JPH06280651A - Method of controlling fuel injection of engine and device therefor - Google Patents

Method of controlling fuel injection of engine and device therefor

Info

Publication number
JPH06280651A
JPH06280651A JP70894A JP70894A JPH06280651A JP H06280651 A JPH06280651 A JP H06280651A JP 70894 A JP70894 A JP 70894A JP 70894 A JP70894 A JP 70894A JP H06280651 A JPH06280651 A JP H06280651A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel injection
engine
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP70894A
Other languages
Japanese (ja)
Other versions
JP2738290B2 (en
Inventor
Teruji Sekozawa
照治 瀬古沢
Seiju Funabashi
誠寿 舩橋
Makoto Shiotani
真 塩谷
Mikihiko Onari
幹彦 大成
Hiroatsu Tokuda
博厚 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6000708A priority Critical patent/JP2738290B2/en
Publication of JPH06280651A publication Critical patent/JPH06280651A/en
Application granted granted Critical
Publication of JP2738290B2 publication Critical patent/JP2738290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To determine a fuel injection volume with which the air-fuel ratio can be set to a stoichiometric air-fuel ratio by controlling the fuel injection volume in accordance with a fuel volume in an engine intake-air pipe which is estimated with the use of a specific fuel system model. CONSTITUTION:In a control mechanism incorporating an engine process 1 and fuel injection control in a computer, a liquid film model coefficient forming part 3 calculates a wall surface sticking rate and a liquid film evaporating time-constant, and an intake-air pipe air-mass calculating part 4 calculates an air-mass in an intake-air pipe from an intake-air pipe pressure. Further, an intake-air pipe condition estimating part 2 estimates a fuel volume in the engine intake-air pipe with the use of a fuel system model incorporating a time K-d at which the fuel injection volume is controlled, and a dead-time (d) corresponding to a difference from a time K at which a controlled result is observed. A fuel injection volume calculating part 5 delivers an estimated evaporated fuel value in accordance with thus estimated fuel volume. Thereby it is possible to precisely control the air-fuel ratio which is based upon an actual condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの燃料噴射制御
に係り、特に吸入管を通して空気と燃料をシリンダーに
送り込む燃料噴射方式エンジンに好適なエンジンの燃料
噴射制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control for an engine, and more particularly to a fuel injection control method and apparatus for an engine suitable for a fuel injection type engine in which air and fuel are sent to a cylinder through an intake pipe.

【0002】[0002]

【従来の技術】従来の燃料噴射制御は、排気ガスを清浄
化する三元触媒が最も有効に働く理論空燃比になるよう
種々の方法で燃料噴射量の補正を行なっていた。
2. Description of the Related Art In conventional fuel injection control, the fuel injection amount is corrected by various methods so that a three-way catalyst for cleaning exhaust gas has a stoichiometric air-fuel ratio that works most effectively.

【0003】[0003]

【発明が解決しようとする課題】特に加減速時では、空
燃比を理論空燃比に保持できない問題があった。この原
因は、種々の補正が行なわれているにもかかわらず、吸
気管内の燃料の状態を考慮しないことであった。
There is a problem that the air-fuel ratio cannot be kept at the stoichiometric air-fuel ratio, especially during acceleration / deceleration. The cause of this is that the state of the fuel in the intake pipe is not taken into consideration despite various corrections being made.

【0004】本発明の目的は、燃料系の動特性モデルか
ら吸気管内の液膜や蒸気燃料といった状態量を推定、予
測し、それを基に空燃比が理論空燃比となるように燃料
噴射量を決定する燃料噴射制御方法及び装置を提供する
ことにある。
An object of the present invention is to estimate and predict state quantities such as a liquid film and vapor fuel in the intake pipe from a dynamic characteristic model of the fuel system, and based on that, the fuel injection quantity so that the air-fuel ratio becomes the theoretical air-fuel ratio. A fuel injection control method and apparatus for determining

【0005】[0005]

【課題を解決するための手段】燃料系の動特性は、吸気
管に噴射された燃料の一部が吸気管壁面に付着し液膜と
なり、液膜はある時定数で蒸発し噴射された燃料と共に
シリンダーに吸入される。しかしここで、蒸発した燃料
がすべてシリンダー内に吸入されるのではなく、一部は
吸気管内に蒸気のままの燃料が残留する(以下、これを
蒸気燃料と呼ぶ)。本発明ではこの現象をとらえて空燃
比が理論空燃比となるよう噴射量を制御するものであ
る。つまり、燃料動特性を知るうえで重要な液膜量と蒸
気燃料を、スロットルを流れる空気質量Mat(k)、ス
ロットル開度、吸気管内圧力P(k)、水温、エンジン
回転数、空燃比のデータから推定、予測し、これを基に
理論空燃比となるよう噴射量を制御する。
[Means for Solving the Problems] The dynamic characteristic of the fuel system is that a part of the fuel injected into the intake pipe adheres to the wall surface of the intake pipe to form a liquid film, and the liquid film evaporates with a certain time constant and the injected fuel is injected. It is inhaled with the cylinder. However, here, not all the evaporated fuel is sucked into the cylinder, but a part of the fuel remains as vapor in the intake pipe (hereinafter, this is referred to as vapor fuel). In the present invention, by taking this phenomenon, the injection amount is controlled so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. In other words, the amount of liquid film and vapor fuel, which are important for knowing the fuel dynamics, are defined by the air mass Mat (k) flowing through the throttle, the throttle opening, the intake pipe pressure P (k), the water temperature, the engine speed, and the air-fuel ratio. It is estimated and predicted from the data, and based on this, the injection amount is controlled so that the stoichiometric air-fuel ratio is achieved.

【0006】[0006]

【作用】制御時点と観測時点との間のむだ時間を考慮し
ているから実際の状態に即した高精度な空燃比制御が可
能になる。
Since the dead time between the control time point and the observation time point is taken into consideration, highly accurate air-fuel ratio control according to the actual state becomes possible.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1、図2により
説明する。図1はエンジンプロセス1とコンピュータ内
での燃料噴射制御の制御構成を示している。液膜モデル
係数作成部3は、次のように壁面付着率Xと液膜蒸発時
定数τを算出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a control configuration of fuel injection control in an engine process 1 and a computer. The liquid film model coefficient creating unit 3 calculates the wall surface attachment rate X and the liquid film evaporation time constant τ as follows.

【0008】[0008]

【数1】 [Equation 1]

【0009】[0009]

【数2】 [Equation 2]

【0010】ここでkは、k時刻を表わす。Here, k represents k time.

【0011】吸気管内空気質量算出部4では、吸気管内
圧力P(k)より次のように吸気管内空気質量Mを算出
する。
The intake pipe air mass calculation unit 4 calculates the intake pipe air mass M from the intake pipe pressure P (k) as follows.

【0012】[0012]

【数3】 [Equation 3]

【0013】ここでa1は、吸気管内容積と吸気管温度
によって決まる定数である。
Here, a 1 is a constant determined by the intake pipe internal volume and the intake pipe temperature.

【0014】さらに、燃料噴射量算出部5では、前記X
(k)、M(k)、エンジンプロセスより得られるスロ
ットルを流れる空気質量・Mat(k)、および後述する
蒸気燃料Mv(k+1)の予測値をMの上部に付したも
のとから次のように燃料噴射量Gfを算出する。なお、
・Mは第4式以下においてMの上部に・を付したものと
同一とみなす。
Further, in the fuel injection amount calculation section 5, the X
(K), M (k), the mass of air flowing through the throttle obtained from the engine process, M at (k), and the predicted value of the steam fuel M v (k + 1) described later are added to the upper part of M. The fuel injection amount G f is calculated as follows. In addition,
・ M is considered to be the same as the one that is attached to the upper part of M in the formula 4 and below.

【0015】[0015]

【数4】 [Equation 4]

【0016】ここで、(A/F)は、理論空燃比であ
る。
Here, (A / F) is the theoretical air-fuel ratio.

【0017】吸気管内状態推定部2では、前記、液膜付
着率X、蒸発時定数τ、吸気管内空気質量M、スロット
ルを流れる空気質量・Mat(k)、およびエンジンプロ
セスから得られるエンジン回転数N、吸気管圧力P、空
燃比A/Fから、吸気管内の状態として、液膜量や蒸気
燃料を推定、予測し、実施例では燃料噴射量算出部5に
蒸気燃料予測値を出力する。
In the intake pipe internal state estimation unit 2, the liquid film deposition rate X, the evaporation time constant τ, the intake pipe air mass M, the air mass flowing through the throttle / M at (k), and the engine rotation obtained from the engine process. From the number N, the intake pipe pressure P, and the air-fuel ratio A / F, the liquid film amount and the vapor fuel are estimated and predicted as the state inside the intake pipe, and in the embodiment, the vapor fuel predicted value is output to the fuel injection amount calculation unit 5. .

【0018】前記吸気管内状態推定部2の構成および動
作を図2により説明する。シリンダーに吸入される空気
質量・Mapの推定値(^をMの上部に付したもの)は計
算回路28より次のように求める。
The structure and operation of the intake pipe internal state estimating unit 2 will be described with reference to FIG. The estimated value of the mass of air drawn into the cylinder, M ap (^ attached to the upper part of M) is calculated by the calculation circuit 28 as follows.

【0019】[0019]

【数5】 [Equation 5]

【0020】ここで、a2は、エンジン排気量や気体定
数で決まる定数である。
Here, a 2 is a constant determined by the engine displacement and the gas constant.

【0021】得られた・Map(k)の推定値は、シフト
レジスタ29に入力し、右側にシフトした後で最後尾に
蓄積する。係数作成回路21では、吸気管内の状態を推
定、予測するためのモデルの係数を作成する部分であ
り、前記X(k)、τ(k)、M(k)、・Mat(k)
より次のように求める。
The obtained estimated value of M ap (k) is input to the shift register 29, shifted to the right, and then accumulated at the end. The coefficient creating circuit 21 is a part that creates the coefficients of the model for estimating and predicting the state in the intake pipe, and the above-mentioned X (k), τ (k), M (k), · M at (k)
More as follows.

【0022】[0022]

【数6】 [Equation 6]

【0023】[0023]

【数7】 [Equation 7]

【0024】[0024]

【数8】 [Equation 8]

【0025】[0025]

【数9】 [Equation 9]

【0026】[0026]

【数10】 [Equation 10]

【0027】[0027]

【数11】 [Equation 11]

【0028】ここで、ΔTはサンプル周期である。Here, ΔT is a sampling period.

【0029】係数作成回路21で得られた係数はメモリ
テーブル22に蓄積され、それに伴って以前に蓄積され
ていたデータは右側へシフトされる。
The coefficients obtained by the coefficient creating circuit 21 are accumulated in the memory table 22, and the data previously accumulated is accordingly shifted to the right.

【0030】一方、メモリテーブル24では、図1の算
出部5から得た燃料噴射量Gf(k+1)をメモリテー
ブル22と同様に右側にシフトしながら最後尾に追加さ
れる。
On the other hand, in the memory table 24, the fuel injection amount G f (k + 1) obtained from the calculation unit 5 in FIG. 1 is added to the end while shifting to the right as in the memory table 22.

【0031】O2センサから得た空燃比データA/F
(k−d)は、排気管内の排ガス流動遅れがあり、さら
に、この遅れもエンジン回転数N(k)によって変化す
る。図2の計算回路27では次のように空燃比データの
観測遅れ時間(以下、むだ時間と呼ぶ)dを計算する。
Air-fuel ratio data A / F obtained from O 2 sensor
(K-d) has an exhaust gas flow delay in the exhaust pipe, and this delay also changes depending on the engine speed N (k). The calculation circuit 27 of FIG. 2 calculates the observation delay time (hereinafter referred to as dead time) d of the air-fuel ratio data as follows.

【0032】[0032]

【数12】 [Equation 12]

【0033】ここで、dはサンプリング周期の整数倍で
あり、第12式の〔 〕は整数化記号である。
Here, d is an integer multiple of the sampling period, and [] in the twelfth expression is an integer symbol.

【0034】むだ時間dが得られたことで、k時刻にお
いて得られた空燃比データはd時刻前の空燃比であるこ
とからA/F(k−d)と書ける。A/F(k−d)と
メモリテーブル29の中の・Map(k−d)から、計算
回路30では、d時刻前においてシリンダーに吸入され
た燃料の推定値が次のように得られる。
Since the dead time d is obtained, the air-fuel ratio data obtained at the time k is the air-fuel ratio before the time d and can be written as A / F (k-d). From the A / F (k−d) and · M ap (k−d) in the memory table 29, the calculation circuit 30 obtains the estimated value of the fuel sucked into the cylinder before d time as follows. .

【0035】[0035]

【数13】 [Equation 13]

【0036】次に、前記むだ時間dを知って、前記Gfe
(k−d)と、メモリテーブル22より得られるA
1(k)からA1(k−d)、A2(k)からA2(k−
d)、A3(k)からA3(k−d)、B1(k)からB1
(k−d)、C1(k)からC1(k−d)、D1(k)
からD1(k−d)の情報とメモリテーブル24から得
られるGf(k)からGf(k−d)の情報と後述するメ
モリテーブル25、および26より得られるMfi1m(k
−d)の予測値とMv(k−d)の情報から、図2の計
算回路23では以下に示すように液膜と蒸気燃料を推定
し、予測する。ここで簡単のため次のように置く。
Next, knowing the dead time d, the G fe
(K−d) and A obtained from the memory table 22.
1 (k) to A 1 (k-d), A 2 (k) to A 2 (k-
d), A 3 (k) to A 3 (k−d), B 1 (k) to B 1
(K−d), C 1 (k) to C 1 (k−d), D 1 (k)
To D 1 (k-d) information and G f (k) to G f (k-d) information obtained from the memory table 24 and M fi1m (k) obtained from memory tables 25 and 26 described later.
From the predicted value of −d) and the information of M v (k−d), the calculation circuit 23 of FIG. 2 estimates and predicts the liquid film and the vapor fuel as shown below. For simplicity, put the following.

【0037】[0037]

【数14】 [Equation 14]

【0038】[0038]

【数15】 [Equation 15]

【0039】[0039]

【数16】 [Equation 16]

【0040】[0040]

【数17】 [Equation 17]

【0041】ここで、例えば(・)は時刻を表わす。Here, for example, (•) represents time.

【0042】[0042]

【数18】 [Equation 18]

【0043】[0043]

【数19】 [Formula 19]

【0044】[0044]

【数20】 [Equation 20]

【0045】以上の式により、吸気管内の状態である液
膜と蒸気燃料の(k+1)時刻の予測値が算出された。
From the above equations, the predicted values of the liquid film in the intake pipe and the (k + 1) time of the vapor fuel were calculated.

【0046】第20式で得た蒸気燃料予測値を図5へ出
力する。また、第19式で得られるMfi1m(k−d+
1)からMfi1m(k)とMv(k−d+1)からM
v(k)をメモリテーブル25と26に蓄積する。
The predicted vapor fuel value obtained by the equation (20) is output to FIG. In addition, M fi1m (k−d +
1) to M fi1m (k) and M v (k−d + 1) to M
Store v (k) in memory tables 25 and 26.

【0047】本発明の実施例によれば、エンジン回転数
によって変化するO2センサのむだ時間変化を考慮し、
液膜量と蒸気燃料を推定、予測し、予測した蒸気燃料を
基に燃料噴射量を制御することにより空燃比を理論空燃
比付近に保持できる。これにより、有害排気ガスの低減
が可能となる。
According to the embodiment of the present invention, taking into consideration the time change of the O 2 sensor which changes depending on the engine speed,
The air-fuel ratio can be maintained near the stoichiometric air-fuel ratio by estimating and predicting the liquid film amount and steam fuel, and controlling the fuel injection amount based on the predicted steam fuel. This makes it possible to reduce harmful exhaust gas.

【0048】[0048]

【発明の効果】本発明によれば、空燃比を理論空燃比付
近に高精度に保持することができるので有害ガス低減の
効果がある。以下、図3、図4を用いて本発明の制御効
果について説明する。図3は従来例を示すものである。
スロットルを10°から20°に開くような加速時に
は、シリンダーに入る空燃比が薄くなり、空燃比が理論
空燃比よりも高い値を示している。これは、有害な窒素
酸化物が多く排出されてしまう。これに対し、図4に本
発明による制御性能の例を示す。図3に示したものと同
じ条件で制御したときの空燃比と燃料噴射量を示してい
る。従来方法に比べ空燃比を理論空燃比付近に保持させ
ることができている。これは、有害排気ガスの低減が可
能となることを示している。
According to the present invention, the air-fuel ratio can be maintained in the vicinity of the stoichiometric air-fuel ratio with high accuracy, and therefore, the harmful gas can be reduced. Hereinafter, the control effect of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 shows a conventional example.
During acceleration such that the throttle is opened from 10 ° to 20 °, the air-fuel ratio entering the cylinder becomes thin, and the air-fuel ratio shows a value higher than the theoretical air-fuel ratio. This causes a lot of harmful nitrogen oxides to be emitted. On the other hand, FIG. 4 shows an example of control performance according to the present invention. The air-fuel ratio and the fuel injection amount when controlled under the same conditions as those shown in FIG. 3 are shown. Compared with the conventional method, the air-fuel ratio can be maintained near the stoichiometric air-fuel ratio. This shows that harmful exhaust gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料噴射制御のための制御装置の
一例の構成図。
FIG. 1 is a block diagram of an example of a control device for fuel injection control according to the present invention.

【図2】吸気管内状態推定部の構成図。FIG. 2 is a configuration diagram of an intake pipe internal state estimation unit.

【図3】スロットル開度変化に対する空燃比と燃料噴射
量の従来例を示す図。
FIG. 3 is a diagram showing a conventional example of an air-fuel ratio and a fuel injection amount with respect to a change in throttle opening.

【図4】本発明によるスロットル開度変化に対する空燃
比と燃料噴射量を示す図。
FIG. 4 is a diagram showing an air-fuel ratio and a fuel injection amount with respect to a change in throttle opening according to the present invention.

【符号の説明】[Explanation of symbols]

1…エンジンプロセス、2…吸気管内状態推定部、3…
液膜モデル係数作成部、4…吸気管内空気質量算出部、
5…燃料噴射量算出部。
1 ... Engine process, 2 ... Intake pipe state estimation unit, 3 ...
Liquid film model coefficient creation unit, 4 ... Intake pipe air mass calculation unit,
5 ... Fuel injection amount calculation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大成 幹彦 神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内 (72)発明者 徳田 博厚 茨城県勝田市大字高場2520番地 株式会社 日立製作所佐和工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikihiko Taisei 1099, Ozenji, Aso-ku, Kawasaki, Kanagawa, Ltd. System Development Laboratory, Hitachi, Ltd. Hitachi Sawa Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エンジンの燃料噴射量を制御する時点と制
御した結果を観測する時点との差に相当するむだ時間を
組み入れた燃料系モデルにもとづきエンジンの吸気管内
の燃料量を予測し、予測した燃料量にもとづき燃料噴射
量を制御するエンジンの燃料噴射制御方法。
1. A fuel quantity in an intake pipe of an engine is predicted and predicted based on a fuel system model incorporating a dead time corresponding to the difference between the time of controlling the fuel injection quantity of the engine and the time of observing the control result. Fuel injection control method for an engine, which controls the fuel injection amount based on the determined fuel amount.
【請求項2】制御すべきエンジンの状態量を観測する手
段と、エンジンの燃料噴射量を制御する手段と、制御す
る時点と制御した結果の状態量を観測する時点との差に
相当するむだ時間を組み入れた燃料系モデルと、前記状
態量の観測結果を前記燃料系モデルに適用してエンジン
の吸気管内の吸気管内の燃料量を予測する手段とからな
るエンジンの燃料噴射制御装置。
2. A dead time corresponding to the difference between the means for observing the state quantity of the engine to be controlled, the means for controlling the fuel injection quantity of the engine, and the time for controlling and observing the state quantity as a result of the control. A fuel injection control device for an engine, comprising: a fuel system model incorporating time; and means for applying an observation result of the state quantity to the fuel system model to predict a fuel amount in an intake pipe of the engine.
JP6000708A 1994-01-10 1994-01-10 Engine fuel injection control method Expired - Lifetime JP2738290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000708A JP2738290B2 (en) 1994-01-10 1994-01-10 Engine fuel injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000708A JP2738290B2 (en) 1994-01-10 1994-01-10 Engine fuel injection control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59015172A Division JPH06100117B2 (en) 1984-02-01 1984-02-01 Engine fuel injection control method

Publications (2)

Publication Number Publication Date
JPH06280651A true JPH06280651A (en) 1994-10-04
JP2738290B2 JP2738290B2 (en) 1998-04-08

Family

ID=11481275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000708A Expired - Lifetime JP2738290B2 (en) 1994-01-10 1994-01-10 Engine fuel injection control method

Country Status (1)

Country Link
JP (1) JP2738290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104375A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Apparatus for detecting abnormal air-fuel ratio variation between cylinders

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724426A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio and its device
JPS588239A (en) * 1981-07-06 1983-01-18 Toyota Motor Corp Control method of fuel injection amount for fuel injection engine
JPS60125741A (en) * 1983-12-10 1985-07-05 Mitsubishi Heavy Ind Ltd Controlling apparatus of engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724426A (en) * 1980-07-18 1982-02-09 Nippon Denso Co Ltd Control method of air-fuel ratio and its device
JPS588239A (en) * 1981-07-06 1983-01-18 Toyota Motor Corp Control method of fuel injection amount for fuel injection engine
JPS60125741A (en) * 1983-12-10 1985-07-05 Mitsubishi Heavy Ind Ltd Controlling apparatus of engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104375A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Apparatus for detecting abnormal air-fuel ratio variation between cylinders

Also Published As

Publication number Publication date
JP2738290B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
KR940001010B1 (en) Method for controlling fuel injection for engine
JP2810039B2 (en) Feedforward type fuel supply method
EP0134547B1 (en) Method of fuel injection control in engine
JPH0565845A (en) Engine control method and system
JP2918624B2 (en) Engine fuel injection control method
JPS61126337A (en) Fuel injection control system of engine
JP2008151145A (en) Suction air quantity predicting device for internal combustion engine
KR930000813A (en) Speed control device of internal combustion engine
JP2818805B2 (en) Engine fuel injection control device
JPH0240044A (en) Throttle opening control device for internal combustion engine
WO2005019625A1 (en) Device and method for controlling suction air amount in internal combustion engine
JP2001090584A (en) Air/fuel ratio control device for internal combustion engine
JP3900064B2 (en) Intake air amount estimation device for internal combustion engine
JPH07116963B2 (en) Air-fuel ratio correction method and same correction device
JPH06280651A (en) Method of controlling fuel injection of engine and device therefor
JPH06100117B2 (en) Engine fuel injection control method
JP3469254B2 (en) Electronic fuel supply control device for internal combustion engine
JPH06323181A (en) Method and device for controlling fuel in internal combustion engine
US5546916A (en) Method and apparatus for adapting air values from a performance graph
JPH0742893B2 (en) Fuel system air amount estimation control method
JPS60166731A (en) Fuel injection controlling method
JPH11223145A (en) Air-fuel ratio control device
JP2006132499A (en) Flow rate calculation device
JP2006090843A (en) Controller of internal combustion engine
JP2705165B2 (en) Fuel injection amount control device for multi-cylinder internal combustion engine