JPH06283195A - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery

Info

Publication number
JPH06283195A
JPH06283195A JP5071417A JP7141793A JPH06283195A JP H06283195 A JPH06283195 A JP H06283195A JP 5071417 A JP5071417 A JP 5071417A JP 7141793 A JP7141793 A JP 7141793A JP H06283195 A JPH06283195 A JP H06283195A
Authority
JP
Japan
Prior art keywords
active material
nickel
electrolyte
weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5071417A
Other languages
Japanese (ja)
Other versions
JP2568971B2 (en
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP5071417A priority Critical patent/JP2568971B2/en
Publication of JPH06283195A publication Critical patent/JPH06283195A/en
Application granted granted Critical
Publication of JP2568971B2 publication Critical patent/JP2568971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve rapid discharging characteristic and life expectancy by forming a nickel-hydrogen secondary battery of a positive electrode filled with an active material paste consisting of a porous conductive base material and Ni(OH)2, CoO and ZnO, for each of which the wt.% is specified, a negative electrode consisting of hydrogen absorption alloy, and of an electrolyte consisting of KOH and LiOH. CONSTITUTION:For a porous conductive base material, an Ni sponge having 95-97% of communicating holes is used. For an active paste, a required component consisting of Ni(OH)2, CoO and ZnO is used. The Ni(OH)2 is activated as a positive electrode active material, and the compound ratio thereof in the active material paste is 85-98wt.%. CoO is used to improve the utilization efficiency of the active material, while it is a component for degrading rapid discharging characteristic. The compound ratio of CoO is thus 1-7wt.%. ZnO is a component for restricting the reduction in the cycle life, and the compound ratio is also 1-7wt.%. An electrolyte consisting of KOH and LiOH is a component for maintaining the high level of utilization factor of the active material, and the compound ratio is 36-41wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素二次電池
に関し、更に詳しくは、長いサイクル寿命を有し、活物
質利用率が高く、また急放電特性も良好で、広い温度域
でも使用可能なニッケル−水素二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery, and more specifically, it has a long cycle life, a high utilization rate of an active material, a good rapid discharge characteristic, and can be used in a wide temperature range. Nickel-hydrogen secondary battery.

【0002】[0002]

【従来の技術】各種の電気・電子機器の小型軽量化,コ
ードレス化の進展に伴い、それらの電源として用いる電
池には、小型化・軽量化・高容量化への要求が高まって
いる。この要請に応える高容量電池として、最近、ニッ
ケル−水素二次電池が注目を集めている。
2. Description of the Related Art With the progress of miniaturization, weight reduction and cordlessness of various electric / electronic devices, there is an increasing demand for miniaturization, weight reduction and high capacity of batteries used as their power sources. As a high-capacity battery that meets this demand, nickel-hydrogen secondary batteries have recently attracted attention.

【0003】このニッケル−水素二次電池は、水素を負
極活物質として作動するものであり、その発電要素は、
可逆的に水素を吸蔵・放出することができる水素吸蔵合
金を導電基材に担持させて成る負極と、通常、正極活物
質として動作するNi(OH)2 を導電基材に担持させ
て成る正極とをアルカリ電解液の中に配置して構成され
ている。
This nickel-hydrogen secondary battery operates by using hydrogen as a negative electrode active material, and its power generating element is
A negative electrode formed by supporting a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen on a conductive base material, and a positive electrode formed by supporting Ni (OH) 2 which normally operates as a positive electrode active material on the conductive base material. And are placed in an alkaline electrolyte.

【0004】この電池の形状としては、円筒タイプと角
型タイプのものがあるが、一般に、密閉型の円筒タイプ
のものの検討が進められている。この密閉型の円筒タイ
プの電池は、通常、図1で示したような構造になってい
る。すなわち、負極端子も兼ねる円筒容器の底に絶縁板
2が配置され、その上に、シート状の正極3と同じくシ
ート状の負極4を、電気絶縁性のマット状合成樹脂から
成るセパレータを介して重ね合わせて渦巻状に捲回した
極板群が収容される。ついで、容器内に所定のアルカリ
電解液を注入したのち、その極板群の上に絶縁板2をの
せ、封口板6で封鎖し、全体は正極端子も兼ねるふた7
で絶縁ガスケット8を介して密封されている。
As the shape of this battery, there are a cylindrical type and a square type, and generally, a closed cylindrical type is being studied. This sealed cylindrical battery usually has a structure as shown in FIG. That is, the insulating plate 2 is arranged on the bottom of the cylindrical container which also serves as the negative electrode terminal, and the sheet-shaped positive electrode 3 and the sheet-shaped negative electrode 4 are provided on the insulating plate 2 via the separator made of electrically insulating mat-shaped synthetic resin. An electrode plate group that is superposed and wound in a spiral shape is accommodated. Then, after injecting a predetermined alkaline electrolyte into the container, the insulating plate 2 is placed on the electrode plate group, and the plate is closed with the sealing plate 6, and the whole lid 7 also serving as the positive electrode terminal is used.
Are sealed via an insulating gasket 8.

【0005】上記したシート状の正極3としては、多孔
質の導電シートに正極活物質として動作するNi(O
H)2 を主体とした活物質ペーストを充填したものが用
いられ、またシート状の負極4としては、水素吸蔵合金
の粉末を結着剤と一緒に混合してそれをシート成形した
ものや、多孔質の導電シートに水素吸蔵合金と結着剤と
のスラリーを担持させたものなどが広く用いられてい
る。更に、アルカリ電解液としては、所定濃度のKOH
水溶液が一般に用いられる。
As the above-mentioned sheet-shaped positive electrode 3, a porous conductive sheet is used for Ni (O) which functions as a positive electrode active material.
H) 2 which is mainly filled with an active material paste is used, and the sheet-shaped negative electrode 4 is formed by mixing a powder of a hydrogen storage alloy with a binder and sheet-forming the same. A porous conductive sheet carrying a slurry of a hydrogen storage alloy and a binder is widely used. Furthermore, as the alkaline electrolyte, KOH having a predetermined concentration is used.
Aqueous solutions are commonly used.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記したニ
ッケル−水素二次電池の正極に関しては、サイクル寿
命が長いこと、活物質の利用率が高いこと、また急
放電に対しても充分に対応できる特性を備えているこ
と、また使用環境の温度に左右されず、広い温度範囲
で使用可能であることなどの性状が求められている。
By the way, the positive electrode of the nickel-hydrogen secondary battery described above has a long cycle life, a high utilization rate of the active material, and can sufficiently cope with rapid discharge. There is a demand for properties such as having characteristics and being able to be used in a wide temperature range regardless of the temperature of the environment in which it is used.

【0007】しかしながら、これら4つの性状、とりわ
け〜までの性状を同時に満たしているニッケル−水
素二次電池は開発されていないのが現状である。本発明
の目的は、上記した問題を解決し、サイクル寿命が長
く、活物質の利用率が高く、急放電特性も優れ、しかも
広い温度域で使用できるニッケル−水素二次電池の提供
を目的とする。
However, at present, a nickel-hydrogen secondary battery satisfying all of these four properties, especially the properties up to, has not been developed. An object of the present invention is to solve the above-mentioned problems, to provide a nickel-hydrogen secondary battery which has a long cycle life, a high utilization rate of an active material, excellent rapid discharge characteristics, and can be used in a wide temperature range. To do.

【0008】[0008]

【課題を解決するための手段】ところで、正極活物質N
i(OH)2 に関する電池反応は、次式:
Means for Solving the Problems By the way, the positive electrode active material N
The battery reaction for i (OH) 2 is:

【0009】[0009]

【数1】 [Equation 1]

【0010】で示される。すなわち、Ni(OH)2
充電の過程で、NiOOHになり、また、放電の過程で
Ni(OH)2 に復元する。このとき、NiOOHとし
ては、Niの価数が3価であるβ−NiOOHとNiの
価数が3.4価のγ−NiOOHが生成する。とくに、活
物質利用率が100%以上と高利用率を示す場合には、
充電時に、活物質のNi(OH)2 のほとんどはγ−N
iOOHに転化していることを意味する。
[0010] That is, Ni (OH) 2 becomes NiOOH during the charging process and is restored to Ni (OH) 2 during the discharging process. At this time, as NiOOH, β-NiOOH in which the valence of Ni is trivalent and γ-NiOOH in which the valence of Ni is 3.4 are generated. Especially when the active material utilization rate is 100% or higher, which indicates a high utilization rate,
During charging, most of the active material Ni (OH) 2 is γ-N.
means converted to iOOH.

【0011】Ni(OH)2 がγ−NiOOHに転化し
ている場合の電池の放電時においては、価数3.4のNi
は価数2のNiに還元されるので、電池として得られる
放電容量は、β−NiOOH(Niの価数3)からNi
(OH)2 への還元の場合よりも大きくなる。すなわ
ち、放電容量の高い電池の製造にとっては、充電時に、
正極活物質であるNi(OH)2 がγ−NiOOHに転
化することが好ましいことになる。
When the battery is discharged when Ni (OH) 2 is converted to γ-NiOOH, Ni having a valence of 3.4 is used.
Is reduced to Ni having a valence of 2, the discharge capacity obtained as a battery is from β-NiOOH (valence 3 of Ni) to Ni.
Greater than in the case of reduction to (OH) 2 . That is, for the manufacture of batteries with high discharge capacity, during charging,
It is preferable that Ni (OH) 2 which is the positive electrode active material is converted into γ-NiOOH.

【0012】しかしながら、γ−NiOOHはβ−Ni
OOHよりも高体積である。そのため、充電時にγ−N
iOOHが生成すると、正極の膨張現象が起こり、セパ
レータ中に保持されているアルカリ電解液を吸収して電
池の内部抵抗を増大させ、もって電池のサイクル寿命は
短くなるという問題が発生する。すなわち、γ−NiO
OHの生成は電池の高容量化を実現させるが、一方では
電池のサイクル寿命を短くするという作用を及ぼし、結
果として、活物質の利用率を低めることになる。
However, γ-NiOOH is β-Ni
Higher volume than OOH. Therefore, when charging, γ-N
When iOOH is generated, the positive electrode expands and absorbs the alkaline electrolyte retained in the separator to increase the internal resistance of the battery, which causes a problem that the cycle life of the battery is shortened. That is, γ-NiO
The generation of OH realizes higher capacity of the battery, but on the other hand, it has an effect of shortening the cycle life of the battery, and as a result, lowers the utilization rate of the active material.

【0013】本発明者は、以上の知見を踏まえて前記し
た目的を達成するために、正極に用いる活物質ペースト
の組成およびアルカリ電解液の組成などについて鋭意研
究を重ねた結果、後述する組成の活物質ペーストと後述
する組成および濃度のアルカリ電解液を組合せた電池
は、活物質の高利用率化(電池の高容量化)とそのサイ
クル寿命の長期化を実現すると同時に、急放電特性も優
れたものになり、かつ広い温度域でも使用可能になると
の事実を見出し、本発明のニッケル−水素二次電池を開
発するに至った。
In order to achieve the above-mentioned object based on the above findings, the present inventor has conducted diligent research on the composition of the active material paste used for the positive electrode and the composition of the alkaline electrolyte, and as a result, A battery that combines an active material paste and an alkaline electrolyte with the composition and concentration described below achieves high utilization of the active material (higher battery capacity) and longer cycle life, and at the same time has excellent rapid discharge characteristics. The present invention has led to the development of the nickel-hydrogen secondary battery of the present invention by finding the fact that it can be used even in a wide temperature range.

【0014】すなわち、本発明のニッケル−水素二次電
池は、多孔質の導電基材に、Ni(OH)2 :85〜9
8重量%,CoO:1〜7重量%,ZnO:1〜7重量
%を必須とする活物質ペーストを充填して成る正極と、
水素吸蔵合金から成る負極と、KOHおよびLiOHを
必須の電解質とし、電気電解質の濃度が36〜41重量
%であるアルカリ電解液とを発電要素とすることを特徴
とする。
That is, in the nickel-hydrogen secondary battery of the present invention, Ni (OH) 2 : 85-9 is formed on the porous conductive substrate.
A positive electrode formed by filling an active material paste, which essentially contains 8% by weight, CoO: 1 to 7% by weight, ZnO: 1 to 7% by weight,
It is characterized in that a negative electrode made of a hydrogen storage alloy and an alkaline electrolyte having KOH and LiOH as essential electrolytes and an electric electrolyte concentration of 36 to 41% by weight are used as power generating elements.

【0015】本発明の電池は、後述する手段により、充
電時に、活物質であるNi(OH) 2 をできるだけγ−
NiOOHに転化して電池の高容量化を確保し、同時
に、γ−NiOOHの生成に伴う前記した不都合を解消
したものである。本発明の電池における発電要素の1つ
である正極は、上記した成分を必須とする活物質ペース
トが多孔質の導電基材に充填されたものである。
The battery of the present invention is charged by the means described below.
Ni (OH) which is the active material when electricity is applied 2As much as γ−
Converted to NiOOH to ensure high capacity of the battery, and at the same time
In addition, the above-mentioned inconvenience associated with the production of γ-NiOOH is eliminated.
It was done. One of the power generation elements in the battery of the present invention
The positive electrode is an active material based on the above-mentioned components.
Are filled in a porous conductive base material.

【0016】多孔質の導電基材としては、従来から用い
られているものであればよく格別限定されるものではな
いが、活物質ペーストの充填量を多くすることができる
という点で、例えば、多孔質が95〜97%で連通孔を
有するNiスポンジを好適なものとしてあげることがで
きる。このようなNiスポンジは、通常、所望の多孔度
で連通孔を有するプラスチックの発泡体、例えば、ポリ
ウレタンやポリエチレンの発泡体に公知の無電解Niめ
っきやNi蒸着を行なって発泡体の骨格部分の表面をN
iで被覆したのち、全体を大気中でその発泡体の熱分解
温度以上の温度で焼成してプラスチックの骨格部分を熱
分解除去し、プラスチックの骨格部分と同じ網状構造を
したNi骨格を有するスポンジとして製造される。
The porous conductive base material is not particularly limited as long as it is conventionally used, but, for example, it is possible to increase the filling amount of the active material paste. A Ni sponge having a porosity of 95 to 97% and having communication holes can be mentioned as a preferable example. Such a Ni sponge is usually formed by subjecting a plastic foam having a desired porosity and communicating holes, for example, a polyurethane or polyethylene foam to known electroless Ni plating or Ni vapor deposition to form a skeleton portion of the foam. The surface is N
After being coated with i, the whole is fired in air at a temperature higher than the thermal decomposition temperature of the foam to thermally decompose and remove the plastic skeleton, and a sponge having a Ni skeleton having the same network structure as the plastic skeleton. Manufactured as.

【0017】本発明の活物質ペーストは、Ni(OH)
2 ,CoO,ZnOを必須成分とする。これらのうち、
Ni(OH)2 が正極活物質として動作する。活物質ペ
ーストにおけるNi(OH)2 の配合割合は、85〜9
8重量%に設定される。この配合割合が85重量%より
少ない場合は、電池容量を支配的に規定する正極容量が
低くなるため、電池の高容量化に対して不都合であり、
また98重量%より多くなると、他の成分の配合割合が
小さくなって、目的とする効果を得ることができないか
らである。好ましい配合割合は、90〜95重量%であ
る。
The active material paste of the present invention is Ni (OH)
2 , CoO and ZnO are essential components. Of these,
Ni (OH) 2 acts as the positive electrode active material. The blending ratio of Ni (OH) 2 in the active material paste is 85 to 9
It is set to 8% by weight. When the blending ratio is less than 85% by weight, the positive electrode capacity that predominantly defines the battery capacity becomes low, which is inconvenient for increasing the capacity of the battery.
On the other hand, if it is more than 98% by weight, the blending ratio of other components becomes small, and the desired effect cannot be obtained. A preferred blending ratio is 90 to 95% by weight.

【0018】CoOは活物質の利用率向上に資する成分
である。しかし一方では、電池の急放電特性を劣化させ
る成分でもある。この後者の機能は、CoOがアルカリ
電解液に溶解して錯イオンとなり、この錯イオンが活物
質であるNi(OH)2 の表面を覆い、充電時に、この
錯イオンが酸化されてCoOOHに転化することがもた
らす結果である。すなわち、Ni(OH)2 の表面を覆
う上記CoOOHはその放電電位が低いので、急放電時
における正極の分極を大きくするからである。
CoO is a component that contributes to improving the utilization rate of the active material. However, on the other hand, it is also a component that deteriorates the rapid discharge characteristics of the battery. The latter function is that CoO dissolves in an alkaline electrolyte to form a complex ion, which covers the surface of Ni (OH) 2 which is an active material, and the complex ion is oxidized and converted to CoOOH during charging. Is the result of doing. That is, the above-mentioned CoOOH covering the surface of Ni (OH) 2 has a low discharge potential, so that the polarization of the positive electrode during rapid discharge is increased.

【0019】このようなことを勘案して、CoOの配合
割合は1〜7重量%に設定される。配合割合が1重量%
未満の場合には、活物質の利用率を向上させる効果が発
揮されず、また7重量%より多くなると、活物質の利用
率向上効果にとっては無意味になるだけではなく、逆
に、急放電特性が劣化して電池の容量低下を引き起こす
ようになるからである。好ましい配合割合は2〜5重量
%である。
Taking this into consideration, the blending ratio of CoO is set to 1 to 7% by weight. 1% by weight
If it is less than the above, the effect of improving the utilization rate of the active material is not exhibited, and if it exceeds 7% by weight, it is meaningless for the effect of improving the utilization rate of the active material and, conversely, rapid discharge occurs. This is because the characteristics deteriorate and the capacity of the battery decreases. A preferred blending ratio is 2 to 5% by weight.

【0020】活物質ペーストの他の必須成分であるZn
Oは、前記したγ−NiOOHの生成に伴う活物質のサ
イクル寿命の低下を抑制する働きをする。同時に、アル
カリ電解液にジンケートイオンとして溶解し、前記した
CoOの錯イオンがNi(OH)2 の表面を覆うことを
防止し、もって活物質の利用率の向上に資するものと考
えられる。
Zn which is another essential component of the active material paste
O has a function of suppressing a decrease in the cycle life of the active material due to the production of γ-NiOOH described above. At the same time, it is considered that it dissolves in the alkaline electrolyte as zincate ions to prevent the above-mentioned CoO complex ions from covering the surface of Ni (OH) 2 , thus contributing to the improvement of the utilization rate of the active material.

【0021】このZnOの配合割合は1〜7重量%に設
定される。配合割合が1重量%未満の場合には、活物質
のサイクル寿命を長くする効果が発揮されず、また7重
量%より多くなると、サイクル寿命の向上効果にとって
無意味であるばかりではなく、逆に、電池の容量低下が
引き起こされるからである。好ましい配合割合は2〜5
重量%である。
The compounding ratio of this ZnO is set to 1 to 7% by weight. When the blending ratio is less than 1% by weight, the effect of prolonging the cycle life of the active material is not exhibited, and when it exceeds 7% by weight, not only is it meaningless to the effect of improving the cycle life, but conversely This is because the capacity of the battery is reduced. The preferred blending ratio is 2-5
% By weight.

【0022】この活物質ペーストは上記3成分を必須と
して調製されるが、更に、必要に応じてはNi粉を配合
してもよい。このNi粉は導電材として機能し、活物質
ペーストとそれが充填されている多孔質導電基材との導
通状態を良好にし、もって活物質の利用率の向上にも資
する。このNi粉の配合割合は、7重量%以下にする。
これより多く配合すると、他の必須成分の配合割合が減
少して、活物質の利用率の低下を招き、また、Ni(O
H)2 の配合割合が減少して容量低下を招くからであ
る。
This active material paste is prepared with the above-mentioned three components as essential components, but Ni powder may be further compounded if necessary. This Ni powder functions as a conductive material, improves the electrical connection between the active material paste and the porous conductive base material in which the active material paste is filled, and thus contributes to improving the utilization rate of the active material. The mixing ratio of this Ni powder is 7% by weight or less.
If it is mixed in a larger amount than this, the blending ratio of other essential components is decreased, leading to a decrease in the utilization rate of the active material.
This is because the blending ratio of H) 2 decreases and the capacity decreases.

【0023】つぎに、本発明電池の負極としては、従来
から用いられているものであれば何であってもよく格別
限定されるものではない。とくにパンチングニッケルシ
ートに、公知の水素吸蔵合金の粉末とメチルセルロース
のような増粘剤とイオン交換水とで調製した合金スラリ
ーを塗布したのち乾燥し、ついで、所定の圧力で圧延し
て均一な厚みの合金層として担持させたものが好適であ
る。
Next, the negative electrode of the battery of the present invention may be any one conventionally used, and is not particularly limited. In particular, a punched nickel sheet is coated with a known hydrogen-absorbing alloy powder, an alloy slurry prepared with a thickening agent such as methylcellulose and ion-exchanged water, dried, and then rolled at a predetermined pressure to obtain a uniform thickness. What is supported as the alloy layer of is preferable.

【0024】ここで、パンチングニッケルシートとして
は、例えば、所定厚みのニッケルシートに所定径の小孔
を複数個穿設したのものや、また例えば所定径の小孔が
複数個穿設されている他の素材の多孔シートにニッケル
をめっきまたは蒸着したものなど、少なくとも表面がニ
ッケルで形成されているものが用いられる。本発明電池
の電解液としては、KOHとLiOHとを必須の電解質
とするものが用いられる。
Here, as the punching nickel sheet, for example, a nickel sheet having a predetermined thickness and a plurality of small holes having a predetermined diameter, or a plurality of small holes having a predetermined diameter, for example, are punched. At least the surface of which is formed of nickel, such as a porous sheet of other material plated or vapor-deposited with nickel, is used. As the electrolytic solution of the battery of the present invention, a solution containing KOH and LiOH as essential electrolytes is used.

【0025】この電解液において、主要に電池反応に寄
与する電解質はKOHであって、LiOHは電池の使用
温度が高温域であっても、活物質の利用率を高位水準に
保持するために配合される成分である。電解液における
上記電解質の割合は、全体として36〜41重量%に設
定される。電解質の割合が36重量%より少ない場合
は、活物質であるNi(OH)2のγ−NiOOH化が
充分に進まないので、活物質の利用率低下とともにサイ
クル寿命の短縮という事態が起こり、また41重量%よ
り多くなると、活物質ペーストを上記した組成に調整し
た場合であっても、同じく活物質の利用率の低下,サイ
クル寿命の短縮という問題が生ずる。電解液としては、
電解質濃度が37〜40重量%である電解液が好適であ
る。
In this electrolytic solution, the electrolyte that mainly contributes to the battery reaction is KOH, and LiOH is blended in order to keep the utilization rate of the active material at a high level even when the battery is used in a high temperature range. It is a component that is used. The proportion of the electrolyte in the electrolytic solution is set to 36 to 41% by weight as a whole. When the proportion of the electrolyte is less than 36% by weight, the active material Ni (OH) 2 is not converted to γ-NiOOH sufficiently, so that the utilization rate of the active material is reduced and the cycle life is shortened. When the content is more than 41% by weight, even when the active material paste is adjusted to the above-mentioned composition, the same problems as the utilization rate of the active material and the cycle life are shortened. As the electrolyte,
An electrolytic solution having an electrolyte concentration of 37 to 40% by weight is suitable.

【0026】この電解液におけるKOHとLiOHの配
合割合は、重量比で、KOH:LiOH20〜40:1
にすることが好ましい。LiOHをあまり多くすると、
溶解度が低いためLiOHの析出が起こり、その結果、
電解質全体の濃度を36重量%以上にすることができな
くなるからである。また、この電解液には、更に、Cs
OHまたは/およびRbOHを配合してもよい。CsO
H,RbOHはいずれも、電池の使用温度が低温域であ
っても、活物質の利用率を高位水準に保持するという働
きをする。更には、NaOHは高温域において活物質の
利用率を高位水準に保つことができるので、電解液にN
aOHを配合することもできる。
The mixing ratio of KOH and LiOH in this electrolytic solution is KOH: LiOH 20 to 40: 1 by weight.
Is preferred. If you use too much LiOH,
LiOH precipitation occurs due to low solubility, and as a result,
This is because the concentration of the whole electrolyte cannot be increased to 36% by weight or more. In addition, this electrolyte further contains Cs
You may mix | blend OH or / and RbOH. CsO
Both H and RbOH have a function of maintaining the utilization rate of the active material at a high level even when the operating temperature of the battery is in the low temperature range. Furthermore, since NaOH can maintain the utilization rate of the active material at a high level in a high temperature range,
It is also possible to add aOH.

【0027】これらCsOH,RbOH,NaOHの配
合量が少なすぎると、それぞれが有している上記特性を
生かすことができず、またあまり多く配合すると、主要
な電解質であるKOHの機能が減殺されてしまうので、
通常は、KOHとLiOHの合量100に対し、2〜2
0程度であることが好ましい。
If the amount of these CsOH, RbOH, and NaOH is too small, the above-mentioned characteristics of each cannot be utilized, and if the amount is too large, the function of KOH, which is the main electrolyte, is diminished. Because it will
Usually, 2 to 2 for 100 total amount of KOH and LiOH
It is preferably about 0.

【0028】[0028]

【発明の実施例】Examples of the invention

(1)活物質ペーストの組成と電池特性 多孔度96%で厚み1.6mmの発泡ポリウレタンシートに
無電解ニッケルめっきを施したのち、700℃の還元雰
囲気中で焼成してスポンジ状ニッケルシートを製造し、
これを正極の導電基材として用意した。
(1) Composition of active material paste and battery characteristics A sponge-like nickel sheet is manufactured by applying electroless nickel plating to a foamed polyurethane sheet with a porosity of 96% and a thickness of 1.6 mm, and then firing in a reducing atmosphere at 700 ° C. Then
This was prepared as a positive electrode conductive base material.

【0029】ついで、表1に示した組成の固形成分に1.
2%濃度のカルボキシメチルセルロース水溶液を添加し
て成るペーストを上記スポンジ状ニッケルシートに充填
し、80℃で2時間乾燥したのち2ton/cm2 の圧力で圧
延し各種のシート状正極を製造した。なお、各正極にお
いて、活物質であるNi(OH)2 の充填量はいずれの
場合も4.0gとした。
Then, the solid component having the composition shown in Table 1 was added to 1.
The above sponge-like nickel sheet was filled with a paste obtained by adding a 2% aqueous solution of carboxymethyl cellulose, dried at 80 ° C. for 2 hours, and then rolled at a pressure of 2 ton / cm 2 to produce various sheet-like positive electrodes. In each of the positive electrodes, the filling amount of Ni (OH) 2 as the active material was 4.0 g in all cases.

【0030】つぎに、まずアーク溶解法で組成:MmN
3.3 Co1.0 Mn0.4 Al0.3 (Mmはミッシュメタ
ル)で示される水素吸蔵合金を製造したのち、これを粉
砕して150メッシュ(タイラー篩)下の合金粉末とし
た。その後、イオン交換水100重量部に対し、上記合
金粉末400重量部,カルボキシメチルセルロース1重
量部から成る合金スラリーを調製し、この合金スラリー
に厚み0.07mm,開孔率38%のパンチングニッケルシ
ートを浸漬したのち引き上げ、大気中で乾燥し、2ton/
cm2 の圧力で圧延し、全体の厚みが0.4mmであるシート
状負極を製造した。
Next, by the arc melting method, the composition: MmN
After producing a hydrogen storage alloy represented by i 3.3 Co 1.0 Mn 0.4 Al 0.3 (Mm is misch metal), the hydrogen storage alloy was pulverized to obtain an alloy powder under 150 mesh (Tyler sieve). Then, an alloy slurry comprising 400 parts by weight of the alloy powder and 1 part by weight of carboxymethyl cellulose was prepared with respect to 100 parts by weight of ion-exchanged water, and a punching nickel sheet having a thickness of 0.07 mm and a porosity of 38% was prepared. After soaking, pull up, dry in air, 2ton /
Rolling was performed at a pressure of cm 2 to produce a sheet-shaped negative electrode having a total thickness of 0.4 mm.

【0031】これらシート状正極とシート状負極の間
に、厚み0.18mm,多孔度65%のナイロンセパレータ
を配置し、全体を渦巻状に巻回して直径13mmの極板群
にした。ついで、鋼にニッケルめっきが施されている内
径13.2mmの有底円筒容器に上記発電要素を収容し、こ
こに、KOH:36重量%,LiOH:1重量%が溶解
されている電解液を注入したのちふたで密封し、密閉型
の円筒電池とした。
A nylon separator having a thickness of 0.18 mm and a porosity of 65% was arranged between the sheet-shaped positive electrode and the sheet-shaped negative electrode, and the whole was spirally wound to form a plate group having a diameter of 13 mm. Next, the above-mentioned power generating element is housed in a bottomed cylindrical container having an inner diameter of 13.2 mm, which is made by plating nickel on steel, and an electrolytic solution in which KOH: 36 wt% and LiOH: 1 wt% are dissolved therein is placed therein. After injection, the container was sealed with a lid to obtain a sealed cylindrical battery.

【0032】これらの電池につき、温度:20℃,充
電:1C,−△V制御,放電:1C,1.0Vまでの条件
で充放電サイクル試験を行い、定格の80%になるまで
のサイクル数を調べた。また、各電池につき、温度20
℃,0.2C,7.5時間の条件で充電したのち温度20℃
で16時間放置し、ついで、温度20℃,0.2Cで放電
してその放電容量を測定し、その値から低率放電時にお
ける正極活物質の利用率(%)を算出した。
With respect to these batteries, a charge / discharge cycle test was conducted under the conditions of temperature: 20 ° C., charge: 1 C, -ΔV control, discharge: 1 C, 1.0 V, and the number of cycles until reaching 80% of the rating. I checked. In addition, the temperature of each battery is 20
After charging under conditions of ℃, 0.2C, 7.5 hours, temperature is 20 ℃
Then, the discharge capacity was measured by discharging at a temperature of 20 ° C. and 0.2 C, and the utilization rate (%) of the positive electrode active material at the time of low rate discharge was calculated from the value.

【0033】更に、各電池につき、温度20℃,0.2
C,7.5時間の条件で充電したのち温度20℃で16時
間放置し、ついで、温度20℃,3Cで放電してその放
電容量を測定し、その値から高率放電時における正極活
物質の利用率(%)を算出した。以上の結果を一括して
表1に示した。
Further, each battery has a temperature of 20 ° C. and 0.2
After charging under the conditions of C, 7.5 hours, left at 20 ° C. for 16 hours, and then discharged at 20 ° C., 3 C to measure the discharge capacity. The utilization rate (%) was calculated. The above results are collectively shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果から明らかなように、本発明で
規定する組成の活物質ペーストを用いることにより、電
池のサイクル寿命は700回以上と長くなり、また同時
に、低率放電時における正極活物質の利用率は100%
以上で、かつ高率放電時における正極活物質の利用率は
80%であり、いずれの放電時においても高い利用率が
得られている。すなわち、電池の高容量化が実現されて
いる。 (2)電解液濃度の影響 活物質ペーストとしては表1で示した実施例6の組成の
ものを用い、電解液としては、電解質がKOH,LiO
H,CsOHから成り、互いの重量比は35:1:1と
一定であるが電解質全体としての濃度を変化させたもの
を用いて各種の電池を製造した。
As is clear from the results shown in Table 1, by using the active material paste having the composition defined in the present invention, the cycle life of the battery is extended to 700 times or more, and at the same time, the positive electrode activity at the time of low rate discharge is also increased. 100% utilization of substances
As described above, the utilization factor of the positive electrode active material during high-rate discharge is 80%, and a high utilization factor is obtained in any discharge. That is, higher capacity of the battery has been realized. (2) Effect of Electrolyte Concentration As the active material paste, the composition of Example 6 shown in Table 1 was used, and as the electrolyte, the electrolyte was KOH, LiO.
Various batteries were manufactured by using H and CsOH, each having a constant weight ratio of 35: 1: 1 but varying the concentration of the electrolyte as a whole.

【0036】これらの電池につき、温度:20℃,充
電:1C,−△V制御,放電:1C,1.0Vまでの条件
で充放電サイクル試験を行い、定格の80%になるまで
のサイクル数を調べた。その結果を、電解液濃度との関
係図として図2に示した。更に、各電池につき、温度2
0℃,0.2C,7.5時間の条件で充電したのち温度20
℃で16時間放置し、ついで、温度20℃,3Cで放電
してその放電容量を測定し、その値から高率放電時にお
ける正極活物質の利用率(%)を算出した。その結果
を、電解液濃度との関係図として図3に示した。
With respect to these batteries, a charge / discharge cycle test was conducted under the conditions of temperature: 20 ° C., charge: 1 C, -ΔV control, discharge: 1 C, 1.0 V, and the number of cycles until reaching 80% of the rating. I checked. The results are shown in FIG. 2 as a relationship diagram with the electrolyte concentration. Furthermore, each battery has a temperature of 2
After charging under conditions of 0 ℃, 0.2C, 7.5 hours, temperature 20
After leaving it at 16 ° C. for 16 hours, the battery was discharged at a temperature of 20 ° C. and 3 C, the discharge capacity was measured, and the utilization rate (%) of the positive electrode active material at the time of high rate discharge was calculated from the value. The results are shown in FIG. 3 as a relational diagram with the concentration of the electrolytic solution.

【0037】図3から明らかなように、電解液濃度が3
6〜41重量%の範囲内にある場合は、活物質の利用率
は80%以上になる。そのとき、サイクル寿命は950
回以上が確保されている。 (3)電解液の種類の影響 まず、表2で示した組成の電解液を調製した。
As is apparent from FIG. 3, the electrolyte concentration is 3
When it is in the range of 6 to 41% by weight, the utilization rate of the active material is 80% or more. At that time, the cycle life is 950
It is secured more than once. (3) Effect of type of electrolytic solution First, an electrolytic solution having the composition shown in Table 2 was prepared.

【0038】[0038]

【表2】 つぎに、活物質ペーストとしては表1で示した実施例6
のものを用い、電解液としては、表2で示したA〜Fま
でのものをそれぞれ用いて6種類の電池を製造した。
[Table 2] Next, as the active material paste, Example 6 shown in Table 1 was used.
6 types of batteries were manufactured by using each of the electrolyte solutions of A to F shown in Table 2 as the electrolytic solution.

【0039】これらの電池につき、温度20℃,0.2
C,7.5時間の条件で充電し、ついで各放電温度で16
時間放置したのち、その温度下において、0.5Cで1.0
Vになるまで放電してその放電容量を測定し、その値か
ら正極活物質の利用率(%)を算出した。その結果を、
放電温度との関係図として図4に示した。図中、○印は
電解液Aの場合,△印は電解液Bの場合,□印は電解液
Cの場合,◇印は電解液Dの場合,×印は電解液Eの場
合,▽印は電解液Fの場合をそれぞれ表す。
For these batteries, the temperature was 20 ° C. and the temperature was 0.2.
Charge at C for 7.5 hours, then 16 at each discharge temperature
After leaving it for an hour, it is 1.0 at 0.5C at that temperature.
After discharging to V, the discharge capacity was measured, and the utilization rate (%) of the positive electrode active material was calculated from the value. The result is
FIG. 4 shows the relationship with the discharge temperature. In the figure, ○ indicates electrolyte A, Δ indicates electrolyte B, □ indicates electrolyte C, ◇ indicates electrolyte D, × indicates electrolyte E, and ▽ marks. Represents the case of the electrolytic solution F, respectively.

【0040】図4から明らかなように、KOH単独の電
解液(D,◇印)を用いた電池では、低温域における活
物質の利用率が非常に低下しており、また高温域におけ
る利用率も低い。そして、電解液Dに更にLiOHを含
有させた電解液(B,△印)を用いると低温域における
利用率は若干向上するが、しかし、高温域における利用
率は非常に向上する。このことからLiOHは、低温域
における利用率向上にも資するが、基本的には高温域に
おける利用率の向上に有効な電解質であることがわか
る。
As is apparent from FIG. 4, in the battery using the electrolytic solution containing only KOH (D, ⋄), the utilization factor of the active material in the low temperature region is extremely low, and the utilization factor in the high temperature region is low. Is also low. When the electrolytic solution (B, Δ) containing LiOH is further used as the electrolytic solution D, the utilization factor in the low temperature region is slightly improved, but the utilization factor in the high temperature region is greatly improved. From this, it can be seen that LiOH contributes to the improvement of the utilization factor in the low temperature region, but is basically an electrolyte effective in improving the utilization factor in the high temperature region.

【0041】また、電解液DにCsOHを含有させた電
解液(C,□印)を用いると、低温域における利用率は
著しく向上するが、しかし高温域における利用率の向上
は認められない。このことから、CsOH(またはRb
OH)は低温域における利用率の向上に有効な電解質で
あることがわかる。このようなことから、本発明の電池
においては、CsOH(またはRbOH)を含有する電
解液、すなわち、KOHとLiOHとCsOHとから成
る組成の電解液を用いれば、低温域,高温域における活
物質の利用率が向上することになり、電池の使用温度域
は拡大することになる。
When the electrolytic solution (C, □ mark) containing CsOH is used as the electrolytic solution D, the utilization factor in the low temperature region is remarkably improved, but the utilization factor in the high temperature region is not improved. From this, CsOH (or Rb
It can be seen that OH) is an electrolyte effective for improving the utilization rate in the low temperature range. From the above, in the battery of the present invention, if an electrolytic solution containing CsOH (or RbOH), that is, an electrolytic solution composed of KOH, LiOH, and CsOH is used, the active material in a low temperature region and a high temperature region is increased. The utilization rate of the battery will be improved, and the operating temperature range of the battery will be expanded.

【0042】[0042]

【発明の効果】以上の説明で明らかなように、本発明の
電池は、サイクル寿命が長く、活物質の利用率が高く、
急放電特性も良好であり、しかも広い温度域で使用可能
であり、ニッケル−水素二次電池への要望を大きく充足
していて、その工業的価値は大である。
As is apparent from the above description, the battery of the present invention has a long cycle life, a high utilization rate of the active material,
It has good rapid discharge characteristics, can be used in a wide temperature range, and satisfies a great demand for nickel-hydrogen secondary batteries, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉型の円筒電池の内部構造を示す一部切欠斜
視図である。
FIG. 1 is a partially cutaway perspective view showing the internal structure of a sealed cylindrical battery.

【図2】電解液温度と電池のサイクル寿命との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between electrolyte temperature and battery cycle life.

【図3】電解液温度と正極活物質の利用率との関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between an electrolytic solution temperature and a utilization rate of a positive electrode active material.

【図4】各種電解液を用いたときに、放電温度と正極活
物質の利用率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the discharge temperature and the utilization rate of the positive electrode active material when various electrolytic solutions are used.

【符号の説明】[Explanation of symbols]

1 円筒容器 2 絶縁板 3 シート状正極 4 シート状負極 5 セパレータ 6 封口板 7 ふた 8 絶縁ガスケット 1 Cylindrical container 2 Insulation plate 3 Sheet-shaped positive electrode 4 Sheet-shaped negative electrode 5 Separator 6 Sealing plate 7 Lid 8 Insulation gasket

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月23日[Submission date] June 23, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】すなわち、本発明のニッケル−水素二次電
池は、多孔質の導電基材に、Ni(OH)2 :85〜9
8重量%,CoO:1〜7重量%,ZnO:1〜7重量
%を必須とする活物質ペーストを充填して成る正極と、
水素吸蔵合金から成る負極と、KOHおよびLiOHを
必須の電解質とし、前記電解質の濃度が36〜41重量
%であるアルカリ電解液とを発電要素とすることを特徴
とする。
That is, in the nickel-hydrogen secondary battery of the present invention, Ni (OH) 2 : 85-9 is formed on the porous conductive substrate.
A positive electrode formed by filling an active material paste, which essentially contains 8% by weight, CoO: 1 to 7% by weight, ZnO: 1 to 7% by weight,
A negative electrode comprising a hydrogen storage alloy, the KOH and LiOH as essential electrolytes, the concentration of the electrolyte, characterized in that the power generating elements and an alkaline electrolyte is a 36-41 wt%.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の導電基材に、Ni(OH)2
85〜98重量%,CoO:1〜7重量%,ZnO:1
〜7重量%を必須とする活物質ペーストを充填して成る
正極と、水素吸蔵合金から成る負極と、KOHおよびL
iOHを必須の電解質とし、電気電解質の濃度が36〜
41重量%であるアルカリ電解液とを発電要素とするこ
とを特徴とするニッケル−水素二次電池。
1. A porous conductive substrate is provided with Ni (OH) 2 :
85-98% by weight, CoO: 1-7% by weight, ZnO: 1
A positive electrode formed by filling an active material paste containing 7 to 7% by weight, a negative electrode formed of a hydrogen storage alloy, and KOH and L
iOH is used as an essential electrolyte, and the concentration of the electrolyte is 36-
A nickel-hydrogen secondary battery comprising an alkaline electrolyte of 41% by weight as a power generating element.
【請求項2】 前記活物質ペーストに、更に、Niが7
重量%以下(ただし0は含まない)含有されている請求
項1のニッケル−水素二次電池。
2. The active material paste further contains Ni.
The nickel-hydrogen secondary battery according to claim 1, wherein the nickel-hydrogen secondary battery contains less than or equal to wt% (excluding 0).
【請求項3】 前記アルカリ電解液には、更に、CsO
Hまたは/およびRbOHが含有されている請求項1ま
たは請求項2のニッケル−水素二次電池。
3. The alkaline electrolyte further contains CsO.
The nickel-hydrogen secondary battery according to claim 1 or 2, which contains H or / and RbOH.
【請求項4】 前記アルカリ電解液には、更に、NaO
Hが含有されている請求項1〜請求項3のいずれかのニ
ッケル−水素二次電池。
4. The alkaline electrolyte further contains NaO.
The nickel-hydrogen secondary battery according to any one of claims 1 to 3, which contains H.
JP5071417A 1993-03-30 1993-03-30 Nickel-hydrogen secondary battery Expired - Lifetime JP2568971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071417A JP2568971B2 (en) 1993-03-30 1993-03-30 Nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071417A JP2568971B2 (en) 1993-03-30 1993-03-30 Nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH06283195A true JPH06283195A (en) 1994-10-07
JP2568971B2 JP2568971B2 (en) 1997-01-08

Family

ID=13459922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071417A Expired - Lifetime JP2568971B2 (en) 1993-03-30 1993-03-30 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2568971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502499A (en) * 1987-12-11 1990-08-09 ヒユーズ・エアクラフト・カンパニー Long-life nickel-hydrogen storage battery
JPH02304874A (en) * 1989-05-18 1990-12-18 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPH04212269A (en) * 1990-03-23 1992-08-03 Sanyo Electric Co Ltd Alkaline storage battery
JPH04342957A (en) * 1991-05-20 1992-11-30 Hitachi Maxell Ltd Manufacture of sintered ni electrode for alkaline secondary battery
JPH0541212A (en) * 1991-07-08 1993-02-19 Matsushita Electric Ind Co Ltd Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same
JPH0562706A (en) * 1991-09-02 1993-03-12 Matsushita Electric Ind Co Ltd Metal oxide-hydrogen storage battery and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502499A (en) * 1987-12-11 1990-08-09 ヒユーズ・エアクラフト・カンパニー Long-life nickel-hydrogen storage battery
JPH02304874A (en) * 1989-05-18 1990-12-18 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPH04212269A (en) * 1990-03-23 1992-08-03 Sanyo Electric Co Ltd Alkaline storage battery
JPH04342957A (en) * 1991-05-20 1992-11-30 Hitachi Maxell Ltd Manufacture of sintered ni electrode for alkaline secondary battery
JPH0541212A (en) * 1991-07-08 1993-02-19 Matsushita Electric Ind Co Ltd Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same
JPH0562706A (en) * 1991-09-02 1993-03-12 Matsushita Electric Ind Co Ltd Metal oxide-hydrogen storage battery and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Also Published As

Publication number Publication date
JP2568971B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
EP1172869B1 (en) Method for producing a positive electrode active material for an alkaline storage battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US4130696A (en) Conductive diluent for pressed nickel electrodes
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
CN106463786B (en) Nickel-hydrogen secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JPH11329426A (en) Alkaline secondary battery positive electrode active material and alkaline secondary battery
JPH06283195A (en) Nickel-hydrogen secondary battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP2603188B2 (en) Hydrogen storage alloy electrode
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2002033116A (en) Alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP2572337B2 (en) Nickel-hydrogen secondary battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP2558587B2 (en) Negative electrode for nickel-hydrogen secondary battery
JPH06163072A (en) Metal-hydride secondary battery
JP3436059B2 (en) Nickel-hydrogen storage battery
JPH1040950A (en) Alkaline secondary battery