JPH06282088A - Production of photosensitive body - Google Patents

Production of photosensitive body

Info

Publication number
JPH06282088A
JPH06282088A JP34670993A JP34670993A JPH06282088A JP H06282088 A JPH06282088 A JP H06282088A JP 34670993 A JP34670993 A JP 34670993A JP 34670993 A JP34670993 A JP 34670993A JP H06282088 A JPH06282088 A JP H06282088A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
gas
silicon
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34670993A
Other languages
Japanese (ja)
Other versions
JP2585964B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5346709A priority Critical patent/JP2585964B2/en
Publication of JPH06282088A publication Critical patent/JPH06282088A/en
Application granted granted Critical
Publication of JP2585964B2 publication Critical patent/JP2585964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To produce a photosensitive body for forming a high-contrast picture. CONSTITUTION:A cylindrical substrate is arranged in a plasma producing region. A first non-single crystal layer 31 of a P or N-type semiconductor contg. hydrogen, fluorine or chlorine, mixed with boron or indium or phosphorus or antimony and consisting essentially of silicon mixed with nitrogen, carbon or oxygen, a second non-single crystal layer 32 of an intrinsic or practically intrinsic silicon semiconductor formed on the layer 31 and contg. hydrogen, fluorine or chlorine and a third non-single crystal layer 33 of a semiconductor 1 or semiinsulator formed on the layer 32, with the conductivity different from that of the layer 31, consisting essentially of silicon, contg. hydrogen, fluorine or chlorine and further mixed with carbon are formed on the substrate to produce the photosensitive body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は静電複写機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic copying machine.

【0002】[0002]

【従来の技術】従来静電複写機は真性の化合物半導体を
光電効果を利用して選択的に静電気を帯電させる層に用
いていた。しかしこの方法は材料自体が公害物質であり
かつ発ガン物質が印刷されているに加えて光照射により
発生した電荷によりすでに帯電した電荷との中和をコン
トラストを大にして(S/N比を大きくして)行なわし
めることには必ずしも満足していなかった。
2. Description of the Related Art Conventionally, an electrostatic copying machine has used an intrinsic compound semiconductor in a layer for selectively charging static electricity by utilizing a photoelectric effect. However, in this method, the material itself is a pollutant and a carcinogen is printed, and in addition to neutralizing the charge already generated by the charge generated by light irradiation, the contrast is increased (S / N ratio is increased). I wasn't necessarily satisfied with what I did.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記のことが
らを満足させた静電複写機を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrostatic copying machine which satisfies the above-mentioned matters.

【0004】[0004]

【課題を解決するための手段】このため本発明は電子写
真用感光体として、光電効果を有する半導体または半絶
縁体中にP−I−N接合または、N−I−P接合を設
け、半導体中に接合による内部電界を形成せしめさらに
そのエネルギバンドもW−N−W(WIDE−TO−N
ALLOW−TO−WIDE)構造にし、再結合電界を
発生させてSN比を増加せしめたこと、さらに非公害物
質である珪素またはその化合物特に炭化珪素または窒化
珪素を用いた。
Therefore, according to the present invention, as a photoconductor for electrophotography, a P-I-N junction or a N-I-P junction is provided in a semiconductor or semi-insulator having a photoelectric effect, and a semiconductor is provided. The internal electric field is formed by the junction inside, and the energy band is W-N-W (WIDE-TO-N).
ALLLOW-TO-WIDE) structure was used to generate a recombination electric field to increase the SN ratio, and non-polluting substance silicon or its compound, particularly silicon carbide or silicon nitride was used.

【0005】つまり、導電性基板上にPまたはN型の半
導体の第1の層を設け、該層上に真性または実質的に真
性(人為的にPまたはN型の不純物を添加しないで形成
させる)半導体または半絶縁体の第2の層を設け、さら
に該層上に前記第1の層とは逆導電型の第3の半導体ま
たは半絶縁体を設けた静電複写機としたのである。本発
明はかかる第3の層である半導体または半絶縁体または
該層上に静電荷を流しうる厚さの絶縁または半絶縁膜を
設け、該膜上に帯電した静電荷と選択的に光励起された
電荷とを再結合せしめ、またこの静電荷または光励起さ
れた多数キャリアを裏面の導体にすみやかに放電せしめ
ることとした。
That is, a first layer of a P or N type semiconductor is provided on a conductive substrate and is formed on the layer without adding an intrinsic or substantially intrinsic (P or N type impurity artificially). The electrostatic copying machine is provided with a second layer of a semiconductor or a semi-insulator, and a third semiconductor or a semi-insulator having a conductivity type opposite to that of the first layer is further provided on the second layer. The present invention provides a semiconductor or semi-insulating material, which is the third layer, or an insulating or semi-insulating film having a thickness capable of flowing an electrostatic charge on the layer, and is selectively photoexcited with the charged electrostatic charge on the film. The electric charges are recombined with each other, and the electrostatic charge or the photo-excited majority carrier is promptly discharged to the conductor on the back surface.

【0006】[0006]

【実施例】以下にその実施例を図面に従って説明する。
図1は本発明を適用させるべき静電複写機の要素を示し
たものである。すなわち図1(A)において、導電性基
板上に光導電性の半導体(1)が設けられている。さら
にこの半導体上に静電気(3)を均質に分布せしめた。
図面では正の電荷を静電荷発生源より放出して半導体
(1)上に付着せしめている。さらにこの後図1(C)
に示す如く、光(5)を局部的に照射すると、その光量
およびその波長に従って照射された領域(6)(6’)
(6'')の静電気は導体(2)へと放出される。加えて
光励起で発生した電子・ホール対のうち図面では負の電
子がこの正の静電気と再結合して中和する。かくして半
導体上に選択的に静電気を分布せしめることができた。
Embodiments will be described below with reference to the drawings.
FIG. 1 shows the elements of an electrostatic copying machine to which the present invention is applied. That is, in FIG. 1A, a photoconductive semiconductor (1) is provided on a conductive substrate. Furthermore, static electricity (3) was distributed uniformly on this semiconductor.
In the drawing, positive charges are discharged from the electrostatic charge generation source and are attached to the semiconductor (1). After this, Fig. 1 (C)
As shown in Fig. 2, when the light (5) is locally irradiated, the area (6) (6 ') irradiated according to the amount of light and the wavelength thereof is irradiated.
The static electricity of (6 '') is discharged to the conductor (2). In addition, among the electron-hole pairs generated by photoexcitation, negative electrons in the figure recombine with this positive static electricity and neutralize it. Thus, the static electricity could be selectively distributed on the semiconductor.

【0007】図2はこの原理を回転ドラムになった半導
体および層に設けた静電複写機の原理を示しているすな
わち回転ドラムの表面部分は導体と半導体との多層構造
に図1と同様に設けられている。さらに静電発生源
(8)より放出された静電気はドラムの上面に(3)の
如く均一に分布される。さらに光源(7)より物体(例
えば印刷された紙表面)(11)の反射光(5)がスリ
ット(9)をへてドラム上を照射する。すると照射され
た表面領域の半導体中で光起電力を発生し、その負の電
荷の再結合および正の電荷の基板導体への放出により、
その照射光(5)に従って静電気(3)の濃淡(4)が
できる。さらにこの回転ドラムの表面は(12)の部分
にて炭素粉またはそれと似質の混合物(1.0〜100
μの粒径)の黒粉体をドラム表面上に分布せしめる。す
るとこの粉体は静電気の量に比例してドラム表面に付着
する、いわゆる「可視化」を行なう。
FIG. 2 shows the principle of an electrostatic copying machine in which a semiconductor and a layer are provided as a rotating drum, that is, the surface portion of the rotating drum has a multilayer structure of conductors and semiconductors as in FIG. It is provided. Further, the static electricity emitted from the static electricity generation source (8) is evenly distributed as shown in (3) on the upper surface of the drum. Further, reflected light (5) from an object (for example, a printed paper surface) (11) from a light source (7) passes through a slit (9) and illuminates the drum. Then, a photoelectromotive force is generated in the semiconductor in the irradiated surface region, and by the recombination of the negative charge and the emission of the positive charge to the substrate conductor,
Intensity (4) of static electricity (3) is generated according to the irradiation light (5). Further, the surface of this rotary drum is carbon powder or a mixture thereof (1.0 to 100) in the part (12).
Disperse black powder with a particle size of μ on the drum surface. Then, this powder adheres to the drum surface in proportion to the amount of static electricity, so-called "visualization".

【0008】さらにこのドラムの回転(スピードは1〜
10秒/回転)と同じスピードにてこの黒粉体は表面に
接して被複写体例えば新しい紙(13)が移動しこの粉
体を被複写体上に付着せしめる。この後この紙(13)
は焼きつけ、定着をへて複写が完成する。ドラムの表面
に残存した粉体はブラシ(14)により完全に除去した
後最初の静電気発生源に至る。
Further, the rotation of this drum (speed is 1 to
At the same speed as 10 seconds / revolution), the black powder comes into contact with the surface and the copy object, for example, a new paper (13), moves to adhere the powder onto the copy object. After this this paper (13)
Copying is completed after printing and fixing. The powder remaining on the surface of the drum reaches the first static electricity generation source after being completely removed by the brush (14).

【0009】図3は従来の非接合型の光導電性半導体
(1)のエネルギバンド図である。図面(A)におい
て、導体(2)上の半導体(1)が設けられている。さ
らにここに正(+)の静電気(3)が付加すると、エネ
ルギバンドは図3(B)の如くにまがる。また光照射に
より励起(14)しこの静電気に対し電子(15)が再
結合をする。またホール(16)は裏面の導体(2)へ
と放出される。その結果光照射が行なわれたところはそ
の程度に従って(D)が形成され、光照射が強いところ
は(A)と同じ表面がまたその程度に従って弱いところ
は(D)がまたないことろは(B)が選択的に設けられ
る。
FIG. 3 is an energy band diagram of a conventional non-junction type photoconductive semiconductor (1). In the drawing (A), a semiconductor (1) is provided on a conductor (2). Further, when positive (+) static electricity (3) is added here, the energy band is rounded as shown in FIG. 3 (B). Also, it is excited (14) by light irradiation and electrons (15) are recombined with this static electricity. The holes (16) are also emitted to the conductor (2) on the back surface. As a result, (D) is formed according to the degree of light irradiation, the same surface as (A) where the light irradiation is strong, and (D) does not occur again where the light irradiation is weak ( B) is selectively provided.

【0010】本発明はかかるCdS等の半導体ではな
く、非単結晶の珪素半導体または珪素と炭素、窒素また
は酸素が添加された半導体または半絶縁体を用いたこと
を主な特徴としている。そしてこの半導体または半絶縁
体はそれ自体が公害物質ではなく、またC、Nを添加す
ることにより絶縁性が増加し、その結果半導体層の必要
な厚さを従来の1/3〜1/10にまでうすくでき、加
えてドラムとしての耐磨耗性にすぐれているという特徴
を有する。
The main feature of the present invention is to use not a semiconductor such as CdS but a non-single-crystal silicon semiconductor or a semiconductor or semi-insulator to which silicon and carbon, nitrogen or oxygen are added. The semiconductor or semi-insulator is not itself a pollutant, and the addition of C and N increases the insulating property, and as a result, the required thickness of the semiconductor layer is reduced to 1/3 to 1/10 of the conventional thickness. It has the characteristic that it can be thinned and has excellent wear resistance as a drum.

【0011】かかる半導体または半絶縁体の層の作製は
以下の如く行なった。SiH4,SiH2Cl2,SiC
4,SiF4 を(40)より導入する。さらにP型半導
体を形成する場合には III価の不純物であるB26,I
nCl3 を同時にヘリュウム等により希釈して導入す
る。さらにこのドラム(42)は直径20〜40cm、
長さ250〜500cmを有しているためこのドラム
(42)を0.1〜1回/秒の速度にて回転させた。こ
のドラムの表面はアルミニュウムまたはその化合物より
なり表面の酸化アルミニュウムを珪化物気体を被膜化す
る前に真空中でプラズマスパッタにてArまたはArお
よびHとの混合気体により被膜の被形成面をクリーニン
グして酸化物または汚物を除去した。さらにこれに珪化
物気体例えば、SiH, SinH2n+2, (n≧2),S
iF4 等を電極(47)の中央部にあるノズル(48)
より導入し、プラズマを0.01〜50MHz、または
1〜10GHzの周波数で100W〜1KWのパワーを
加え図4(B)の如くドラム(42)と電極(47)と
の間にプラズマ化を生ぜしめ反応性気体がノズル(4
8)より放出されたすべてが反応してその生成物がドラ
ム上に被着するようこのドラムを200〜500℃に加
熱しつつ、かつDCプラズマCVDをこのドラムと電極
(47)との間で行なうことを本発明の他の特徴として
いる。
Fabrication of such a semiconductor or semi-insulating layer was performed as follows. SiH 4 , SiH 2 Cl 2 , SiC
l 4 and SiF 4 are introduced from (40). Further, when forming a P-type semiconductor, B 2 H 6 , I, which is a trivalent impurity, is formed.
nCl 3 is simultaneously diluted and introduced with helium or the like. Furthermore, the drum (42) has a diameter of 20 to 40 cm,
Having a length of 250-500 cm, this drum (42) was rotated at a speed of 0.1-1 times / sec. The surface of this drum is made of aluminum or its compound, and the surface to be coated with Ar is mixed with Ar or a mixed gas of Ar and H by plasma sputtering in vacuum before coating the aluminum oxide on the surface with a silicide gas. To remove oxides or dirt. Further, a silicide gas such as SiH, SinH 2n + 2 , (n ≧ 2), S
Nozzle (48) in the center of the electrode (47) such as iF 4
Introducing plasma, plasma is applied at a frequency of 0.01 to 50 MHz or a frequency of 1 to 10 GHz, and a power of 100 W to 1 KW is applied to generate plasma between the drum (42) and the electrode (47) as shown in FIG. 4 (B). Squeezing reactive gas is the nozzle (4
8) heating this drum to 200-500 ° C. so that all the emitted from it reacts and deposits its product on the drum, and DC plasma CVD between this drum and the electrode (47). What is done is another feature of the present invention.

【0012】かくするとこの反応炉(50)の内壁には
珪化物の被着が少なく、単純な平行平板型のグロー放電
法またはアーク放電法を利用した珪素に水素または水素
とフッ素の如きハロゲン元素が添加された非結晶質珪素
を利用する方法に比べて材料収率を15%より90〜9
5%に向上でき、材料の有効利用ができ場合として低コ
スト化をはかることができた。
As a result, there is little deposition of silicide on the inner wall of the reactor (50), and hydrogen or hydrogen and a halogen element such as fluorine are added to silicon using a simple parallel plate type glow discharge method or arc discharge method. Material yield of 15 to 90% compared to the method using amorphous silicon added with
The cost can be improved to 5%, and the material can be effectively used, and the cost can be reduced.

【0013】反応炉内は珪化物気体特にシランを3〜3
0%He=95〜70%とし、さらにP型またはP+
の層とするにはB26 またはInCl3 を0.1〜5
%導入する。またN型の層を作るにはPH3,SbCl5
を同様に同時に混入せしめた。その場合はその量に相当
する希釈材であるヘリュウムを少なくした。ヘリュウム
はすべての気体中最も軽くかつ熱伝導率がAr等に比べ
て約3倍も大きく、反応炉内の均熱化すなわち被膜の膜
厚の均一化にきわめて好ましい希釈ガスであった。
The reaction furnace is filled with a silicide gas, especially silane, in an amount of 3 to 3
0% He = 95 to 70%, and B 2 H 6 or InCl 3 is added to 0.1 to 5 to form a P-type or P + -type layer.
%Introduce. To make an N-type layer, PH 3, SbCl 5
Were mixed simultaneously at the same time. In that case, the amount of helium that is the diluent corresponding to that amount was reduced. Helium was the lightest of all gases and had a thermal conductivity about three times higher than that of Ar and the like, and was a very preferable diluent gas for uniform heating in the reaction furnace, that is, for uniform film thickness.

【0014】さらにHeはイオン化する時の電離電圧が
21eVもあり他の気体の12〜15eVに比べきわめ
て大きく、結果としてプラズマ状態の持続に対してもそ
の寄与が大であった。さらにこの形成される被膜を半導
体ではなく半絶縁体とするためには同時にメタンまたは
アンモニアを添加した。するとSi34-x (0<x<
4)が形成され、窒素が1〜30モル%添加させるとそ
の被膜はEgが2.0〜3.0eVと珪素の1.0〜
1.8eVよりも大きくすることができた。加えて耐磨
耗性も向上し、本発明の静電複写機は単純な珪素ではな
く、炭素または窒素が1〜50モル%添加され、特にこ
の半導体の静電気が吸着する表面またはその近傍に炭素
または窒素の添加量を大にしてSiC1-x , Si3
4-x においてxを小さくし広いエネルギバンド巾であり
かつ耐磨耗性向上につとめた。
Further, He has an ionization voltage of 21 eV at the time of ionization, which is extremely large as compared with 12 to 15 eV of other gases, and as a result, the contribution to the continuation of the plasma state was large. Further, methane or ammonia was added at the same time in order to make the formed film not a semiconductor but a semi-insulator. Then Si 3 N 4-x (0 <x <
4) is formed and when 1 to 30 mol% of nitrogen is added, the coating has an Eg of 2.0 to 3.0 eV and 1.0 to 10% of silicon.
It could be made larger than 1.8 eV. In addition, the abrasion resistance is also improved. The electrostatic copying machine of the present invention is not simple silicon, but 1 to 50 mol% of carbon or nitrogen is added, and in particular, the surface of the semiconductor where electrostatic is adsorbed or the vicinity thereof is carbon. Or by increasing the amount of nitrogen added, SiC 1-x , Si 3 N
In 4-x , x was made small to have a wide energy band width and to improve wear resistance.

【0015】かくすることにより静電気のリークによる
漸減が少なく、静電気を長時間半導体上または半絶縁体
上に保持することができた。炭化物気体を導入するのに
MO(金属有機物)であるテトラメチルシラン(Si
(CH3)4 )(BP 26.4℃),テトラエチルシラ
ン(Si(C25)4)(BP 153℃)を用いてもよ
い。かかる炭素、珪素化合物を用いると、形成された半
導体または半絶縁体中に珪素または炭素のクラスタが存
在し半導体特性をさまたげるという心配がなくきわめて
好ましいものであった。
By doing so, the gradual decrease due to the leakage of static electricity was small, and the static electricity could be held on the semiconductor or the semi-insulator for a long time. Tetramethylsilane (Si) which is MO (metal organic compound) is used to introduce the carbide gas.
(CH 3 ) 4 ) (BP 26.4 ° C.) and tetraethylsilane (Si (C 2 H 5 ) 4 ) (BP 153 ° C.) may be used. When such a carbon or silicon compound is used, there is no concern that silicon or carbon clusters will be present in the formed semiconductor or semi-insulator, and the semiconductor characteristics will not be impaired, which is extremely preferable.

【0016】図5は静電複写機における本発明の半導体
のエネルギバンド図による動作原理を示す。図面におい
て半導体(1)は導体(2)に接してP型半導体または
半絶縁体による第1の層(31)真性または実質的に真
性の第2の層(32)およびN型の第3の層(33)を
有しており、各層間の遷移領域(37),(36)が構
成されている。さらにこれら第1,第2および第3の層
の伝導帯(38)価電子帯(39)は連続しており、エ
ネルギバンド的にキンク、ディップ等の不連続性を有し
ていない。
FIG. 5 shows the principle of operation of an electrostatic copying machine according to the energy band diagram of the semiconductor of the present invention. In the drawing, a semiconductor (1) is in contact with a conductor (2) and is composed of a first layer (31) of a P-type semiconductor or a semi-insulator, an intrinsic or substantially intrinsic second layer (32) and an N-type third layer. The layer (33) is provided, and the transition regions (37) and (36) between the layers are formed. Furthermore, the conduction band (38) and the valence band (39) of these first, second and third layers are continuous and do not have discontinuities such as kinks and dips in terms of energy band.

【0017】エネルギバンド巾は各層とも同じでもよい
がここでは電子・ホールの光照射における電子の表面へ
のドリフトまたホールの裏面へのドリフトを助長するた
めの内部電界を構成させるため広いエネルギバンド巾
(WIDE)の第1の層(31)−せまいエネルギバン
ド巾の(NALLOW)第2の層(32)−広いエネル
ギバンド巾の第3の層(33)がP(31)−I(3
2)−N(33)接合を構成して設けられている。
The energy band width may be the same for each layer, but here, a wide energy band width is formed in order to form an internal electric field for promoting drift of electrons to the front surface of electrons / holes during light irradiation and drift of electrons to the back surface of holes. The first layer (31) of (WIDE) -the (NALLOW) second layer (32) of small energy bandwidth-the third layer (33) of wide energy bandwidth is P (31) -I (3).
2) -N (33) junction is provided.

【0018】かくの如き内部電界ができたため、ホール
の裏面導体(1)への拡散が従来に比べて102 〜10
4 倍も速くなり、結果としてこの半導体(2)を従来よ
り1/2〜1/3の厚さの100〜10μ±20μにす
ることが可能になり、省資源の面より好ましい。加えて
厚さがうすくなったため裏面導体との熱ストレスによる
クラック等の発生も少なくなり、より好ましかった。ま
たこの裏面の導体をアルミニュウムとし軽量化とこのド
ラムの半導体の作製をプラズマCVD法により300〜
650℃の温度にて作製する場合をオーム接触用シンタ
ーを作製と同時に実施することが可能であった。
Due to such an internal electric field, the diffusion of the holes into the back surface conductor (1) is 10 2 to 10 as compared with the conventional case.
This is four times faster, and as a result, this semiconductor (2) can be made to have a thickness of 100 to 10 μ ± 20 μ, which is 1/2 to 1/3 that of the conventional one, which is preferable in terms of resource saving. In addition, since the thickness was thin, the occurrence of cracks and the like due to thermal stress with the back conductor was reduced, which was more preferable. In addition, the conductor on the back side is made of aluminum to reduce the weight and the semiconductor of this drum is manufactured by the plasma CVD method from 300 to 300.
It was possible to carry out the production at a temperature of 650 ° C. simultaneously with the production of the sinter for ohmic contact.

【0019】さらに図5(A)におけるこの半導体
(1)の表面に図1(B)に示す如く正の静電気(3)
を帯電させると、図5(B)の如くに表面のバンドが下
側に下がる。また選択的に光照射を図1(C)の如くに
行なうと光励起された電子(15)はドリフトして表面
の静電気(3)と再結合する。またホール(16)は裏
面にP−I−N接合の接合電界とWIDE−TO−NA
LLOW−TO−WIDEの構造による内部電界により
急速に導体(2)に放電する。そしてその電界に従って
静電気(3)が図5(D)に示す如くに残存し、光照射
がない領域は図5(B)に、また光照射が強い領域は図
5(A)を選択的に形成させることができる。
Further, as shown in FIG. 1B, positive static electricity (3) is applied to the surface of the semiconductor (1) in FIG. 5A.
Is charged, the surface band goes down as shown in FIG. 5 (B). When the light irradiation is selectively performed as shown in FIG. 1C, the photoexcited electrons (15) drift and recombine with the static electricity (3) on the surface. Also, the holes (16) are formed on the back surface by the junction electric field of the PIN junction and the WIDE-TO-NA.
An internal electric field due to the LLOW-TO-WIDE structure causes rapid discharge to the conductor (2). Then, according to the electric field, static electricity (3) remains as shown in FIG. 5 (D), a region without light irradiation is selectively shown in FIG. 5 (B), and a region with strong light irradiation is selectively shown in FIG. 5 (A). Can be formed.

【0020】本発明はこのPIN構造においてその材料
を珪素それ自体よりもむしろそこに炭素または窒素を添
加してSiC1-x (0<x<1)(x=1とすると珪素
のみになる)、Si34-x (0<x<4)(ただしx
=4とすると珪素のみになる)とし、高い抵抗性を有す
る半導体または半絶縁体とし、また第1および第2の層
には炭素において10〜50モル%、窒素において5〜
30モル%を添加し、第2の層には炭素において1〜2
0モル%、窒素において0.1〜5モル%を添加するこ
とにより光照射時のS/N比の増大、また第2の層の厚
さを1/5〜1/20にうすく1〜50μであっても静
電気の保持を10−50秒〜1−5分とすることができ
た。さらに第3の層は耐磨耗性にすぐれた炭化珪素(S
iC1-x(0≦x<1))または窒化珪素(Si34-x
(0<x<4))を用いることにより104 〜106
の静電複写を行なっても静電気の保持特性に劣化がみら
れなかったことを他の特徴としている。
According to the present invention, in this PIN structure, the material is SiC 1-x (0 <x <1) (when x = 1, only silicon is formed) by adding carbon or nitrogen thereto rather than silicon itself. , Si 3 N 4-x (0 <x <4) (where x
= 4 only silicon) and a semiconductor or semi-insulator having high resistance, and the first and second layers have carbon of 10 to 50 mol% and nitrogen of 5 to 5 mol%.
30 mol% is added and the second layer has 1-2 carbon in carbon.
Addition of 0 mol% and 0.1 to 5 mol% of nitrogen increases the S / N ratio at the time of light irradiation, and reduces the thickness of the second layer to 1/5 to 1/20 by 1 to 50 μm. However, the static electricity could be retained for 10-50 seconds to 1-5 minutes. Furthermore, the third layer is made of silicon carbide (S
iC 1-x (0 ≦ x <1)) or silicon nitride (Si 3 N 4-x
Another feature is that the use of (0 <x <4) does not cause deterioration in the electrostatic holding property even when electrostatic copying is performed 10 4 to 10 6 times.

【0021】図6は本発明の他の実施例を示す。図面に
おいて(A)は半導体または半絶縁体(1)に対しNI
P構造であってかつW(31)−N(32)−W(3
3)とし、第3の層(33)はNまたはN- 、第1の層
はP+ としたものである。図6(B)は同様であるが第
3の層(33)をN+ としたものである。
FIG. 6 shows another embodiment of the present invention. In the drawing, (A) is an NI for a semiconductor or a semi-insulator (1)
P structure and W (31) -N (32) -W (3
3), the third layer (33) is N or N , and the first layer is P + . Similar to FIG. 6B, the third layer (33) is N + .

【0022】図6(C)は第3の層(33)の上面に炭
化珪素(SiC)または窒化珪素(Si34 )になる
絶縁物を電流を流しうる厚さすなわち10〜1000Å
の厚さに設け、静電気の保持特性を向上させたものであ
る。すなわち図6(C)は半導体層(32)とその上面
の半絶縁体(33)よりなり、さらにその上面には電流
を流しうる厚さの窒化珪素(Si34 )が30〜10
0Åの厚さで形成されている。この窒化珪素はエネルギ
バンド巾が5.0eVであり、酸化珪素に比べてかたく
耐磨耗性にすぐれているに加えて、その厚さを30〜1
00Åと厚くしても電流を流すことができる。このため
酸化珪素の保護膜に比べて2つの特徴を有し、本発明に
おいては図1の反応炉に対しシランの導入を中止してア
ンモニアのみを導入しプラズマ化し、この半導体または
半絶縁体の表面を炭化または窒化すればよい。
FIG. 6 (C) shows a thickness of 10 to 1000 Å at which an insulator made of silicon carbide (SiC) or silicon nitride (Si 3 N 4 ) can flow current on the upper surface of the third layer (33).
It has a thickness of 10 mm to improve static electricity retention characteristics. That is, FIG. 6C is composed of a semiconductor layer (32) and a semi-insulator (33) on the upper surface thereof, and further, silicon nitride (Si 3 N 4 ) having a thickness capable of passing a current of 30 to 10 is formed on the upper surface.
It is formed with a thickness of 0Å. This silicon nitride has an energy band width of 5.0 eV, is harder and has better wear resistance than silicon oxide, and has a thickness of 30 to 1
Even if it is as thick as 00Å, current can flow. Therefore, it has two characteristics as compared with the protective film of silicon oxide. In the present invention, the introduction of silane is stopped and only ammonia is introduced into the reaction furnace of FIG. The surface may be carbonized or nitrided.

【0023】[0023]

【発明の効果】以上の説明より明らかな如く、本発明は
従来のCdS等の化合物半導体を用いた静電複写機に比
べて、安価な珪素を主成分とした半導体とした。その半
導体中特にその表面またはその近傍に窒素を添加してか
たくし耐磨耗性を向上し、さらに静電気のリークを半導
体を半絶縁化することにより防止した。導体基板または
ドラム近傍にはP型の半導体を設け、I−P接合を作る
ことにより内部電界を発生せしめ、S/N比を向上させ
ることが可能となる。
As is apparent from the above description, the present invention uses a semiconductor containing silicon as a main component, which is less expensive than an electrostatic copying machine using a conventional compound semiconductor such as CdS. Nitrogen was added to the surface of the semiconductor, especially at or near its surface, to increase the hardness and wear resistance, and to prevent static electricity leakage by semi-insulating the semiconductor. It is possible to improve the S / N ratio by providing a P type semiconductor near the conductor substrate or the drum and forming an IP junction to generate an internal electric field.

【0024】本発明の実施例においては正の静電気を帯
びさせる場合を主として記した。しかし負の静電気を帯
びさせる場合は接合をP(第3の層)−I(第2の層)
−N(第1の層)とするべき導体上の第1の半導体層の
導電型を定めればよく全く逆符号の関係になる。
In the embodiments of the present invention, the case where positive static electricity is applied was mainly described. However, if negative electrostatic charge is applied, the junction should be P (third layer) -I (second layer).
It is sufficient to determine the conductivity type of the first semiconductor layer on the conductor to be -N (first layer), and the relationship is completely opposite.

【0025】さらにこのドラム上での半導体または半絶
縁体の被膜化をドラムを回転しながらDCプラズマを利
用して減圧CVD法を用いたため、材料の反応炉の壁へ
の付着によるロスを少なくした等の特徴を有するもの
で、工学的にきわめて重要であると信じる。
Furthermore, since the semiconductor or semi-insulating material on the drum is coated by the low pressure CVD method using DC plasma while rotating the drum, the loss due to the adhesion of the material to the wall of the reaction furnace is reduced. I believe that it is extremely important from an engineering point of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる静電気の局部的な帯電の原理を
示したものである。
FIG. 1 shows the principle of local charging of static electricity according to the present invention.

【図2】 本発明の応用するドラム式の静電複写機の原
理を示したものである。
FIG. 2 shows the principle of a drum type electrostatic copying machine to which the present invention is applied.

【図3】 従来の半導体のエネルギバンド図を示す。FIG. 3 shows an energy band diagram of a conventional semiconductor.

【図4】 本発明の複写機を作るための製造装置の原理
を示す。
FIG. 4 shows the principle of a manufacturing apparatus for making a copying machine of the present invention.

【図5】 本発明の半導体のエネルギバンド図を示す。FIG. 5 shows an energy band diagram of a semiconductor of the present invention.

【図6】 本発明の他の半導体または半絶縁体の構造を
有するエネルギバンド図を示す。
FIG. 6 shows an energy band diagram with another semiconductor or semi-insulator structure of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体 2 導体 31 第1の層 32 第2の層 33 第3の層 36、37 遷移領域 38 伝導帯 39 価電帯 DESCRIPTION OF SYMBOLS 1 semiconductor 2 conductor 31 1st layer 32 2nd layer 33 3rd layer 36, 37 transition region 38 conduction band 39 valence band

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応炉内でプラズマを発生させる一方の
電極となるように導電性基体を円筒状のアルミニューム
またはその化合物により作製し、該導電性基体の表面に
相対して電極を配置し、前記導電性基体と電極の間にプ
ラズマを発生させ、プラズマ発生領域にて前記円筒状導
電性基体を回転させつつ、該円筒状導電性基体の表面
に、炭化物気体、酸化物気体または窒化物気体よりなる
添加物気体と、珪化物気体、及びPまたはN型の不純物
用気体とを反応せしめて、水素、弗素、或いは塩素を含
み、かつ窒素、炭素または酸素が添加された珪素を主成
分としたP型若しくはN型の半導体または半絶縁体の第
1の非単結晶層を導電性基体上に形成する工程と、該第
1の非単結晶層上に前記添加物気体を導入することなく
珪化物気体を反応せしめて水素、弗素、あるいは塩素を
含み、真性または実質的に真性の珪素半導体の第2の非
単結晶層を形成する工程と、該非単結晶層上に炭化物気
体と、珪化物気体とを反応せしめて炭素が添加され、か
つ水素、弗素あるいは塩素が添加された珪素を主成分と
した半導体または半絶縁体の第3の非単結晶層を形成す
る工程とを有することを特徴とする感光体の作製方法
1. A conductive substrate is made of cylindrical aluminum or a compound thereof so as to serve as one electrode for generating plasma in a reaction furnace, and the electrode is arranged opposite to the surface of the conductive substrate. , Generating a plasma between the conductive base and the electrode, and rotating the cylindrical conductive base in the plasma generation region, and at the surface of the cylindrical conductive base, carbide gas, oxide gas or nitride The main component is silicon which contains hydrogen, fluorine, or chlorine, and is added with nitrogen, carbon, or oxygen by reacting an additive gas consisting of a gas, a silicide gas, and a P or N type impurity gas. Forming a first non-single-crystal layer of a P-type or N-type semiconductor or semi-insulator on a conductive substrate, and introducing the additive gas onto the first non-single-crystal layer. Without reacting the silicide gas Forming a second non-single-crystal layer of an intrinsic or substantially intrinsic silicon semiconductor containing hydrogen, fluorine, or chlorine, and reacting a carbide gas and a silicide gas on the non-single-crystal layer. And a step of forming a third non-single-crystal layer of a semiconductor or semi-insulator containing silicon as a main component to which carbon is added at least and hydrogen, fluorine or chlorine is added. How to make
JP5346709A 1993-12-22 1993-12-22 Photoconductor production method Expired - Lifetime JP2585964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346709A JP2585964B2 (en) 1993-12-22 1993-12-22 Photoconductor production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346709A JP2585964B2 (en) 1993-12-22 1993-12-22 Photoconductor production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56087767A Division JPH0629977B2 (en) 1981-06-08 1981-06-08 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPH06282088A true JPH06282088A (en) 1994-10-07
JP2585964B2 JP2585964B2 (en) 1997-02-26

Family

ID=18385283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346709A Expired - Lifetime JP2585964B2 (en) 1993-12-22 1993-12-22 Photoconductor production method

Country Status (1)

Country Link
JP (1) JP2585964B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511330A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device having continuous junction
JPS5511397A (en) * 1979-06-05 1980-01-26 Shunpei Yamazaki Semiconductor device with continuous connection and its production method
JPS55121239U (en) * 1979-02-21 1980-08-28
JPS5664347A (en) * 1979-10-30 1981-06-01 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS56142680A (en) * 1980-04-07 1981-11-07 Matsushita Electric Ind Co Ltd Photoconductive semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511330A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device having continuous junction
JPS55121239U (en) * 1979-02-21 1980-08-28
JPS5511397A (en) * 1979-06-05 1980-01-26 Shunpei Yamazaki Semiconductor device with continuous connection and its production method
JPS5664347A (en) * 1979-10-30 1981-06-01 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS56142680A (en) * 1980-04-07 1981-11-07 Matsushita Electric Ind Co Ltd Photoconductive semiconductor device

Also Published As

Publication number Publication date
JP2585964B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JPH0415938B2 (en)
US4582721A (en) Process for preparing amorphous silicon semiconductor
US5303007A (en) Printing apparatus for electrostatic photocopying
US4769303A (en) Electrophotographic photosensitive member
US4889782A (en) Electrostatic photocopying machine
JPH06282088A (en) Production of photosensitive body
JPH06282087A (en) Electronic exposure device
JPH0629977B2 (en) Electrophotographic photoconductor
JP2662707B2 (en) Manufacturing method of drum type photoreceptor
JP2617417B2 (en) Electrophotographic photoreceptor
US5070364A (en) Printing member for electrostatic photocopying
US5103262A (en) Printing member for electrostatic photocopying
JPH0723962B2 (en) Drum type photoconductor manufacturing method
US5008171A (en) Printing member for electrostatic photocopying
US4999270A (en) Printing member for electrostatic photocopying
JPH09120173A (en) Production of photoreceptor
US4971872A (en) Electrostatic photocopying machine
JPS6017451A (en) Manufacture of copying machine
US5545503A (en) Method of making printing member for electrostatic photocopying
Shimizu Electrophotography
KR860001162B1 (en) Photoelectronic convert device
JPH11305471A (en) Electrophotographic photoreceptor
JPS616654A (en) Electrophotographic sensitive body and its manufacture
US5144367A (en) Printing member for electrostatic photocopying
JPS5842061A (en) Electrostatic copying system