プラズマCVD装置 12 …チャンバ 14 …基板ホルダ 16 …ヒータ 20 …基板 22 …RF電極 30 …光起電力装置 36 …半導体層 10 ... Plasma CVD apparatus 12 ... Chamber 14 ... Substrate holder 16 ... Heater 20 ... Substrate 22 ... RF electrode 30 ... Photovoltaic device 36 ... Semiconductor layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所望の光学ギャップに従って制御されたゲ
ルマニウム量および水素量を有する水素化アモルファス
シリコンゲルマニウム層を備える、光起電力装置。
1. A photovoltaic device comprising a hydrogenated amorphous silicon germanium layer having a germanium content and a hydrogen content controlled according to a desired optical gap.
JP5067856A 1993-03-26 1993-03-26 Photovoltaic device Pending JPH06283740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5067856A JPH06283740A (en) 1993-03-26 1993-03-26 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5067856A JPH06283740A (en) 1993-03-26 1993-03-26 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPH06283740A true JPH06283740A (en) 1994-10-07

Family

ID=13357015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5067856A Pending JPH06283740A (en) 1993-03-26 1993-03-26 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH06283740A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260768U (en) * 1988-10-28 1990-05-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260768U (en) * 1988-10-28 1990-05-07

Similar Documents

Publication Publication Date Title
US4968384A (en) Method of producing carbon-doped amorphous silicon thin film
US4818560A (en) Method for preparation of multi-layer structure film
US4624906A (en) Electrophotographic sensitive member having a fluorinated amorphous silicon photoconductive layer
JPS6161103B2 (en)
US4631198A (en) Method of manufacturing thin amorphous silicon film
JPS6240717A (en) Accumulated film forming method and device
JPH06283740A (en) Photovoltaic device
DE3610401A1 (en) SEMICONDUCTOR ELEMENT AND METHOD FOR THE PRODUCTION THEREOF AND ITEM IN THAT THIS ELEMENT IS USED
JPS62240768A (en) Formation of deposited film
JPS60144750A (en) Photoconductive member
US4677249A (en) Photovoltaic device
JPS6227388B2 (en)
JP2925310B2 (en) Deposition film formation method
JPS5927522A (en) Fabrication of amorphous semiconductor thin film
JPS63223183A (en) Formation of functional deposited film by microwave plasma cvd
JP2598002B2 (en) Method for forming functional deposited film by microwave plasma CVD method
JPH0523051B2 (en)
JP2598003B2 (en) Method for forming functional deposited film by microwave plasma CVD method
JPS6322057B2 (en)
JPS61278132A (en) Forming method for amorphous hydride sige film
JPH04299522A (en) Method and device for manufacturing non-single crystal silicon
JPH04299523A (en) Method and device for manufacturing non-single crystal silicon
JPS6273624A (en) Manufacture of amorphous silicon germanium thin film
JPH04299524A (en) Method and device for manufacturing non-single crystal silicon
JPS61137158A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010925