JPH06282810A - Nonmagnetic base material for magnetic head - Google Patents

Nonmagnetic base material for magnetic head

Info

Publication number
JPH06282810A
JPH06282810A JP5089521A JP8952193A JPH06282810A JP H06282810 A JPH06282810 A JP H06282810A JP 5089521 A JP5089521 A JP 5089521A JP 8952193 A JP8952193 A JP 8952193A JP H06282810 A JPH06282810 A JP H06282810A
Authority
JP
Japan
Prior art keywords
magnetic
thermal expansion
sio
αfe
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5089521A
Other languages
Japanese (ja)
Inventor
Yukihiro Isobe
幸広 磯部
Tomohito Muramatsu
輩人 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP5089521A priority Critical patent/JPH06282810A/en
Publication of JPH06282810A publication Critical patent/JPH06282810A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enlarge a thermal expansion coefficient, to make machinability excellent and also to make the cost low by adding the proper quantity of SiO2 to a base material alphaFe2O3. CONSTITUTION:Powder of alphaFe2O3 and powder of SiO2 are mixed in a prescribed ratio and subjected to pressure molding. Then, the molded material is baked for a prescribed time at a temperature of about 1100 deg.C in air to be sintered. Moreover, the material is subjected to hot isotropic pressurization in an inactive atmosphere. An available range of the quantity of SiO2 to be added is 1.0 to 30wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VTR、FDD(フロ
ッピーディスクドライブ)、HDD(ハードディスクド
ライブ)等に使用される磁気ヘッド用非磁性基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic substrate for a magnetic head used in VTRs, FDDs (floppy disk drives), HDDs (hard disk drives) and the like.

【0002】[0002]

【従来技術】従来、VTR、FDD、HDD等の磁気ヘ
ッドは磁性酸化物であるMn−Znフェライト、Ni−
Znフェライトを主体に構成されていた。しかし、近年
高密度記録に対する強い要求の為、スライダー本体を非
磁性材料で形成し、その後端部に設けた溝にフェライト
磁気コアを埋め込む事により、磁気ヘッドのインダクタ
ンスを小さくし、高い動作周波数に対応できる様にし
た、いわゆるコンポジット型ヘッドや、更に最近に至
り、より高密度記録を目的として、非磁性基板上に形成
した金属磁性薄膜のみで磁気回路を構成した積層型磁気
ヘッドが注目されている。本発明のSiO2 を添加した
αFe23 は、この様な磁気ヘッドの非磁性基板とし
て使用されるものである。
2. Description of the Related Art Conventionally, magnetic heads such as VTRs, FDDs, and HDDs are magnetic oxides of Mn-Zn ferrite and Ni-.
It was mainly composed of Zn ferrite. However, due to strong demands for high-density recording in recent years, the slider body is made of a non-magnetic material, and a ferrite magnetic core is embedded in the groove provided at the rear end of the slider to reduce the inductance of the magnetic head and increase the operating frequency. Attention has been paid to so-called composite type heads, which have been made compatible, and, more recently, stacked type magnetic heads in which a magnetic circuit is composed only of a metal magnetic thin film formed on a non-magnetic substrate for the purpose of higher density recording. There is. The αFe 2 O 3 containing SiO 2 of the present invention is used as a nonmagnetic substrate for such a magnetic head.

【0003】[0003]

【発明が解決しようとする課題】上記の様な磁気ヘッド
においては、記録読み出しを効率良く行わせる為には磁
気回路を構成する磁性材料の持つ磁気特性を十分に発揮
させる必要が有る。この為には、磁気ヘッドの構造設計
もさる事ながら、ガラス溶着等により発生する応力のた
めに生じる磁気コアの特性劣化をできるだけ小さく抑え
なければならない。前記コンポジット型ヘッドにおいて
は、スライダー本体を非磁性セラミックスで構成し、ス
ライダー後端部に設けられた溝に磁気コアを充填ガラス
により固定する。磁気コア材料には一般にMn−Znフ
ェライト等が用いられるので、そこに用いる充填ガラス
及び非磁性セラミックスの熱膨張係数αをMn−Znフ
ェライト等の磁心材料のそれに近づけ、各製造工程で発
生する熱応力を小さくし、Mn−Znフェライトにかか
る応力を小さくする必要が有る。これが不適切であると
磁気特性が劣化する為、記録読み出し能力が不十分にな
るだけでなく、充填ガラスやその接合部にクラックが入
り易く、歩留りの低下につながる。
In the above magnetic head, it is necessary to sufficiently exhibit the magnetic characteristics of the magnetic material forming the magnetic circuit in order to efficiently perform the recording and reading. For this purpose, it is necessary to minimize the deterioration of the characteristics of the magnetic core due to the stress generated by glass welding or the like, as well as the structural design of the magnetic head. In the composite type head, the slider main body is made of non-magnetic ceramics, and the magnetic core is fixed to the groove provided at the rear end of the slider with the filling glass. Since Mn-Zn ferrite or the like is generally used as the magnetic core material, the thermal expansion coefficient α of the filled glass and the non-magnetic ceramic used therein is made close to that of the magnetic core material such as Mn-Zn ferrite, and the heat generated in each manufacturing process is used. It is necessary to reduce the stress and the stress applied to the Mn-Zn ferrite. If this is not appropriate, the magnetic characteristics will deteriorate, and not only the recording / reading ability will become insufficient, but also cracks will easily occur in the filling glass and its joint, leading to a reduction in yield.

【0004】又、積層型磁気ヘッドにおいては、非磁性
基板上にセンダスト等の金属磁性薄膜を数μm〜数十μ
mの厚さで、スパッタリング、蒸着等の手段により形成
する。その際、記録読み出しを効率良く行わせる為に
は、コンポジット型ヘッドと同様、磁気回路成分である
金属磁性薄膜にかかる応力を出来るだけ小さく抑えなけ
ればならない。この為には、金属磁性薄膜と非磁性基板
各々の熱膨張係数を近付ける事が最も重要なポイントで
ある。ちなみに、従来の磁気ヘッドの磁性材料として使
用されている素材はMn−Znフェライト(α=120
〜140×10-7/℃)、センダスト(α=150×1
-7/℃)、パーマロイ(135×10-7/℃))及び
金属鉄膜(130×10-7/℃)がほとんどであるが、
いずれもその熱膨張係数αは(120〜150)×10
-7/℃の範囲にあり、基板とのαの差が大きく、熱処理
や使用に際して特性の変化等の問題を生じた。
Further, in a laminated magnetic head, a metallic magnetic thin film such as sendust is deposited on a non-magnetic substrate in a range of several μm to several tens of μm.
It is formed with a thickness of m by means such as sputtering or vapor deposition. At this time, in order to perform recording and reading efficiently, similarly to the composite type head, the stress applied to the metal magnetic thin film which is a magnetic circuit component must be suppressed as small as possible. For this purpose, it is the most important point to bring the thermal expansion coefficients of the metal magnetic thin film and the non-magnetic substrate close to each other. By the way, the material used as the magnetic material of the conventional magnetic head is Mn-Zn ferrite (α = 120
~ 140 × 10 -7 / ° C), sendust (α = 150 × 1)
0 -7 / ° C), permalloy (135 x 10 -7 / ° C)) and metallic iron film (130 x 10 -7 / ° C)
In each case, the coefficient of thermal expansion α is (120 to 150) × 10
It was in the range of -7 / ° C, and the difference in α from the substrate was large, causing problems such as characteristic changes during heat treatment and use.

【0005】さらに磁気ヘッドは、研削、切断等機械加
工により製造され、磁気テープ、フレキシブルディス
ク、ハードディスク等の磁気記録媒体と摺動又はコンタ
クト・スタート・ストップ方式等により、信号の記録読
み出しを行う。従って、磁気ヘッドに使用する非磁性基
板は、磁気コアの磁気特性を劣化させない事に加えて、
機械加工性が良く、磁気記録媒体との摺動特性に優れて
いる事も重要な特性の1つである。
Further, the magnetic head is manufactured by mechanical processing such as grinding and cutting, and records and reads a signal by a sliding or contact start / stop method with a magnetic recording medium such as a magnetic tape, a flexible disk and a hard disk. Therefore, in addition to the fact that the non-magnetic substrate used for the magnetic head does not deteriorate the magnetic characteristics of the magnetic core,
Good machinability and excellent sliding characteristics with respect to the magnetic recording medium are also important characteristics.

【0006】現在一般的な非磁性基板としては、BaT
iO3 (例えば、特公昭62−24387号)、CaT
iO3 (例えば、特公昭60−21940号)、αFe
23 (例えば、特開平4−78009号)等が汎用の
磁気記録装置であるFDD、HDD等に用いられてい
る。しかしながら、BaTiO3 は熱膨張係数が(95
〜100)×10-7/℃とMn−Znフェライト等の磁
性材料の熱膨張係数(120〜150)×10-7/℃に
比べ小さい。又、CaTiO3 は熱膨張係数が(110
〜120)×10-7/℃とBaTiO3 より大きく、M
n−Znフェライトの熱膨張係数に近く好ましいが、研
削加工時の抵抗が大きい為加工時の負荷が大きい、又水
に溶け易い過剰のCaOが異相として存在するために、
耐湿性に劣るという問題点が有る。一方、αFe23
は研削抵抗が小さく、機械加工性が良いが熱膨張係数が
115×10-7/℃と小さい等、非磁性基板材料として
十分な特性を持つものが無いのが現状である。しかしα
Fe23 は安価に入手できる点でコスト面から非常に
望ましい。
[0006] Currently, as a general non-magnetic substrate, BaT
iO 3 (for example, Japanese Examined Patent Publication No. 62-24387), CaT
iO 3 (for example, Japanese Patent Publication No. 60-21940), αFe
2 O 3 (for example, Japanese Patent Laid-Open No. 4-78009) is used in FDDs, HDDs and the like which are general-purpose magnetic recording devices. However, BaTiO 3 has a coefficient of thermal expansion of (95
100) the thermal expansion coefficient of a magnetic material such as × 10 -7 / ° C. and Mn-Zn ferrite (120 to 150) × smaller than the 10 -7 / ° C.. Also, CaTiO 3 has a thermal expansion coefficient of (110
~ 120) × 10 -7 / ° C, which is larger than BaTiO 3 and M
Although close to the coefficient of thermal expansion of n-Zn ferrite, it is preferable, but since the resistance during grinding is large, the load during processing is large, and excess CaO, which is easily soluble in water, exists as a heterogeneous phase.
There is a problem of poor moisture resistance. On the other hand, αFe 2 O 3
Has a low grinding resistance and good machinability but has a small coefficient of thermal expansion of 115 × 10 −7 / ° C., so that there is no material having sufficient characteristics as a non-magnetic substrate material. But α
Fe 2 O 3 is highly desirable from the viewpoint of cost because it can be obtained at low cost.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これら非
磁性基板として好適な材料を探索した結果、αFe23
にSiO2 を添加する事により磁気コアに使用するM
n−Znフェライト及び金属磁性薄膜に適合可能な程度
まで熱膨張係数を大きく出来ることを発見した。又、S
iO2 を添加しても、αFe23 の利点である機械加
工性の良さは損われない事も確認した。
The inventors of the present invention searched for materials suitable for these non-magnetic substrates, and found that αFe 2 O 3
M used for magnetic core by adding SiO 2 to
It has been discovered that the coefficient of thermal expansion can be made large enough to be compatible with n-Zn ferrite and metal magnetic thin films. Also, S
It was also confirmed that the addition of iO 2 does not impair the good machinability, which is an advantage of αFe 2 O 3 .

【0008】[0008]

【作用】以下に詳しく検討するように、αFe23
SiO2 を添加する事により、熱膨張係数は大きくなる
傾向にありしかもかなり広い範囲(115〜135)×
10-7/℃で調整できる。従来のほとんどの磁気ヘッド
用磁性材料の熱膨張係数は120〜150×10-7/℃
とαFe23 の熱膨張係数よりはるかに大きいが、S
iO2 を調整して添加すれば熱膨張係数を支障のない程
度に磁性材料のそれに近付ける事が出来る。一方、密度
はαFe23 に比べ比重の小さいSiO2 の添加によ
り低下するが、多量に添加した場合にはαFe23
焼結性を損う。SiO2 の添加により研削抵抗は実質的
に増えない。更に、熱膨張係数が磁性材料と接近したた
めに加工時の熱応力による不良(剥がれ)の発生を防止
できることが分かった。これらを総合して、磁気ヘッド
用基板としてはSiO2 添加量は1.0〜30wt%が
使用可能範囲である。
As described in detail below, by adding SiO 2 to αFe 2 O 3 , the coefficient of thermal expansion tends to be large, and a fairly wide range (115-135) ×
It can be adjusted at 10 -7 / ° C. The thermal expansion coefficient of most conventional magnetic materials for magnetic heads is 120 to 150 × 10 −7 / ° C.
And the thermal expansion coefficient of αFe 2 O 3 is much larger than that of S
If the iO 2 is adjusted and added, the thermal expansion coefficient can be made close to that of the magnetic material without causing any trouble. On the other hand, the density decreases with the addition of SiO 2 having a smaller specific gravity than αFe 2 O 3 , but if added in a large amount, the sinterability of αFe 2 O 3 is impaired. The addition of SiO 2 does not substantially increase the grinding resistance. Further, it has been found that since the coefficient of thermal expansion approaches that of the magnetic material, the occurrence of defects (peeling) due to thermal stress during processing can be prevented. In total, the usable amount of SiO 2 added is 1.0 to 30 wt% for the magnetic head substrate.

【0009】本発明の磁気ヘッド用非磁性基板材料は、
αFe23 粉末とSiO2 粉末とを所定の割合で混合
し、加圧成形し、空気中で1100℃前後の温度で所定
時間焼成し焼結し、更に不活性雰囲気下において熱間等
方加圧することにより製造することができる。以下に実
施例を述べる。
The non-magnetic substrate material for a magnetic head of the present invention is
αFe 2 O 3 powder and SiO 2 powder are mixed at a predetermined ratio, pressure-molded, sintered in air at a temperature of about 1100 ° C. for a predetermined time and sintered, and further hot isostatically in an inert atmosphere. It can be manufactured by applying pressure. Examples will be described below.

【0010】[0010]

【実施例】実施例1 αFe23 粉末500gにSiO2 粉末(試薬)を
0.1wt%添加し、純粋1リットルを加えた後ボール
ミルにて24hr混合、粉砕を行った。粉砕終了後、脱
水、乾燥を行い、その後油圧プレスにて成形したブロッ
クに加圧力3tonにて、CIP(冷間等方加圧)を施
した後、空気中1100℃にて5hr焼成する。その
後、1100℃、1000atm、Ar中にてHIP
(熱間等方加圧)を行った。これをサンプル#1とす
る。
EXAMPLE 1 0.1 wt% of SiO 2 powder (reagent) was added to 500 g of αFe 2 O 3 powder, 1 liter of pure powder was added, and then mixed and pulverized for 24 hours in a ball mill. After the pulverization is completed, dehydration and drying are performed, and then a block formed by a hydraulic press is subjected to CIP (cold isotropic pressurization) at a pressurizing force of 3 ton and then fired in air at 1100 ° C. for 5 hours. After that, HIP in 1100 ° C, 1000 atm, Ar
(Hot isostatic pressing) was performed. This is sample # 1.

【0011】実施例2 SiO2 粉末の添加量を1wt%とし、焼成温度及びH
IP温度を1200℃とした他は実施例1と同様に行っ
た。これをサンプル#2とする。
Example 2 The addition amount of SiO 2 powder was set to 1 wt% and the firing temperature and H
Example 1 was repeated except that the IP temperature was 1200 ° C. This is sample # 2.

【0012】実施例3 SiO2 粉末の添加量を5wt%とし、焼成温度及びH
IP温度を1200℃とした他は実施例1と同様に行っ
た。これをサンプル#3とする。
Example 3 The amount of SiO 2 powder added was set to 5 wt%, and the firing temperature and H
Example 1 was repeated except that the IP temperature was 1200 ° C. This is sample # 3.

【0013】実施例4 SiO2 粉末の添加量を30wt%とし、スラリー粘度
を下げる為純水の量を2リットルとし、焼成温度及びH
IP温度を1200℃とした他は実施例1と同様に行っ
た。これをサンプル#4とする。
Example 4 The amount of SiO 2 powder added was 30 wt%, and the amount of pure water was 2 liters in order to reduce the viscosity of the slurry.
Example 1 was repeated except that the IP temperature was 1200 ° C. This is sample # 4.

【0014】実施例5 SiO2 粉末の添加量を50wt%とし、純水の量を2
リットルとし、焼成温度及びHIP温度を1200℃と
した他は実施例1と同様に行った。これをサンプル#5
とする。
Example 5 The amount of SiO 2 powder added was 50 wt%, and the amount of pure water was 2%.
The same procedure as in Example 1 was carried out except that the calcination temperature and the HIP temperature were 1200 ° C. This is sample # 5
And

【0015】比較例 比較例としてSiO2 を添加しないαFe23 を作成
した。すなわち、αFe23 粉末500gに純粋1リ
ットルを加えボールミルにて24hr混合、粉砕を行っ
た。粉砕以降の工程は実施例1と同様に行った。これを
サンプル#6とする。
Comparative Example As a comparative example, αFe 2 O 3 containing no added SiO 2 was prepared. That is, pure 1 liter was added to 500 g of αFe 2 O 3 powder, and the mixture was pulverized and pulverized for 24 hours in a ball mill. The steps after pulverization were the same as in Example 1. This is sample # 6.

【0016】表1は、HIP処理後のサンプル#1〜6
を、押棒式熱膨張測定器により測定した熱膨張係数及び
アルキメデス法により測定した密度の値を表したもので
ある。表の100−600℃は両端点で測定したことを
示す。
Table 1 shows samples # 1 to 6 after HIP treatment.
Is the coefficient of thermal expansion measured by a push rod type thermal expansion measuring instrument and the value of density measured by the Archimedes method. 100-600 degreeC of a table shows having measured at both ends.

【0017】[0017]

【表1】 [Table 1]

【0018】表1で明らかな様にαFe23 にSiO
2 を添加する事により、熱膨張係数は大きくなる傾向に
有る。代表的な金属磁性薄膜であるセンダスト、パーマ
ロイ、鉄金属膜の熱膨張係数はそれぞれ150×10-7
/℃、135×10-7/℃、130×10-7/℃とαF
23 の熱膨張係数よりはるかに大きい。ここに於
て、αFe23 にSiO2 を添加する事により、熱膨
張係数を各種金属磁性薄膜の熱膨張係数に近付ける事が
出来る。一方、密度はαFe23 に比べ比重の小さい
SiO2 の添加により低下するが、多量に添加した場合
にはαFe23 の焼結性を損う。#5はSiO2 を5
0wt%添加したが焼結性が低く、焼結体中に空孔及び
大きな異相の存在が認められた。
As is clear from Table 1, αFe 2 O 3 has a SiO content.
By adding 2 , the coefficient of thermal expansion tends to increase. Thermal expansion coefficients of Sendust, Permalloy, and iron metal films, which are typical metal magnetic thin films, are 150 × 10 -7.
/ ° C, 135 × 10 -7 / ° C, 130 × 10 -7 / ° C and αF
It is much larger than the coefficient of thermal expansion of e 2 O 3 . Here, by adding SiO 2 to αFe 2 O 3 , the coefficient of thermal expansion can be brought close to that of various metal magnetic thin films. On the other hand, the density decreases with the addition of SiO 2 having a smaller specific gravity than αFe 2 O 3 , but if added in a large amount, the sinterability of αFe 2 O 3 is impaired. # 5 is SiO 2
Although 0 wt% was added, the sinterability was low, and it was confirmed that pores and large foreign phases were present in the sintered body.

【0019】次に、サンプル#1〜6および比較用とし
て、一般的な非磁性基板であるCaTiO3 (熱膨張係
数117×10-7/℃)を用い、その上にセンダスト薄
膜4μm及び接合用ガラスをスパッタリングにより形成
し、更にその非磁性基板を接合して形成した積層型磁気
ヘッドを作成した。これらをサンプルA−1〜6及びB
とする。これら磁気ヘッドの砥石研削加工時の金属磁性
薄膜のハガレ不良率及び研削抵抗を表2に示す。ここで
ハガレ不良は目視により判定し、総合評価は○は良好、
×は不適、△はやや不満を示す。又、研削抵抗は切断機
に取り付けた砥石のZ軸方向の抵抗値をストレインゲー
ジにより測定した。その時の条件は以下の通りであっ
た。 サンプルの寸法 45×10×2.7mm、 砥石:φ102×0.6mm、400番ダイヤモンド、
回転数15,000rpm、テーブル送り75mm/m
in、切り込み深さ3.5mm(試料上面より)
Next, for samples # 1 to 6 and for comparison, a general non-magnetic substrate of CaTiO 3 (coefficient of thermal expansion 117 × 10 −7 / ° C.) was used, on which a sendust thin film of 4 μm and for bonding were used. A laminated magnetic head was formed by forming glass by sputtering and then joining the non-magnetic substrates. These are samples A-1 to 6 and B.
And Table 2 shows the peeling failure rate and grinding resistance of the metal magnetic thin film during grinding of these magnetic heads with a grindstone. Here, the peeling failure is visually determined, and the comprehensive evaluation is good,
× means unsuitable, Δ means slightly dissatisfied. The grinding resistance was obtained by measuring the resistance value of the grindstone attached to the cutting machine in the Z-axis direction with a strain gauge. The conditions at that time were as follows. Sample size 45 x 10 x 2.7 mm, grindstone: φ102 x 0.6 mm, 400 diamond,
Rotation speed 15,000 rpm, table feed 75 mm / m
in, depth of cut 3.5 mm (from top of sample)

【0020】[0020]

【表2】 [Table 2]

【0021】金属磁性薄膜中の残留応力が大きくなる
と、非磁性基板との接着力が低下し、ハガレ不良が多く
なる。残留応力の発生する最も大きな要因は、非磁性基
板と金属磁性薄膜の熱膨張率の違いによる熱応力である
と考えられている。表2でサンプルA−6(αFe2
3 )のハガレ不良が3/10に対し、A−1〜5が2/
10〜0/10と良くなっているのは、SiO2 の添加
により基板であるαFe23 の熱膨張係数がセンダス
トの熱膨張係数に近付き上記センダスト薄膜中の残留応
力が小さくなった結果であると考えられる。1%以上の
SiO2 を添加したαFe23 (A−2〜5)のハガ
レ不良の割合はCaTiO3と同等かそれより良くなっ
ており、実用上問題ないレベルである。一方、研削抵抗
値においてはαFe23 系のサンプルA−1〜6はC
aTiO3 基板Bの1/2以下であり、Bよりはるかに
加工が容易である事を示している。CaTiO3 は機械
加工性が良くない事が1つの欠点であるがSiO2 添加
αFe23 は、熱膨張係数がCaTiO3 と同等かそ
れ以上ではるかに機械加工性の良い非磁性基板である事
を示している。又、この事は歩留りが良くなるだけでな
く、研削時に使用する砥石の寿命が長くなり、コストダ
ウンに結びつく効果もある。又、A−5は試料中最も低
い研削抵抗であったが、これは焼結体中に存在する空孔
により強度が低下している事が原因であると思われる。
磁気ヘッド用基板として用いるには出来るだけ空孔の無
い事が望ましく、この場合、磁気ヘッド用基板としてA
−5を用いるには空孔が多過ぎ不適当である。更にまた
ハガレ不良率を考慮するとSiO2 の添加量は0.1w
t%では不十分であり、1wt%以上の添加量が必要で
あるといえる。従って、磁気ヘッド用基板としては、サ
ンプルA−2〜4から、SiO2 添加量0.1〜30w
t%が望ましい使用範囲である。
When the residual stress in the metal magnetic thin film becomes large, the adhesive force with the non-magnetic substrate decreases, and peeling defects increase. The largest cause of residual stress is considered to be the thermal stress due to the difference in thermal expansion coefficient between the non-magnetic substrate and the metal magnetic thin film. In Table 2, sample A-6 (αFe 2 O
3 ) The peeling failure of 3 ) was 3/10, while A-1 to 5 was 2 /
The improvement of 10 to 0/10 is a result of the fact that the thermal expansion coefficient of αFe 2 O 3 which is the substrate approaches the thermal expansion coefficient of Sendust due to the addition of SiO 2 and the residual stress in the Sendust thin film becomes small. It is believed that there is. The rate of peeling failure of αFe 2 O 3 (A-2 to 5) containing 1% or more of SiO 2 is equal to or better than that of CaTiO 3 , which is a practically acceptable level. On the other hand, regarding the grinding resistance value, the samples A-1 to 6 of αFe 2 O 3 system have C
It is 1/2 or less of that of the aTiO 3 substrate B, which means that it is much easier to process than B. One disadvantage is that CaTiO 3 has poor machinability, but SiO 2 -added αFe 2 O 3 is a non-magnetic substrate with a coefficient of thermal expansion equal to or higher than that of CaTiO 3 and with much better machinability. It shows a thing. Further, this not only improves the yield, but also has the effect of extending the life of the grindstone used during grinding, leading to cost reduction. Further, A-5 had the lowest grinding resistance in the sample, which is considered to be due to the decrease in strength due to the holes existing in the sintered body.
It is desirable to have as few holes as possible for use as a magnetic head substrate. In this case, A
Too many holes are not suitable for use with -5. Furthermore, considering the peeling failure rate, the addition amount of SiO 2 is 0.1 w.
It can be said that t% is not sufficient, and an addition amount of 1 wt% or more is necessary. Therefore, as the magnetic head substrate, from the samples A-2 to A4, the added amount of SiO 2 is 0.1 to 30 w.
t% is a desirable range of use.

【0022】[0022]

【効果】以上述べたように、αFe23 にSiO2
適量添加することにより、熱膨張係数の大きい且つ機械
加工性に優れた磁気ヘッド用非磁性基板材料が得られ
る。またαFe23 にSiO2 を添加した非磁性基板
材料は安価に製造できる利点がある。
As described above, by adding an appropriate amount of SiO 2 to αFe 2 O 3 , a nonmagnetic substrate material for a magnetic head having a large thermal expansion coefficient and excellent machinability can be obtained. Further, a non-magnetic substrate material obtained by adding SiO 2 to αFe 2 O 3 has an advantage that it can be manufactured at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録媒体と摺接又は対向する面が磁
気コアとそれを支持する非磁性体及びガラス等で構成さ
れた磁気ヘッドにおいて、前記非磁性体がSiO2 を含
有するαFe23 の焼結体より成る磁気ヘッド用非磁
性基板材料。
1. A magnetic head comprising a magnetic core, a non-magnetic material supporting the magnetic core, glass, etc., the surface of which is in sliding contact with or faces the magnetic recording medium, wherein the non-magnetic material contains SiO 2 αFe 2 O. A non-magnetic substrate material for a magnetic head consisting of a sintered body of 3 .
【請求項2】 含有するSiO2 の量が1.0〜30w
t%である請求項1の磁気ヘッド用非磁性基板材料。
2. The amount of SiO 2 contained is 1.0 to 30 w.
The non-magnetic substrate material for a magnetic head according to claim 1, which is t%.
JP5089521A 1993-03-25 1993-03-25 Nonmagnetic base material for magnetic head Withdrawn JPH06282810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5089521A JPH06282810A (en) 1993-03-25 1993-03-25 Nonmagnetic base material for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5089521A JPH06282810A (en) 1993-03-25 1993-03-25 Nonmagnetic base material for magnetic head

Publications (1)

Publication Number Publication Date
JPH06282810A true JPH06282810A (en) 1994-10-07

Family

ID=13973115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5089521A Withdrawn JPH06282810A (en) 1993-03-25 1993-03-25 Nonmagnetic base material for magnetic head

Country Status (1)

Country Link
JP (1) JPH06282810A (en)

Similar Documents

Publication Publication Date Title
US4738885A (en) Magnetic disk, substrate therefor and process for preparation thereof
US4681813A (en) Ceramic substrate for a thin layer magnetic head
JPS61158862A (en) Magnetic head slider material
JP3933523B2 (en) Ceramic substrate materials for thin film magnetic heads
EP0131895A1 (en) Magnetic disk substrate
JPH06282810A (en) Nonmagnetic base material for magnetic head
US5432016A (en) Magnetic head slider material
US5916655A (en) Disk substrate
JP2007153653A (en) Sintered compact for magnetic head slider, its producing method and magnetic head slider
US5648303A (en) Non-magnetic ceramics for recording/reproducing heads and method of producing the same
JP3085623B2 (en) Non-magnetic ceramics for recording / reproducing head and method for producing the same
JP3825079B2 (en) Manufacturing method of non-magnetic ceramics
JP3896358B2 (en) Magnetic head substrate material, magnetic head substrate, head slider, and method of manufacturing magnetic head substrate
US5242865A (en) Non-magnetic substrate of magnetic head
JP3121984B2 (en) Non-magnetic ceramics for recording / reproducing head
JP3309040B2 (en) Non-magnetic ceramics and method for producing the same
US5404259A (en) Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head
JPH0249492B2 (en) JIKIDEISUKUYOKIBANOYOBISONOSEIZOHOHO
JP3325439B2 (en) Slider for magnetic head and method of manufacturing the same
WO1995028703A1 (en) Improved disk substrate
JP3121986B2 (en) Non-magnetic ceramics for recording / reproducing head
JP2832863B2 (en) Non-magnetic ceramics for magnetic heads
JPH05319895A (en) Nonmagnetic ceramics for magnetic head
JPH077491B2 (en) Flying magnetic head
JPH11171642A (en) Nonmagnetic substrate and magnetic head by using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530