JPH06281628A - Flaw detecting sensor of remote field eddy-current flaw detection device - Google Patents

Flaw detecting sensor of remote field eddy-current flaw detection device

Info

Publication number
JPH06281628A
JPH06281628A JP5071556A JP7155693A JPH06281628A JP H06281628 A JPH06281628 A JP H06281628A JP 5071556 A JP5071556 A JP 5071556A JP 7155693 A JP7155693 A JP 7155693A JP H06281628 A JPH06281628 A JP H06281628A
Authority
JP
Japan
Prior art keywords
flaw detection
coil
remote field
eddy current
field eddy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5071556A
Other languages
Japanese (ja)
Inventor
Kenji Suyama
憲次 須山
Kiwamu Suzuki
究 鈴木
Naoki Taoka
直規 田岡
Junichi Ando
純一 安藤
Masayuki Ishikawa
石川  雅之
Kimio Nakajima
紀美雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sumitomo Metal Industries Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sumitomo Metal Industries Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5071556A priority Critical patent/JPH06281628A/en
Publication of JPH06281628A publication Critical patent/JPH06281628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the occurrence of noise signals against defect signals in a remote field eddy current flaw detection device. CONSTITUTION:In a remote field eddy current flaw detection device which detects an objective point by running a flaw detecting sensor in which a transmission unit 1 with a transmission coil 3 and reception unit 4 (4a and 4b) with reception coils 6 are coupled with each other at a prescribed distance through a coil spring and a signal line and rope, etc., 18 are stretched inside the spring 7 in a pipe buried in the ground, the spring 7 is constituted of a nonmagnetic elastic material and, at the same time, the rope, etc., 18 are constituted of a nonmetallic material. Therefore, the occurrence of noise signals which are generated when electromagnetic waves propagated to the reception coil 6 from the transmission coil 3 pass through the coil 7 and noise signals which occur when a current is induced in a tensile member by external electromagnetic waves can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガス供給管等の地
中埋設管の腐食状況等を検査するためのリモートフィー
ルド渦流探傷装置の探傷センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection sensor of a remote field eddy current flaw detection device for inspecting the corrosion state of underground pipes such as city gas supply pipes.

【0002】[0002]

【従来の技術】地中埋設管の腐食状況を検査したり継手
等を検出する探傷装置の一つとして、リモートフィール
ド渦流探傷装置がある。
2. Description of the Related Art A remote field eddy current flaw detector is one of the flaw detectors for inspecting the corrosion state of underground pipes and detecting joints.

【0003】この探傷装置は、送信コイルを装置した共
通の送信ユニットと、受信コイルを装置した適数の受信
ユニットを所定距離隔ててコイルばねを介して連結して
構成した探傷センサと、この探傷センサに接続した駆動
用ケーブルと、この駆動用ケーブルの駆動機構と、探傷
センサと送受信して信号を処理する探傷装置本体とから
構成している。そして探傷センサを距離が測定可能な駆
動機構により地中埋設管内に走行させ、送信コイルから
受信コイルまでの電磁波の伝播時間の変化により腐食減
肉や貫通孔等の欠陥または継手等の対象個所を検出する
と共に、探傷センサの走行距離により前記欠陥等の対象
個所の位置を測定するものである。この際、前記伝播時
間の変化は、受信信号と送信信号との位相差としてあら
われ、この位相差はロックインアンプ等を用いて検出す
る。
This flaw detection apparatus has a flaw detection sensor constructed by connecting a common transmission unit having a transmission coil and an appropriate number of reception units having a reception coil with a predetermined distance, and connecting them through a coil spring. It is composed of a drive cable connected to the sensor, a drive mechanism for the drive cable, and a flaw detection device body that transmits and receives signals to and from the flaw detection sensor to process signals. Then, the flaw detection sensor is driven in the underground pipe by a distance-measuring drive mechanism, and changes in the propagation time of the electromagnetic wave from the transmitting coil to the receiving coil cause defects such as corrosion wall thinning and through holes, or target points such as joints. In addition to the detection, the position of the target point such as the defect is measured by the traveling distance of the flaw detection sensor. At this time, the change in the propagation time appears as a phase difference between the reception signal and the transmission signal, and this phase difference is detected by using a lock-in amplifier or the like.

【0004】コイルばねは、送信ユニットと受信ユニッ
トを所定間隔に維持すると共に、その可撓性により地中
埋設管の曲管部における移動を円滑に行えるようにする
ものであるが、伸長方向の永久変形を防止すると共に剛
性を高めるために、コイルばねの内部には所定距離に渡
って引張部材としての鋼線を張設している。このために
送信ユニットや受信ユニットは軸方向に中空に構成して
おり、この中空部を通して夫々のユニットに接続する信
号線や引張部材としての鋼線を貫通させる構成としてい
る。
The coil spring keeps the transmitting unit and the receiving unit at a predetermined distance and, because of its flexibility, enables the underground buried pipe to move smoothly in the curved pipe portion. In order to prevent permanent deformation and increase rigidity, a steel wire as a tension member is stretched over a predetermined distance inside the coil spring. For this reason, the transmission unit and the reception unit are configured to be hollow in the axial direction, and the signal wire and the steel wire as a tension member connected to each unit are penetrated through the hollow portion.

【0005】[0005]

【発明が解決しようとする課題】コイルばねは、送信ユ
ニットと受信ユニット間のものを含め、通常のばね鋼に
より構成しており、従って磁性体であるので、送信コイ
ルから受信コイルに至る電磁波の一部はコイルばねを通
ってしまう。このため、これが雑音信号となって検出す
べき欠陥信号の弁別性を悪化させる一因となっている。
The coil spring, including the one between the transmitting unit and the receiving unit, is made of ordinary spring steel, and is therefore a magnetic body, so that the electromagnetic wave from the transmitting coil to the receiving coil is absorbed. Some pass through the coil spring. For this reason, this becomes a noise signal, which is one of the causes of deteriorating the discriminability of the defect signal to be detected.

【0006】一方、引張部材として張設されている鋼線
は導電性を有するので、この鋼線には外部からの電磁波
により電流が誘導され、この誘導電流による磁界も雑音
信号となって、検出すべき欠陥信号の弁別性を悪化させ
る一因となっている。従って本発明は、このような要因
を取り除くことを目的とするものである。
On the other hand, since the steel wire stretched as a tensile member has conductivity, a current is induced in this steel wire by an electromagnetic wave from the outside, and the magnetic field due to this induced current also becomes a noise signal for detection. This is one of the causes of deteriorating the discriminability of defective signals to be processed. Therefore, the present invention aims to eliminate such factors.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、送信コイルを設けた送信ユニット
と、受信コイルを設けた受信ユニットを所定距離隔てて
コイルばねを介して連結すると共に、コイルばね内に信
号線と引張部材を張設した探傷センサを埋設管内に走行
させて対象個所の検出を行うリモートフィールド渦流探
傷装置に於いて、探傷センサはコイルばねを非磁性弾性
体により構成することを提案する。
In order to solve the above-mentioned problems, according to the present invention, a transmission unit provided with a transmission coil and a reception unit provided with a reception coil are connected via a coil spring at a predetermined distance. At the same time, in a remote field eddy current flaw detector that detects a target location by running a flaw detection sensor in which a signal wire and a tension member are stretched in the coil spring inside an embedded pipe, the flaw detection sensor uses a non-magnetic elastic body for the coil spring. Suggest to configure.

【0008】また本発明は、上述した課題を解決するた
めの次の手段として、送信コイルを設けた送信ユニット
と、受信コイルを設けた受信ユニットを所定距離隔てて
コイルばねを介して連結すると共に、コイルばね内に信
号線と引張部材を張設した探傷センサを埋設管内に走行
させて対象個所の検出を行うリモートフィールド渦流探
傷装置に於いて、探傷センサは引張部材を非金属体によ
り構成することを提案する。
Further, the present invention, as the next means for solving the above-mentioned problems, connects a transmission unit provided with a transmission coil and a reception unit provided with a reception coil with a predetermined distance therebetween via a coil spring. , In a remote field eddy current flaw detection device that detects a target location by running a flaw detection sensor in which a signal wire and a tension member are stretched in a coil spring inside an embedded pipe, the flaw detection sensor has a tension member made of a non-metal body. I suggest that.

【0009】更に、本発明では、送信コイルを設けた送
信ユニットと、受信コイルを設けた受信ユニットを所定
距離隔ててコイルばねを介して連結すると共に、コイル
ばね内に信号線と引張部材を張設した探傷センサを埋設
管内に走行させて対象個所の検出を行うリモートフィー
ルド渦流探傷装置に於いて、探傷センサはコイルばねを
非磁性弾性体により構成すると共に引張部材を非金属体
により構成することを提案する。
Further, according to the present invention, the transmission unit provided with the transmission coil and the reception unit provided with the reception coil are connected via a coil spring at a predetermined distance, and a signal line and a tension member are stretched in the coil spring. In a remote field eddy current flaw detection device that detects the target location by running the flaw detection sensor installed inside the buried pipe, the flaw detection sensor must have a coil spring made of a non-magnetic elastic body and a tensile member made of a non-metal body. To propose.

【0010】そして本発明では上記の構成において、非
磁性弾性体は、ベリリウム銅やりん青銅等の銅系ばね材
とすることを提案する。
In the present invention, it is proposed that the nonmagnetic elastic body is a copper-based spring material such as beryllium copper or phosphor bronze.

【0011】更に本発明では上記の構成に於いて、非金
属体はアラミド繊維等の高強度高弾性率繊維とすること
を提案する。
Further, the present invention proposes that, in the above-mentioned constitution, the non-metal body is a fiber having high strength and high elastic modulus such as aramid fiber.

【0012】[0012]

【作用】コイルばねを非磁性体で構成すると、送信コイ
ルから受信コイルに至る電磁波はコイルばねを通らず
に、対象とする地中埋設管の管壁を効率的に通るように
なるので、従来のようにコイルばねを通る電磁波に起因
する雑音信号の発生を防止することができる。
When the coil spring is made of a non-magnetic material, electromagnetic waves from the transmitting coil to the receiving coil do not pass through the coil spring but efficiently pass through the pipe wall of the target underground pipe. As described above, it is possible to prevent the generation of a noise signal due to the electromagnetic wave passing through the coil spring.

【0013】引張部材を非金属体で構成すると、外部か
らの電磁波による誘導電流が発生せず、この誘導電流に
起因する雑音信号の発生を防止することができる。
When the tension member is made of a non-metallic material, an induction current due to an electromagnetic wave from the outside does not occur, and it is possible to prevent the generation of a noise signal due to this induction current.

【0014】[0014]

【実施例】次に本発明の実施例を添付図面について説明
する。図において符号1は送信ユニットであり、この送
信ユニット1は、対象とする地中埋設管(図示省略)よ
りも径を小さくして、曲管部でも移動可能とした中空器
体2に送信コイル3を設けた構成であり、送信コイル3
の巻軸方向は、地中埋設管の軸方向に対応させている。
Embodiments of the present invention will now be described with reference to the accompanying drawings. In the figure, reference numeral 1 is a transmitting unit, and the transmitting unit 1 has a diameter smaller than that of a target underground buried pipe (not shown), and a transmitting coil is provided in a hollow vessel body 2 which is movable even in a curved pipe portion. 3 is provided, and the transmitter coil 3
The winding axis direction of corresponds to the axial direction of the underground buried pipe.

【0015】符号4は受信ユニットであり、この受信ユ
ニット4(4a,4b)は、送信ユニット1の前側と後
側の夫々に対応して設けている。そして夫々の受信ユニ
ット4は、前記中空器体2と同様に、対象とする地中埋
設管よりも径を小さくして曲管部でも移動可能とした中
空器体5の周囲に複数の受信コイル6を設けた構成であ
り、夫々の受信コイル6の巻軸方向は、地中埋設管の半
径方向に対応させている。
Reference numeral 4 is a receiving unit, and the receiving unit 4 (4a, 4b) is provided corresponding to each of the front side and the rear side of the transmitting unit 1. As in the hollow vessel 2, each receiving unit 4 has a plurality of receiving coils around the hollow vessel 5 that has a smaller diameter than the target underground buried tube and is movable even in a curved pipe section. 6 is provided, and the winding axis direction of each receiving coil 6 corresponds to the radial direction of the underground buried pipe.

【0016】夫々の中空器体2,5の中空部の両端には
コイルばね7の螺合部8を形成しており、この螺合部8
にコイルばね7を螺合した後、シリコン樹脂等で固める
ことにより、各中空器体2,5とコイルばね7を連結し
ている。勿論、連結方法は、これに限られるものではな
い。こうして送信ユニット1の前側と後側の両側に、コ
イルばね7により所定距離隔てて受信ユニット4a,4
bを連結している。これらのコイルばね7の材質はベリ
リウム銅としている。このコイルばね7の材質は前述し
たように非磁性弾性体であれば、りん青銅等の、他の銅
系ばね材等を使用することができる。
Threaded portions 8 of the coil spring 7 are formed at both ends of the hollow portions of the hollow vessels 2 and 5, respectively.
After the coil springs 7 are screwed into each other and then hardened with silicone resin or the like, the hollow vessel bodies 2 and 5 are connected to the coil springs 7. Of course, the connection method is not limited to this. In this way, the receiving units 4a, 4 are separated by a predetermined distance by the coil springs 7 on both the front side and the rear side of the transmitting unit 1.
b is connected. The material of these coil springs 7 is beryllium copper. If the coil spring 7 is made of a non-magnetic elastic material as described above, another copper-based spring material such as phosphor bronze can be used.

【0017】またコイルばね7の中間部には、これを地
中埋設管の中心部に保持するための支持体9を設けてい
る。この支持体9は、コイルばね7に固定したストッパ
ー筒体10の両側に摺動部材11を嵌合し、これらの摺
動部材11間に、外方にわん曲させて全体として地中埋
設管の内径よりも大きく構成した板ばね12を設けた構
成である。この支持体9は、板ばね12が地中埋設管の
内壁に弾性的に圧接することによりコイルばね7を中心
に保持するものである。
A support 9 for holding the coil spring 7 at the center of the underground pipe is provided in the middle of the coil spring 7. This support body 9 has sliding members 11 fitted on both sides of a stopper cylinder 10 fixed to a coil spring 7, and is bent outward between these sliding members 11 so as to be entirely buried in the underground pipe. This is a configuration in which the leaf spring 12 configured to be larger than the inner diameter of is provided. The support 9 holds the coil spring 7 at the center by elastically pressing the leaf spring 12 against the inner wall of the underground pipe.

【0018】一方、前側の受信ユニット4aの前方には
先端案内体13を構成しており、この先端案内体13と
受信ユニット4a間に、前述と同様な連結方法等によ
り、通常のばね鋼により構成したコイルばね14を連結
している。そしてこのコイルばね14の中間部にも支持
体9を設けている。
On the other hand, a tip guide body 13 is formed in front of the front receiving unit 4a, and a normal spring steel is used between the tip guide body 13 and the receiving unit 4a by the same connection method as described above. The constructed coil springs 14 are connected. The support 9 is also provided in the middle of the coil spring 14.

【0019】また後方側の受信ユニット4bの後側にも
前述と同様な連結方法等で、通常のばね鋼により構成し
たコイルばね15の一端を連結しており、このコイルば
ね15の他端は駆動用ケーブル16との接続を行う接続
支持体17に連結している。そしてコイルばね15の中
間部にも支持体9を設けている。
Also, one end of a coil spring 15 made of ordinary spring steel is connected to the rear side of the rear receiving unit 4b by the same connecting method as described above, and the other end of this coil spring 15 is connected. It is connected to a connection support body 17 for connection with the drive cable 16. The support 9 is also provided in the middle of the coil spring 15.

【0020】接続支持体17と先端案内体13間には、
引張部材として、ロープ(またはワイヤ)18を張設し
ており、このロープ等18は、コイルばね7,14,1
5と中空器体2,5の中空部の中心を挿通している。そ
して、このロープ等18はアラミド繊維等の高強度高弾
性率繊維により構成している。
Between the connection support body 17 and the tip guide body 13,
A rope (or wire) 18 is stretched as a tension member, and the rope 18 and the like 18 are coil springs 7, 14, 1.
5 and the center of the hollow portion of the hollow container body 2, 5. The rope 18 and the like are made of high-strength and high-modulus fibers such as aramid fibers.

【0021】またコイルばね7,15と中空器体2,5
の中空部には、送信コイル3,受信コイル6に接続され
る信号線19(19a,19b)を挿通しており、これ
らはロープ等18の周囲に配置している。
The coil springs 7 and 15 and the hollow container bodies 2 and 5
Signal wires 19 (19a, 19b) connected to the transmitting coil 3 and the receiving coil 6 are inserted in the hollow portion of the above, and these are arranged around the rope 18 and the like.

【0022】[0022]

【発明の効果】本発明は以上の通りであるので、次のよ
うな効果がある。 送信コイルから受信コイルに至る電磁波がコイルば
ねを通ることに起因する雑音信号の発生を防止すること
ができる。 外部の電磁波により引張部材に電流が誘導されるこ
とに起因する雑音信号の発生を防止することができる。
As described above, the present invention has the following effects. It is possible to prevent a noise signal from being generated due to the electromagnetic waves from the transmitting coil to the receiving coil passing through the coil spring. It is possible to prevent a noise signal from being generated due to an electric current being induced in the tensile member by an external electromagnetic wave.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用するリモートフィールド渦流探傷
装置の探傷センサ部分を表した説明的断面図である。
FIG. 1 is an explanatory cross-sectional view showing a flaw detection sensor portion of a remote field eddy current flaw detection apparatus to which the present invention is applied.

【図2】図1の受信ユニット部分の拡大図である。FIG. 2 is an enlarged view of a receiving unit portion of FIG.

【図3】図2(または図1)のA−A線断面図である。3 is a cross-sectional view taken along the line AA of FIG. 2 (or FIG. 1).

【図4】図1のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG.

【図5】図1のC−C線断面図である。5 is a cross-sectional view taken along the line CC of FIG.

【図6】図1のD−D線断面図である。6 is a cross-sectional view taken along the line DD of FIG.

【符号の説明】 1 送信ユニット 2 中空器体 3 送信コイル 4(4a,4b) 受信ユニット 5 中空器体 6 受信コイル 7 コイルばね 8 螺合部 9 支持体 10 ストッパー筒体 11 摺動部材 12 板ばね 13 先端案内体 14 コイルばね 15 コイルばね 16 駆動用ケーブル 17 接続支持体 18 ロープ等 19(19a,19b) 信号線[Explanation of reference symbols] 1 transmitter unit 2 hollow container 3 transmitter coil 4 (4a, 4b) receiver unit 5 hollow container 6 receiver coil 7 coil spring 8 screwing portion 9 support body 10 stopper cylinder body 11 sliding member 12 plate Spring 13 Tip guide body 14 Coil spring 15 Coil spring 16 Drive cable 17 Connection support body 18 Rope etc. 19 (19a, 19b) Signal line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須山 憲次 神奈川県藤沢市片瀬山1−15−8 (72)発明者 鈴木 究 神奈川県横浜市磯子区汐見台3303−345 (72)発明者 田岡 直規 兵庫県宝塚市逆瀬台1−11−2−610 (72)発明者 安藤 純一 岐阜県多治見市虎渓山町2丁目41番地 (72)発明者 石川 雅之 愛知県名古屋市熱田区桜田町16−13 (72)発明者 中嶋 紀美雄 大阪府大阪市中央区北浜4丁目5番33号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Suyama 1-15-8 Kataseyama, Fujisawa City, Kanagawa Prefecture (72) Inventor Satoshi Suzuki, 3303-345 Shiomidai, Isogo-ku, Yokohama City, Kanagawa Prefecture (72) Inventor Naoki Taoka Hyogo 1-11-2-610 Sakasedai, Takarazuka-shi, prefecture (72) Inventor Jun-ichi Ando 2-41, Torakeiyama-cho, Tajimi-shi, Gifu (72) Inventor Masayuki Ishikawa 16-13 Sakurada-cho, Atsuta-ku, Nagoya-shi, Aichi (72) Inventor Kimio Nakajima 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 送信コイルを設けた送信ユニットと、受
信コイルを設けた受信ユニットを所定距離隔ててコイル
ばねを介して連結すると共に、コイルばね内に信号線と
引張部材を張設した探傷センサを埋設管内に走行させて
対象個所の検出を行うリモートフィールド渦流探傷装置
に於いて、コイルばねを非磁性弾性体により構成したこ
とを特徴とするリモートフィールド渦流探傷装置の探傷
センサ
1. A flaw detection sensor in which a transmission unit provided with a transmission coil and a reception unit provided with a reception coil are connected via a coil spring at a predetermined distance, and a signal line and a tension member are stretched in the coil spring. In a remote field eddy current flaw detector for detecting a target location by running a pipe inside a buried pipe, a flaw detection sensor for the remote field eddy current flaw detector characterized in that a coil spring is made of a non-magnetic elastic body.
【請求項2】 送信コイルを設けた送信ユニットと、受
信コイルを設けた受信ユニットを所定距離隔ててコイル
ばねを介して連結すると共に、コイルばね内に信号線と
引張部材を張設した探傷センサを埋設管内に走行させて
対象個所の検出を行うリモートフィールド渦流探傷装置
に於いて、引張部材を非金属体により構成したことを特
徴とするリモートフィールド渦流探傷装置の探傷センサ
2. A flaw detection sensor in which a transmission unit provided with a transmission coil and a reception unit provided with a reception coil are connected via a coil spring at a predetermined distance, and a signal line and a tension member are stretched in the coil spring. In the remote field eddy current flaw detector, which detects the target location by running the inside of the buried pipe, the flaw detection sensor of the remote field eddy current flaw detector characterized in that the tension member is made of a non-metal body.
【請求項3】 送信コイルを設けた送信ユニットと、受
信コイルを設けた受信ユニットを所定距離隔ててコイル
ばねを介して連結すると共に、コイルばね内に信号線と
引張部材を張設した探傷センサを埋設管内に走行させて
対象個所の検出を行うリモートフィールド渦流探傷装置
に於いて、コイルばねを非磁性弾性体により構成すると
共に引張部材を非金属体により構成したことを特徴とす
るリモートフィールド渦流探傷装置の探傷センサ
3. A flaw detection sensor in which a transmission unit provided with a transmission coil and a reception unit provided with a reception coil are connected at a predetermined distance via a coil spring, and a signal line and a tension member are stretched in the coil spring. In a remote field eddy current flaw detector for detecting a target location by running a pipe inside an embedded pipe, the remote field eddy current characterized in that the coil spring is made of a non-magnetic elastic body and the tension member is made of a non-metal body. Flaw detection sensor for flaw detection equipment
【請求項4】 請求項1または3の非磁性弾性体は、銅
系ばね材としたことを特徴とするリモートフィールド渦
流探傷装置の探傷センサ
4. The flaw detection sensor for a remote field eddy current flaw detection device, wherein the non-magnetic elastic body according to claim 1 or 3 is a copper spring material.
【請求項5】 請求項4の銅系ばね材はベリリウム銅と
したことを特徴とするリモートフィールド渦流探傷装置
の探傷センサ
5. The flaw detection sensor for a remote field eddy current flaw detection apparatus, wherein the copper-based spring material according to claim 4 is beryllium copper.
【請求項6】 請求項4の銅系ばね材はりん青銅とした
ことを特徴とするリモートフイールド渦流探傷装置の探
傷センサ
6. A flaw detection sensor for a remote field eddy current flaw detection device, wherein the copper-based spring material according to claim 4 is phosphor bronze.
【請求項7】 請求項2または3の非金属体は、高強度
高弾性率繊維により構成したことを特徴とするリモート
フィールド渦流探傷装置の探傷センサ
7. A flaw detection sensor for a remote field eddy current flaw detection device, wherein the non-metal body according to claim 2 or 3 is composed of high-strength and high-modulus fibers
【請求項8】 請求項7の高強度高弾性率繊維は、アラ
ミド繊維であることを特徴とするリモートフィールド渦
流探傷装置の探傷センサ
8. The flaw detection sensor for a remote field eddy current flaw detection device, wherein the high-strength, high-modulus fiber of claim 7 is an aramid fiber.
JP5071556A 1993-03-30 1993-03-30 Flaw detecting sensor of remote field eddy-current flaw detection device Pending JPH06281628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071556A JPH06281628A (en) 1993-03-30 1993-03-30 Flaw detecting sensor of remote field eddy-current flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071556A JPH06281628A (en) 1993-03-30 1993-03-30 Flaw detecting sensor of remote field eddy-current flaw detection device

Publications (1)

Publication Number Publication Date
JPH06281628A true JPH06281628A (en) 1994-10-07

Family

ID=13464126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071556A Pending JPH06281628A (en) 1993-03-30 1993-03-30 Flaw detecting sensor of remote field eddy-current flaw detection device

Country Status (1)

Country Link
JP (1) JPH06281628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074294A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Inspection device
CN102313777A (en) * 2011-07-26 2012-01-11 电子科技大学 Detection apparatus for defects of inner and outer walls of pipeline based on remote field eddy current testing
JP2012047718A (en) * 2010-08-30 2012-03-08 Korea Atomic Energy Research Inst Heat exchanger tube inspection cable and insertion force analysis method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074294A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Inspection device
JP2011128054A (en) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd Inspection device
US8779762B2 (en) 2009-12-18 2014-07-15 Mitsubishi Heavy Industries, Ltd. Inspection device
JP2012047718A (en) * 2010-08-30 2012-03-08 Korea Atomic Energy Research Inst Heat exchanger tube inspection cable and insertion force analysis method for the same
CN102313777A (en) * 2011-07-26 2012-01-11 电子科技大学 Detection apparatus for defects of inner and outer walls of pipeline based on remote field eddy current testing

Similar Documents

Publication Publication Date Title
US8322219B2 (en) Pseudorandom binary sequence apparatus and method for in-line inspection tool
CN1111738C (en) Non-destructive evaluaion of pipes and tubes using magnetostrictive sensors
US6404189B2 (en) Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes
CA2085048C (en) Magnetic field analysis method for determining stress characteristics
US8089273B2 (en) Spiral magnetic field apparatus and method for pipeline inspection
US5461313A (en) Method of detecting cracks by measuring eddy current decay rate
CA2584471C (en) Device for testing material and measuring thickness on a test object having at least electrically conducting and ferromagnetic material parts
CN106768283B (en) A kind of pipe ultrasonic guided wave on-line measuring device and detection method based on long range waveguide
CN107790363A (en) Array multi-angle spiral class SH guided wave electromagnet ultrasonic changers
SK3172000A3 (en) Eddy current pipeline inspection device and method
JPH05188040A (en) Pipeline inspecting device
JPH06281628A (en) Flaw detecting sensor of remote field eddy-current flaw detection device
GB2143331A (en) Apparatus for detecting the defective portion of a metallic tube
JP2651177B2 (en) Metal tube defect inspection method
Matvienko et al. The quality control of underground gas pipelines via the electromagnetic and acoustic method
RU2102737C1 (en) Gear for intrapipe magnetic flaw detection of wall of steel pipe-lines
JP3058288B2 (en) Piping flaw detection sensor
RU2790942C1 (en) Pipeline monitoring device using electromagnetic acoustic technology
JPS59119260A (en) Method and apparatus for diagnosing metal
US10352909B2 (en) Paired magnetostrictive transducers for non destructive testing of tubular structures with selective torsional or flexural wave modes
JPH0625755U (en) Passage mechanism of in-pipe inspection device
JPH07333198A (en) Tube inside check device
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
JP2556584Y2 (en) Remote field eddy current sensor
CN117554467A (en) Open type steel wire rope detection device and method