JPH06281531A - Electrodynamic oscillation shock generator - Google Patents

Electrodynamic oscillation shock generator

Info

Publication number
JPH06281531A
JPH06281531A JP5105845A JP10584593A JPH06281531A JP H06281531 A JPH06281531 A JP H06281531A JP 5105845 A JP5105845 A JP 5105845A JP 10584593 A JP10584593 A JP 10584593A JP H06281531 A JPH06281531 A JP H06281531A
Authority
JP
Japan
Prior art keywords
center
center poles
drive
drive coil
center pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5105845A
Other languages
Japanese (ja)
Other versions
JP2818783B2 (en
Inventor
Zenji Sakai
善治 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I M V KK
IMV KK
Original Assignee
I M V KK
IMV KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I M V KK, IMV KK filed Critical I M V KK
Priority to JP5105845A priority Critical patent/JP2818783B2/en
Publication of JPH06281531A publication Critical patent/JPH06281531A/en
Application granted granted Critical
Publication of JP2818783B2 publication Critical patent/JP2818783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously achieve ultralarge displacement and high acceleration. CONSTITUTION:Center poles 5 are arranged and main yokes 6 are provided on the upper part and the lower part of the center poles 5. The center poles 5 and the main yokes 6 are connected with side yokes 7. Excitation coils 4 are provided on both ends of the main yokes 6. Cylindrical drive coils 2 are movably engaged with play in the axial direction of the center poles 5 through specified gaps on the outer circumferential face of both the center poles 5. A shaking table 11 for mounting a test product is arranged between both the center poles 5. The shaking table 11 is movably guided in the axial direction of the center poles 5 through a guide mechanism 9. Here the invention is different from the conventional and the shaking table 11 and the drive coils 2 are connected each other through a connection parts 3 fixed on the outer surface of the drive coils 2 without using any drive shaft. Accordingly mass of a movable part 13 can be reduced and required ultralarge displacement and high acceleration can be satisfied simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は自動車の衝突時の衝撃
環境に代表されるような変位及び加速度が大きい振動及
び衝撃環境を実験室で再現するための動電式振動衝撃発
生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodynamic vibration and impact generator for reproducing in a laboratory a vibration and an impact environment with large displacement and acceleration, which is represented by an impact environment at the time of collision of an automobile. is there.

【0002】[0002]

【従来の技術】この種の従来の技術の原形を示す例とし
て、例えば特開昭55−31466号公報に示された動
電式振動衝撃発生装置を挙げることができる。この例で
は、可能な変位は±50mm、加速度は1000m/s
程度である。この原形の延長線上にあると見なすこと
ができる従来の技術を示す例として、図4に示す大変位
動電式振動衝撃発生装置を挙げることができる。
2. Description of the Related Art As an example showing the original form of this type of conventional technology, for example, there is an electrodynamic vibration and shock generator shown in Japanese Patent Laid-Open No. 55-31466. In this example, possible displacement is ± 50 mm, acceleration is 1000 m / s
It is about 2 . As an example showing a conventional technique that can be regarded as being on an extension line of this original shape, there is a large displacement electrodynamic vibration impact generator shown in FIG.

【0003】図4において、本体30は磁性体製の円筒
状のヨーク31で構成され、外側をメインヨーク32と
し、また内側をセンターポール34としている。そして
上記メインヨーク32とセンターポール34との端部間
を架橋している部分をサイドヨーク33としている。上
記センターポール34の略中央部分には、外側に駆動コ
イル35を設けたアーマチュア36がセンターポール3
4の軸方向に移動自在に遊嵌されている。またメインヨ
ーク32の両側の内側には、ヨーク31に磁界を発生さ
せるための励磁コイル37が巻装してある。39は駆動
軸であり、この駆動軸39の一端側は上記アーマチュア
36と連結固定され、他端には供試品を載置する振動台
40が一体に形成してある。上記駆動軸39は、ガイド
ローラ38を介して本体30よりその軸方向に突出自在
になっている。なお図5は要部斜視図を示し、振動台4
0の下面にはガイド部42が形成されていて、このガイ
ド部42に穿孔した孔43に本体30より一体に突設し
ているガイド軸41が挿通されている。つまり駆動軸3
9は、アーマチュア36の駆動(振動)によりガイド軸
41のガイドによりその軸方向に振動可能となってい
る。
In FIG. 4, the main body 30 is composed of a cylindrical yoke 31 made of a magnetic material, with the outer side serving as a main yoke 32 and the inner side serving as a center pole 34. A portion that bridges the ends of the main yoke 32 and the center pole 34 is defined as a side yoke 33. An armature 36 provided with a driving coil 35 on the outside is provided at the center of the center pole 34.
4 is loosely fitted so as to be movable in the axial direction. Further, inside both sides of the main yoke 32, exciting coils 37 for generating a magnetic field in the yoke 31 are wound. Reference numeral 39 denotes a drive shaft. One end of the drive shaft 39 is connected and fixed to the armature 36, and the other end is integrally formed with a vibrating table 40 on which a sample is placed. The drive shaft 39 is projectable in the axial direction from the main body 30 via the guide roller 38. Note that FIG. 5 is a perspective view of an essential part of the vibrating table 4.
A guide portion 42 is formed on the lower surface of 0, and a guide shaft 41 integrally protruding from the main body 30 is inserted into a hole 43 bored in the guide portion 42. That is, drive shaft 3
9 can be vibrated in the axial direction by the guide of the guide shaft 41 by the driving (vibration) of the armature 36.

【0004】[0004]

【発明が解決しようとする課題】かかる従来例において
は、図4から明らかなように、メインヨーク32の加振
方向の長さを必要な変位分だけ長くしたものである。そ
して駆動コイル35と励磁コイル37との間の距離、ま
たは本体30の側面と振動台40との間の距離Sは、変
位±Sのとき、駆動軸39を本体30より外部へ突出し
ているために駆動軸39は2S以上の長さとなる。この
方式では、可能な衝撃変位は±250mm、衝撃加速度
は1000m/s程度である。ところで自動車の衝突
時の車体の代表的な衝撃変位は1〜3m、加速度は10
00〜2000m/sである。図4に示す従来例の方
式では、1〜3mの超大変位を可能にしようとすれば、
駆動軸39の長さを必要変位の2倍以上としなければな
らない。しかも必然的に駆動軸39の質量が増加し、一
定の加振力では加速度の目標値1000〜2000m/
を達成することが不可能である。駆動軸39を細く
すると質量の増加は軽減されるが、駆動軸39をバネと
し、駆動コイル35と振動台40を質量とする軸方向共
振振動数が低下し、高振動数の忠実な再現ができなくな
る。
In such a conventional example, as apparent from FIG. 4, the length of the main yoke 32 in the vibration direction is increased by the required displacement. The distance between the drive coil 35 and the excitation coil 37, or the distance S between the side surface of the main body 30 and the vibrating table 40 is such that the drive shaft 39 projects outward from the main body 30 when the displacement is ± S. In addition, the drive shaft 39 has a length of 2S or more. In this method, the possible shock displacement is ± 250 mm and the shock acceleration is about 1000 m / s 2 . By the way, the typical impact displacement of a car body during an automobile collision is 1 to 3 m, and the acceleration is 10 m.
It is from 00 to 2000 m / s 2 . In the method of the conventional example shown in FIG. 4, if it is attempted to enable an extremely large displacement of 1 to 3 m,
The length of the drive shaft 39 must be twice the required displacement or more. Moreover, the mass of the drive shaft 39 is inevitably increased, and the target value of acceleration is 1000 to 2000 m /
It is impossible to achieve s 2 . If the drive shaft 39 is made thinner, the increase in mass is reduced, but the axial resonance frequency with the drive shaft 39 as a spring and the drive coil 35 and the vibrating table 40 as a mass is reduced, so that a high frequency can be faithfully reproduced. become unable.

【0005】また加振力を増加して変位及び加速度の目
標値を達成しようとすれば、駆動コイル35の直径は大
きくしなければならず、直径の増加は駆動コイル35及
びアーマチュア36の質量増加を招き、加振力対質量の
比、すなわち加速度の増加はそれほど効果がないばかり
か、駆動コイル35及びアーマチュア36自体の共振振
動数が低下するという問題が発生し、目標値を達成する
ことができない。また寸法及び質量の増加は、コストの
上昇につながることは明らかである。
In order to increase the exciting force to reach the target values of displacement and acceleration, the diameter of the drive coil 35 must be increased, and the increase in the diameter increases the mass of the drive coil 35 and the armature 36. Therefore, not only is the effect of increasing the ratio of excitation force to mass, that is, acceleration, not very effective, but the resonance frequency of the drive coil 35 and the armature 36 itself decreases, which may cause the target value to be achieved. Can not. Also, it is clear that an increase in size and mass leads to an increase in cost.

【0006】この発明は上記従来の欠点を解決するため
になされたものであって、その目的は、超大変位と高加
速度を同時に達成することが可能な動電式振動衝撃発生
装置を提供することにある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and an object thereof is to provide an electrodynamic vibration impact generator capable of simultaneously achieving ultra-large displacement and high acceleration. Especially.

【0007】[0007]

【課題を解決するための手段】そこで請求項1の動電式
振動衝撃発生装置は、磁性体製のセンターポール5とメ
インヨーク6とを平行に配置し、上記センターポール5
及びメインヨーク6間を磁性体製のサイドヨーク7によ
り連結し、上記メインヨーク6に磁界発生用の励磁コイ
ル4を装着し、上記センターポール5の外周に軸方向に
移動自在に駆動コイル2を遊嵌し、供試品11を載置す
る振動台11と上記駆動コイル2とは、上記センターポ
ール5とは略直交して延びる連結部3を介して結合した
ことを特徴としている。
Therefore, in the electrodynamic vibration shock generator according to the first aspect, the center pole 5 and the main yoke 6 made of a magnetic material are arranged in parallel, and the center pole 5 is provided.
The main yoke 6 is connected to the main yoke 6 by a side yoke 7 made of a magnetic material, the exciting coil 4 for generating a magnetic field is mounted on the main yoke 6, and the drive coil 2 is axially movably mounted on the outer circumference of the center pole 5. The vibrating table 11 on which the sample 11 is loosely fitted and mounted on the drive coil 2 is connected to the center pole 5 via a connecting portion 3 extending substantially orthogonal to the center pole 5.

【0008】請求項2の動電式振動衝撃発生装置は、セ
ンターポール5を2本並設し、両センターポール5にそ
れぞれ駆動コイル2を設け、両側の駆動コイル2と振動
台1とはそれぞれ連結部3を介して結合したことを特徴
としている。
According to another aspect of the present invention, there is provided the electrodynamic vibration shock generator, wherein two center poles 5 are arranged side by side, drive coils 2 are provided on both center poles 5, and the drive coils 2 and the vibrating table 1 on both sides are respectively arranged. It is characterized in that they are connected via the connecting portion 3.

【0009】[0009]

【作用】上記請求項1の動電式振動衝撃発生装置によれ
ば、従来使用していた駆動軸を用いずに、振動台1を連
結部3を介して駆動コイル2に結合しているために、従
来の駆動軸を突出していた分だけ本装置を小型化するこ
とができる。また振動台1、連結部3及び駆動コイル2
等から成る可動部分の質量を軽減することが可能とな
り、要求される超大変位と高加速度を同時に達成するこ
とができる。さらに従来の駆動軸を使用しないので、駆
動軸をバネとする共振振動数は存在しない。したがって
高振動数の振動衝撃も忠実に再現することができる。
According to the electrokinetic vibration shock generator of the above-mentioned claim 1, the vibrating table 1 is coupled to the drive coil 2 via the connecting portion 3 without using the drive shaft which has been conventionally used. In addition, this device can be downsized by the amount that the conventional drive shaft is projected. Further, the vibrating table 1, the connecting portion 3 and the drive coil 2
It is possible to reduce the mass of the movable part composed of, etc., and it is possible to simultaneously achieve the required ultra-large displacement and high acceleration. Further, since the conventional drive shaft is not used, there is no resonance frequency using the drive shaft as a spring. Therefore, it is possible to faithfully reproduce a high-frequency vibration shock.

【0010】また請求項2の動電式振動衝撃発生装置に
よれば、センターポール5を2本並設し、両センターポ
ール5にそれぞれ駆動コイル2を設けていることで、駆
動コイル2の直径を小さくすることが可能で、駆動コイ
ル2の共振振動数を高くすることができる。
According to the electrokinetic vibration shock generator of the second aspect, the two center poles 5 are arranged in parallel, and the drive coils 2 are provided on both center poles 5, respectively. Can be reduced, and the resonance frequency of the drive coil 2 can be increased.

【0011】[0011]

【実施例】次にこの発明の動電式振動衝撃発生装置の具
体的な実施例について、図面を参照しつつ詳細に説明す
る。図1は本装置の上から見た断面図を示し、また図2
は正面から見た断面図を示している。さらに図3は側面
から見た断面図を示している。図1に示すように、本体
Aの両側には磁性体製で円柱状のセンターポール5が配
置されており、それぞれセンターポール5の上下には、
図2及び図3に示すように、所定の間隙を介して磁性体
製のメインヨーク6が設けてある。そして図3に示すよ
うに、センターポール5の端部及び上下のメインヨーク
6の端部間を磁性体製のサイドヨーク7により一体的に
連結してある。また図1及び図3に示すように、メイン
ヨーク6の両側の内周面には、センターポール5、メイ
ンヨーク6及びサイドヨーク7に磁界を発生させるため
の励磁コイル4がそれぞれ巻装されている。これらセン
ターポール5、メインヨーク6、サイドヨーク7等は、
図2及び図3に示すように、台座8の上に配設されてい
る。さらに図1及び図2に示すように、台座8の上面で
あって両センターポール5の間には、センターポール5
の軸方向と同方向にガイド機構9が設けられており、こ
のガイド機構9の上面には、ガイド溝10が凹設されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, specific embodiments of the electrodynamic vibration impact generator of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a cross-sectional view from above of the device, and FIG.
Shows a sectional view seen from the front. Furthermore, FIG. 3 shows a sectional view from the side. As shown in FIG. 1, a columnar center pole 5 made of a magnetic material is arranged on both sides of the main body A, and above and below the center pole 5, respectively.
As shown in FIGS. 2 and 3, a main yoke 6 made of a magnetic material is provided through a predetermined gap. As shown in FIG. 3, the end portion of the center pole 5 and the end portions of the upper and lower main yokes 6 are integrally connected by a side yoke 7 made of a magnetic material. Further, as shown in FIGS. 1 and 3, excitation coils 4 for generating magnetic fields are respectively wound around the center pole 5, the main yoke 6 and the side yokes 7 on the inner peripheral surfaces on both sides of the main yoke 6. There is. These center pole 5, main yoke 6, side yoke 7, etc.,
As shown in FIGS. 2 and 3, it is arranged on the pedestal 8. Further, as shown in FIGS. 1 and 2, the center pole 5 is located between the center poles 5 on the upper surface of the pedestal 8.
A guide mechanism 9 is provided in the same direction as the axial direction of, and a guide groove 10 is provided on the upper surface of the guide mechanism 9.

【0012】両センターポール5の外周面には、所定の
間隙を介して円筒状の駆動コイル2がセンターポール5
の軸方向に移動自在に遊嵌されている。供試品11を載
置する振動台1は、両センターポール5の間に配置さ
れ、振動台1の下面より突設したガイド部12が、ガイ
ド機構9のガイド溝10内に挿入され、振動台1がガイ
ド部12及びガイド溝10を介してガイド機構9及びセ
ンターポール5の軸方向にガイドされるようになってい
る。ここで本発明では従来と異なり、駆動軸(図4参
照)39を使用せず、図2に示すように、振動台1と駆
動コイル2とを、駆動コイル2の外表面に固定した連結
部3を介して結合している。すなわち振動台1の両側と
左右のセンターポール5の駆動コイル2とが連結部3を
介して一体化した可動部13を形成している。この可動
部13は、通常は図1に示すように、本体Aの略中央部
分に位置している。
A cylindrical drive coil 2 is provided on the outer peripheral surface of both center poles 5 with a predetermined gap therebetween.
Is movably fitted in the axial direction. The vibrating table 1 on which the sample 11 is placed is arranged between both center poles 5, and the guide portion 12 protruding from the lower surface of the vibrating table 1 is inserted into the guide groove 10 of the guide mechanism 9 to vibrate. The base 1 is guided in the axial direction of the guide mechanism 9 and the center pole 5 via the guide portion 12 and the guide groove 10. Here, unlike the prior art, the present invention does not use the drive shaft (see FIG. 4) 39, and as shown in FIG. 2, the vibration table 1 and the drive coil 2 are fixed to the outer surface of the drive coil 2. It is connected through 3. That is, the both sides of the vibrating table 1 and the drive coils 2 of the left and right center poles 5 form a movable portion 13 which is integrated via the connecting portion 3. The movable portion 13 is normally located at a substantially central portion of the main body A as shown in FIG.

【0013】次に動作について説明する。センターポー
ル5の両端部の外側に位置する励磁コイル4に直流電流
を図3の24に示す方向に流すと、同図25に示す方向
に直流磁束が発生する。この磁束は、駆動コイル2の円
筒の表面に直交する方向に作用する。そして駆動コイル
2に必要な振動衝撃波形に相当する電流を流すと、フレ
ミングの左手の法則により加振力が発生する。駆動コイ
ル2に流れる電流の向きが図3の21に示す向きのとき
は、同図26の向きに加振力Fが発生する。駆動コイル
2に流れる電流の向きが逆の場合は、逆向きに加振力が
発生する。なお図1に示す22の矢印が振動方向を示し
ている。ここで駆動コイル2、連結部3、振動台1及び
供試品11から成る可動部13は、ガイド機構9によっ
て振動方向のみにガイドされ(図1の矢印22参照)、
振動方向以外の方向には拘束されるようになっている。
また図3に示すSが可動部13の振動(移動)範囲であ
り、可動部13を本体Aの内部に配置して、内部のセン
ターポール5に移動自在に遊嵌しているために、変位を
大きくしているにも関わらず可動部を小型にすることが
できる。
Next, the operation will be described. When a direct current is caused to flow in the exciting coil 4 located outside both ends of the center pole 5 in the direction shown in FIG. 24, a DC magnetic flux is generated in the direction shown in FIG. This magnetic flux acts in a direction orthogonal to the surface of the cylinder of the drive coil 2. Then, when a current corresponding to a necessary vibration shock waveform is passed through the drive coil 2, an exciting force is generated according to Fleming's left-hand rule. When the direction of the current flowing through the drive coil 2 is the direction shown by 21 in FIG. 3, the exciting force F is generated in the direction shown in FIG. When the direction of the current flowing through the drive coil 2 is opposite, the exciting force is generated in the opposite direction. The arrow 22 shown in FIG. 1 indicates the vibration direction. Here, the movable portion 13 including the drive coil 2, the connecting portion 3, the vibrating table 1 and the sample 11 is guided only in the vibration direction by the guide mechanism 9 (see arrow 22 in FIG. 1),
It is designed to be constrained in directions other than the vibration direction.
Further, S shown in FIG. 3 is a vibration (movement) range of the movable portion 13, and since the movable portion 13 is arranged inside the main body A and is freely movably fitted to the center pole 5 inside, the displacement is caused. The movable part can be made small in spite of the large size.

【0014】さて加振力Fの大きさは、駆動コイル2と
交鎖する磁束の大きさと、駆動コイル2に流れる電流の
大きさに比例する。この加振力Fは、駆動コイル2の外
側面に固定された連結部3を介して振動台1へ伝達さ
れ、振動台1に取付けられた供試品11に振動衝撃を与
えることができる。
The magnitude of the exciting force F is proportional to the magnitude of the magnetic flux intersecting with the drive coil 2 and the magnitude of the current flowing through the drive coil 2. This exciting force F is transmitted to the vibrating table 1 through the connecting portion 3 fixed to the outer surface of the drive coil 2, and can give a vibration impact to the sample 11 mounted on the vibrating table 1.

【0015】駆動コイル2、連結部3、振動台1及び供
試品11の合計質量をm、加振力をFとすると、得られ
る加速度Aは次式で表される。 A=F/m
Assuming that the total mass of the drive coil 2, the connecting portion 3, the vibrating table 1 and the sample 11 is m and the exciting force is F, the obtained acceleration A is expressed by the following equation. A = F / m

【0016】本発明では、従来例にある駆動軸を使用せ
ず、振動台1と駆動コイル2とを駆動コイル2の外側面
に固定した連結部3を介して結合したので、可動部13
の質量を軽減することが可能となり、要求される超大変
位と高加速度を同時に満たすことができるものである。
In the present invention, since the vibrating table 1 and the drive coil 2 are connected via the connecting portion 3 fixed to the outer surface of the drive coil 2 without using the drive shaft in the conventional example, the movable portion 13 is connected.
It is possible to reduce the mass of, and it is possible to satisfy the required ultra-large displacement and high acceleration at the same time.

【0017】また本発明では、一定の加振力を得るため
に、平行に配置された2つの駆動コイル2を使用してい
るので、駆動コイル2の直径を小さくすることが可能
で、駆動コイル2の共振振動数を高くすることができ
る。
Further, in the present invention, since the two drive coils 2 arranged in parallel are used in order to obtain a constant exciting force, the diameter of the drive coil 2 can be reduced, and the drive coil can be made smaller. The resonance frequency of 2 can be increased.

【0018】また従来用いていた駆動軸を使用しないの
で、駆動軸をバネとする共振振動数は存在しない。した
がって高振動数の振動衝撃も忠実に再現することができ
る。
Since the drive shaft used conventionally is not used, there is no resonance frequency with the drive shaft as a spring. Therefore, it is possible to faithfully reproduce a high-frequency vibration shock.

【0019】なお駆動コイル2に流れる電流は、図示し
ていないが電力増幅器によって得ている。また上記電力
増幅器への入力信号は、例えば本出願人において出願し
た特開平2−184906号公報に記載してある方法に
より行っている。
The current flowing through the drive coil 2 is obtained by a power amplifier (not shown). The input signal to the power amplifier is obtained by the method described in, for example, Japanese Patent Application Laid-Open No. 2-184906 filed by the present applicant.

【0020】[0020]

【発明の効果】以上のように請求項1の動電式振動衝撃
発生装置によれば、従来使用していた駆動軸を用いず
に、振動台を連結部を介して駆動コイルに結合している
ために、従来の駆動軸を突出していた分だけ本装置を小
型化することができる。また振動台、連結部及び駆動コ
イル等から成る可動部分の質量を軽減することが可能と
なり、要求される超大変位と高加速度を同時に達成する
ことができる。さらに従来の駆動軸を使用しないので、
駆動軸をバネとする共振振動数は存在しない。したがっ
て高振動数の振動衝撃も忠実に再現することができる。
As described above, according to the electrodynamic vibration impact generator of claim 1, the vibrating table is connected to the drive coil through the connecting portion without using the drive shaft which has been conventionally used. Therefore, the present device can be downsized by the amount that the conventional drive shaft is projected. Further, it is possible to reduce the mass of the movable portion including the vibration table, the connecting portion, the drive coil, and the like, and it is possible to simultaneously achieve the required ultra-large displacement and high acceleration. Furthermore, since the conventional drive shaft is not used,
There is no resonance frequency with the drive shaft as a spring. Therefore, it is possible to faithfully reproduce a high-frequency vibration shock.

【0021】また請求項2の動電式振動衝撃発生装置に
よれば、センターポールを2本並設し、両センターポー
ルにそれぞれ駆動コイルを設けていることで、駆動コイ
ルの直径を小さくすることが可能で、駆動コイルの共振
振動数を高くすることができる。
According to the electrokinetic vibration shock generator of the present invention, two center poles are provided side by side, and drive coils are provided on both center poles, thereby reducing the diameter of the drive coil. Therefore, the resonance frequency of the drive coil can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の動電式振動衝撃発生装置の
上から見た断面図である。
FIG. 1 is a cross-sectional view of an electrokinetic vibration shock generator according to an embodiment of the present invention as viewed from above.

【図2】この発明の実施例の動電式振動衝撃発生装置の
正面から見た断面図である。
FIG. 2 is a cross-sectional view of an electrodynamic vibration and impact generator according to an embodiment of the present invention as seen from the front.

【図3】この発明の実施例の動電式振動衝撃発生装置の
側面から見た断面図である。
FIG. 3 is a cross-sectional view of an electrodynamic vibration and impact generator according to an embodiment of the present invention as seen from a side surface.

【図4】従来例の動電式振動衝撃発生装置の断面図であ
る。
FIG. 4 is a cross-sectional view of a conventional electrodynamic vibration impact generator.

【図5】従来例の要部斜視図である。FIG. 5 is a perspective view of a main part of a conventional example.

【符号の説明】[Explanation of symbols]

1 振動台 2 駆動コイル 3 連結部 4 励磁コイル 5 センターポール 6 メインヨーク 7 サイドヨーク 9 ガイド機構 11 供試品 13 可動部 A 本体 1 Shaking Table 2 Drive Coil 3 Connection Part 4 Excitation Coil 5 Center Pole 6 Main Yoke 7 Side Yoke 9 Guide Mechanism 11 Sample Product 13 Moving Part A Main Body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性体製のセンターポール(5)とメイ
ンヨーク(6)とを平行に配置し、上記センターポール
(5)及びメインヨーク(6)間を磁性体製のサイドヨ
ーク(7)により連結し、上記メインヨーク(6)に磁
界発生用の励磁コイル(4)を装着し、上記センターポ
ール(5)の外周に軸方向に移動自在に駆動コイル
(2)を遊嵌し、供試品(11)を載置する振動台
(1)と上記駆動コイル(2)とは、上記センターポー
ル(5)とは略直交して延びる連結部(3)を介して結
合したことを特徴とする動電式振動衝撃発生装置。
1. A center pole (5) made of magnetic material and a main yoke (6) are arranged in parallel, and a side yoke (7) made of magnetic material is provided between the center pole (5) and the main yoke (6). The main yoke (6) is fitted with an exciting coil (4) for generating a magnetic field, and the drive coil (2) is loosely fitted to the outer periphery of the center pole (5) in an axially movable manner. The vibrating table (1) on which the sample (11) is mounted and the drive coil (2) are coupled to each other via a connecting portion (3) extending substantially orthogonal to the center pole (5). An electrokinetic vibration shock generator.
【請求項2】 センターポール(5)を2本並設し、両
センターポール(5)にそれぞれ駆動コイル(2)を設
け、両側の駆動コイル(2)と振動台(1)とはそれぞ
れ連結部(3)を介して結合したことを特徴とする請求
項1の動電式振動衝撃発生装置。
2. Two center poles (5) are arranged side by side, drive coils (2) are provided on both center poles (5), and the drive coils (2) on both sides and the vibrating table (1) are connected to each other. The electrodynamic vibration and shock generator according to claim 1, characterized in that it is connected via a section (3).
JP5105845A 1993-03-26 1993-03-26 Electrodynamic vibration shock generator Expired - Lifetime JP2818783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105845A JP2818783B2 (en) 1993-03-26 1993-03-26 Electrodynamic vibration shock generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105845A JP2818783B2 (en) 1993-03-26 1993-03-26 Electrodynamic vibration shock generator

Publications (2)

Publication Number Publication Date
JPH06281531A true JPH06281531A (en) 1994-10-07
JP2818783B2 JP2818783B2 (en) 1998-10-30

Family

ID=14418360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105845A Expired - Lifetime JP2818783B2 (en) 1993-03-26 1993-03-26 Electrodynamic vibration shock generator

Country Status (1)

Country Link
JP (1) JP2818783B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078273A (en) * 2004-09-08 2006-03-23 Sekisui Chem Co Ltd Characteristic frequency measuring system
CN103528781A (en) * 2013-10-23 2014-01-22 浙江工业大学 Electric servo cylinder earthquake simulation vibrating table in small engineering structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078273A (en) * 2004-09-08 2006-03-23 Sekisui Chem Co Ltd Characteristic frequency measuring system
CN103528781A (en) * 2013-10-23 2014-01-22 浙江工业大学 Electric servo cylinder earthquake simulation vibrating table in small engineering structure

Also Published As

Publication number Publication date
JP2818783B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
EP1101273B1 (en) Low frequency vibrator
US7328474B2 (en) Electric toothbrush with linear oscillator
WO2006080405A1 (en) Electrokinetic electro-acoustic converter and electronic device
JPH09167481A (en) Rotary type information recording and reproducing device
TW200906502A (en) Vibration generator
US20190184425A1 (en) Linear actuator
JP2001065631A (en) Exciter for active vibration control device, and active damper using it
KR950004682A (en) Stepping motor
US11133735B2 (en) Linear vibration motor
JPH06281531A (en) Electrodynamic oscillation shock generator
JP3035419B2 (en) Rubber mount
US20190182601A1 (en) Linear actuator
JPH0349137B2 (en)
JP3481722B2 (en) Actuator
JP2003300013A (en) Cylindrical vibration generating apparatus
JP2000346129A (en) Vibration removal device
JP2006067275A (en) Speaker
JPH05108B2 (en)
JPS6162298A (en) Speaker device
JP2668327B2 (en) Vibration generator
JP2000036997A (en) Speaker equipment
JP2003078992A (en) Magnetic circuit configuration for speaker, and speaker
KR0148175B1 (en) Apparatus for driving speaker
JPS5848878Y2 (en) Pickup Cartridge
JP2548060Y2 (en) Driving device for magnetic head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110828

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 15