JPH06100117B2 - Engine fuel injection control method - Google Patents

Engine fuel injection control method

Info

Publication number
JPH06100117B2
JPH06100117B2 JP59015172A JP1517284A JPH06100117B2 JP H06100117 B2 JPH06100117 B2 JP H06100117B2 JP 59015172 A JP59015172 A JP 59015172A JP 1517284 A JP1517284 A JP 1517284A JP H06100117 B2 JPH06100117 B2 JP H06100117B2
Authority
JP
Japan
Prior art keywords
fuel
air
liquid film
intake pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59015172A
Other languages
Japanese (ja)
Other versions
JPS60162029A (en
Inventor
照治 瀬古沢
誠寿 舩橋
真 塩谷
幹彦 大成
博厚 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015172A priority Critical patent/JPH06100117B2/en
Priority to KR1019850000558A priority patent/KR940001010B1/en
Priority to US06/696,480 priority patent/US4667640A/en
Priority to DE8585100998T priority patent/DE3584529D1/en
Priority to EP85100998A priority patent/EP0152019B1/en
Publication of JPS60162029A publication Critical patent/JPS60162029A/en
Publication of JPH06100117B2 publication Critical patent/JPH06100117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエンジンの燃料噴射制御に係り、特に吸入管を
通して空気と燃料をシリンダーに送り込む燃料噴射方式
エンジンに好適なエンジンの燃料噴射制御方法に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to engine fuel injection control, and more particularly to an engine fuel injection control method suitable for a fuel injection engine in which air and fuel are sent to a cylinder through an intake pipe.

〔発明の背景〕[Background of the Invention]

従来の燃料噴射制御は、排気ガスを清浄化する三元触媒
が最も有効に働く理論空燃比になるよう種々の方法で燃
料噴射量の補正を行なつていたが、特に加減速時では、
空燃比を理論空燃比に保持できない問題があつた。この
原因は、種々の補正が行なわれているにもかかわらず、
吸気管内の燃料の状態を考慮しないことに欠点があつ
た。
In the conventional fuel injection control, the fuel injection amount was corrected by various methods so that the three-way catalyst that cleans the exhaust gas has the theoretical air-fuel ratio that works most effectively, but especially during acceleration / deceleration,
There was a problem that the air-fuel ratio could not be kept at the theoretical air-fuel ratio. The reason for this is that despite various corrections being made,
There is a drawback in not considering the state of the fuel in the intake pipe.

〔発明の目的〕 本発明の目的は、燃料系の動特性モデルから吸気管内の
液膜や蒸気燃料といつた状態量を推定,予測し、それを
基に空燃比が理論空燃比となるように燃料噴射量を決定
する燃料噴射制御方法を提供することにある。
[Object of the Invention] An object of the present invention is to estimate and predict the liquid film and vapor fuel in the intake pipe and the state quantity from the dynamic characteristic model of the fuel system so that the air-fuel ratio becomes the theoretical air-fuel ratio. Another object of the present invention is to provide a fuel injection control method for determining the fuel injection amount.

〔発明の概要〕[Outline of Invention]

燃料系の動特性は、吸気管に噴射された燃料の一部が吸
気管壁面に付着し液膜となり、液膜はある時定数で蒸発
し噴射された燃料と共にシリンダーに吸入される。しか
しここで、蒸発した燃料がすべてシリンダー内に吸入さ
れるのではなく、一部は吸気管内に蒸気のままの燃料が
残留する(以下、これを蒸気燃料と呼ぶ)。本発明では
この現象をとらえて空燃比が理論空燃比となるよう噴射
量を制御するものである。つまり、燃料動特性を知るう
えで重要な液膜量と蒸気燃料を、スロツトルを流れる空
気質量、スロツトル開度、吸気管内圧力、水温、エンジ
ン回転数、空燃比のデータから推定,予測し、これを基
に理論空燃比となるよう噴射量を制御する。
Regarding the dynamic characteristics of the fuel system, a part of the fuel injected into the intake pipe adheres to the wall surface of the intake pipe to form a liquid film, and the liquid film evaporates with a certain time constant and is sucked into the cylinder together with the injected fuel. However, here, not all the evaporated fuel is sucked into the cylinder, but a part of the fuel remains as vapor in the intake pipe (hereinafter, this is referred to as vapor fuel). In the present invention, by taking this phenomenon into consideration, the injection amount is controlled so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. In other words, the amount of liquid film and vapor fuel, which are important for knowing the fuel dynamics, are estimated and predicted from the data of air mass flowing in the slot, slot opening, intake pipe pressure, water temperature, engine speed, and air-fuel ratio. The injection amount is controlled so that the stoichiometric air-fuel ratio is achieved based on

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1図,第2図により説明す
る。第1図はエンジンプロセス1とコンピユータ内での
燃料噴射制御の制御構成を示している。液膜モデル係数
作成部3は、次のように壁面付着率Xと液膜蒸発時定数
τを算出する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows the control structure of the fuel injection control in the engine process 1 and the computer. The liquid film model coefficient creating unit 3 calculates the wall surface attachment rate X and the liquid film evaporation time constant τ as follows.

ここでkは、k時刻を表わす。 Here, k represents k time.

吸気管内空気質量算出部4では、吸気管内圧力より次の
ように吸気管内空気質量Mを算出する。
The intake pipe air mass calculation unit 4 calculates the intake pipe air mass M from the intake pipe pressure as follows.

M(k)=P(k)a1 ………(3) ここでa1は、吸気管内容積と吸気管温度によつて決まる
定数である。
M (k) = P (k) a 1 (3) Here, a 1 is a constant determined by the intake pipe internal volume and the intake pipe temperature.

さらに、燃料噴射量算出部5では、前記X(k),M
(k)、エンジンプロセスより得られるスロツトルを流
れる空気質量at(k)、および後述する蒸気燃料予測
値v(k+1)とから次のように燃料噴射量Gfを算出
する。
Further, in the fuel injection amount calculation unit 5, the above X (k), M
The fuel injection amount Gf is calculated as follows from (k), the mass of air at (k) flowing through the slot obtained from the engine process, and the vapor fuel predicted value v (k + 1) described later.

ここで、(A/F)は、理論空燃比である。吸気管内状態
推定部2では、前記、液膜付着率X、蒸発時定数τ、吸
気管内空気質量M、スロツトルを流れる空気質量at
(k)、およびエンジンプロセスから得られるエンジン
回転数N、吸気管圧力P、空燃比A/Fから、吸気管内の
状態として、液膜量や蒸気燃料を推定,予測し、実施例
では燃料噴射量算出部5に蒸気燃料予測値v(k+
1)を出力する。
Here, (A / F) is the theoretical air-fuel ratio. In the intake pipe internal state estimation unit 2, the liquid film attachment rate X, the evaporation time constant τ, the intake pipe air mass M, and the air mass flowing in the slot at
(K) and the engine speed N, the intake pipe pressure P, and the air-fuel ratio A / F obtained from the engine process, the liquid film amount and the vapor fuel are estimated and predicted as the state in the intake pipe. The fuel vapor predicted value v (k +
1) is output.

前記吸気管内状態推定部2の構成および動作を第2図に
より説明する。シリンダーに吸入される空気質量 は第2図の計算回路28より次のように求める。
The configuration and operation of the intake pipe internal state estimation unit 2 will be described with reference to FIG. Air mass drawn into the cylinder Is calculated as follows from the calculation circuit 28 of FIG.

ここで、a2は、エンジン排気量や気体定数で決まる定数
である。
Here, a 2 is a constant determined by the engine displacement and the gas constant.

得られた は、第2図のシフトレジスタ29に入力し、右側にシフト
した後で最後尾に蓄積する。第2図の係数作成回路21で
は、吸気管内の状態を推定,予測するためのモデルの係
数を作成する部分であり、前記X(k),τ(k),M
(k),at(k)より次のように求める。
Got Is input to the shift register 29 of FIG. 2, shifted to the right, and then accumulated at the end. The coefficient creating circuit 21 in FIG. 2 is a part that creates the coefficient of the model for estimating and predicting the state in the intake pipe, and is the part of X (k), τ (k), M
The following is obtained from (k) and at (k).

ここで、ΔTはサンプル周期である。 Here, ΔT is a sampling period.

第2図の係数作成回路21で得られた係数は第2図のメモ
リテーブル22に蓄積され、それに伴つて以前に蓄積され
ていたデータは右側へシフトされる。
The coefficients obtained by the coefficient generation circuit 21 in FIG. 2 are stored in the memory table 22 in FIG. 2, and the data previously stored is accordingly shifted to the right.

一方、メモリテーブル24では、第1図の算出部5から得
た燃料噴射量をメモリテーブル22と同様に右側にシフト
しながら最後尾に追加される。
On the other hand, in the memory table 24, the fuel injection amount obtained from the calculation unit 5 in FIG. 1 is added to the end while shifting to the right as in the memory table 22.

O2センサから得た空燃比データは、排気管内の排ガス流
動遅れがあり、さらに、この遅れもエンジン回転数によ
つて変化する。第2図の計算回路27では次のように空燃
比データの観測遅れを計算する。
The air-fuel ratio data obtained from the O 2 sensor has an exhaust gas flow delay in the exhaust pipe, and this delay also changes depending on the engine speed. The calculation circuit 27 of FIG. 2 calculates the observation delay of the air-fuel ratio data as follows.

ここで、dはサンプリング周期の整数倍であり、第12式
の〔 〕は整数化信号である。
Here, d is an integer multiple of the sampling period, and [] in the twelfth equation is an integer signal.

遅れ時間dが得られたことで、k時刻におけて得られた
空燃比データはd時刻前の空燃比であることからA/F
(k−d)と書ける。A/F(k−d)とメモリテーブル2
9の中のap(k−d)から、30では、d時刻前におい
てシリンダーに吸入された燃料の推定値が次のように得
られる。
Since the delay time d is obtained, the air-fuel ratio data obtained at time k is the air-fuel ratio before time d, so A / F
It can be written as (kd). A / F (kd) and memory table 2
From ap (k-d) in 9, at 30, an estimate of the fuel drawn into the cylinder before d time is obtained as follows.

次に、前記遅れ時間dを知つて、前記Gfe(k−d)
と、メモリテーブル22より得られるA1(k)からA1(k
−d)、A2(k)からA2(k−d)、A3(k)からA
3(k−d)、B1(k)からB1(k−d)、C1(k)か
らC1(k−d)、D1(k)からD1(k−d)の情報とメ
モリテーブル24から得られるGf(k)からGf(k−d)
の情報と後述するメモリテーブル25、および26より得ら
れるfilm(k−d)とMv(k−d)の情報から、第2
図の計算回路23では以下に示すように液膜と蒸気燃料を
推定し、予測する。ここで簡単のため次のように置く。
Next, by knowing the delay time d, the Gfe (k−d)
And A 1 (k) obtained from the memory table 22 to A 1 (k
-D), A 2 (k) to A 2 (kd), A 3 (k) to A
Information of 3 (kd), B 1 (k) to B 1 (kd), C 1 (k) to C 1 (kd), D 1 (k) to D 1 (kd) And Gf (k) obtained from the memory table 24 to Gf (k−d)
2 and the information of film (kd) and Mv (kd) obtained from the memory tables 25 and 26 described later,
The calculation circuit 23 in the figure estimates and predicts the liquid film and vapor fuel as shown below. For simplicity, put the following.

ここで、例えば(・)の(・)は時刻を表わす。 Here, for example, (.) In (.) Represents time.

ここで、 が、(k−d)時刻の液膜推定量と蒸気燃料の推定量で
あり、Fは推定誤差分散行列であり、σe2は観測雑音の
分配である。
here, Is the estimated amount of the liquid film and the estimated amount of the vapor fuel at the time (k−d), F is the estimation error variance matrix, and σe 2 is the distribution of the observation noise.

以上の式により、吸気管内の状態である液膜と蒸気燃料
の(k+1)時刻の予測値が算出された。
From the above equation, the predicted value of the liquid film in the intake pipe and the (k + 1) time of the vapor fuel was calculated.

第20式で得た蒸気燃料予測値を第5図へ出力する。ま
た、第19式で得られるMfilm(k−d+1)からMfilm
(k)とMv(k−d+1)からMv(k)をメモリテーブ
ル25と26に蓄積する。
The steam fuel predicted value obtained from Equation 20 is output to FIG. In addition, from Mfilm (k−d + 1) obtained by Equation 19, Mfilm
(K) and Mv (k-d + 1) to Mv (k) are stored in the memory tables 25 and 26.

本発明の実施例によれば、エンジン回転数によつて変化
するO2センサのむだ時間変化を考慮し、液膜量と蒸気燃
料を推定,予測し、予測した蒸気燃料を基に燃料噴射量
を制御することにより空燃比を理論空燃比付近に保持で
きる。これにより、有害排気ガスの低減が可能となる。
According to the embodiment of the present invention, the liquid film amount and the vapor fuel are estimated and predicted in consideration of the dead time change of the O 2 sensor which changes depending on the engine speed, and the fuel injection amount is based on the estimated vapor fuel. The air-fuel ratio can be maintained near the stoichiometric air-fuel ratio by controlling. This makes it possible to reduce harmful exhaust gas.

〔発明の効果〕〔The invention's effect〕

本発明によれば、空燃比を理論空燃比付近に保持するこ
とができるので有害ガス低減の効果がある。以下、第3
図,第4図を用いて本発明の制御効果について説明す
る。第3図は従来例を示すものである。スロツトル10゜
から20゜に開くような加速時には、シリンダーに入る空
燃比が薄くなり、空燃比が理論空燃比よりも高い値を示
している。これは、有害な窒素酸化物が多く排出されて
しまう。これに対し、第4図に本発明による制御性能の
例を示す。第3図に示したものと同じ条件で制御したと
きの空燃比と燃料噴射量を示している。従来方法に比べ
空燃比が理論空燃比付近に保持させることができてい
る。これは、有害排気ガスの低減が可能となることを示
している。
According to the present invention, since the air-fuel ratio can be maintained near the stoichiometric air-fuel ratio, there is an effect of reducing harmful gas. Below, the third
The control effect of the present invention will be described with reference to FIGS. FIG. 3 shows a conventional example. When accelerating to open the throttle from 10 ° to 20 °, the air-fuel ratio entering the cylinder becomes thin, and the air-fuel ratio shows a value higher than the theoretical air-fuel ratio. This causes a lot of harmful nitrogen oxides to be emitted. On the other hand, FIG. 4 shows an example of the control performance according to the present invention. The air-fuel ratio and the fuel injection amount when controlled under the same conditions as those shown in FIG. 3 are shown. Compared with the conventional method, the air-fuel ratio can be kept near the stoichiometric air-fuel ratio. This shows that harmful exhaust gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による燃料噴射制御のための制御装置の
一例の構成図、第2図は第1図の吸気管内状態推定部の
構成図、第3図はスロツトル開度変化に対する空燃比と
燃料噴射量の従来例を示す図、第4図は本発明によるス
ロツトル開度変化に対する空燃比と燃料噴射量を示す図
である。 1……エンジンプロセス、2……吸気管内状態推定部、
3……液膜モデル係数作成部、4……吸気管内空気質量
算出部、5……燃料噴射量算出部。
FIG. 1 is a configuration diagram of an example of a control device for fuel injection control according to the present invention, FIG. 2 is a configuration diagram of an intake pipe internal state estimation unit in FIG. 1, and FIG. 3 is an air-fuel ratio with respect to a throttle opening change FIG. 4 is a diagram showing a conventional example of the fuel injection amount, and FIG. 4 is a diagram showing the air-fuel ratio and the fuel injection amount with respect to changes in the throttle opening according to the present invention. 1 ... Engine process, 2 ... Intake pipe internal state estimation unit,
3 ... Liquid film model coefficient creation unit, 4 ... Intake pipe air mass calculation unit, 5 ... Fuel injection amount calculation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大成 幹彦 神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内 (72)発明者 徳田 博厚 茨城県勝田市大字高場2520番地 株式会社 日立製作所佐和工場内 (56)参考文献 特開 昭57−24426(JP,A) 特開 昭56−47638(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikihiko Taisei 1099, Ozenji, Aso-ku, Kawasaki, Kanagawa, Ltd. System Development Laboratory, Hitachi, Ltd. Hitachi, Ltd. Sawa factory (56) Reference JP-A-57-24426 (JP, A) JP-A-56-47638 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エンジンの吸気管壁面に付着した第1の時
点における液膜燃料量を空燃比データを用いて推定し、
該空燃比データのむだ時間を組み入れた燃料系モデルを
用いて上記推定した液膜燃料量から前記第1の時点より
前記むだ時間だけ経過した第2の時点における液膜燃料
量を予測し、該予測量にもとづき燃料噴射量を決定する
ことを特徴とするエンジンの燃料噴射制御方法。
1. A liquid film fuel amount at a first time point when the liquid film fuel adheres to a wall surface of an intake pipe of an engine is estimated by using air-fuel ratio data,
Using the fuel system model incorporating the dead time of the air-fuel ratio data, the liquid film fuel quantity at the second time point after the dead time has elapsed from the first time point is predicted from the estimated liquid film fuel quantity, and A fuel injection control method for an engine, characterized in that a fuel injection amount is determined based on a predicted amount.
【請求項2】前記推定する処理は前記第1の時点におけ
る液膜燃料量とともに第1の時点に吸気管内に残留する
蒸気燃料量を推定する処理からなり、前記予測する処理
は前記第2の時点における液膜燃料量とともに第2の時
点に吸気管内に残留する蒸気燃料量を予測する処理から
なる特許請求の範囲第1項記載のエンジンの燃料噴射制
御方法。
2. The estimating process comprises a process of estimating the liquid film fuel amount at the first time point and the vapor fuel amount remaining in the intake pipe at the first time point, and the predicting process is the second time step. The fuel injection control method for an engine according to claim 1, comprising a process of predicting the amount of vapor fuel remaining in the intake pipe at a second time together with the amount of liquid film fuel at the time.
JP59015172A 1984-02-01 1984-02-01 Engine fuel injection control method Expired - Lifetime JPH06100117B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59015172A JPH06100117B2 (en) 1984-02-01 1984-02-01 Engine fuel injection control method
KR1019850000558A KR940001010B1 (en) 1984-02-01 1985-01-30 Method for controlling fuel injection for engine
US06/696,480 US4667640A (en) 1984-02-01 1985-01-30 Method for controlling fuel injection for engine
DE8585100998T DE3584529D1 (en) 1984-02-01 1985-01-31 METHOD FOR CONTROLLING FUEL INJECTION IN AN ENGINE.
EP85100998A EP0152019B1 (en) 1984-02-01 1985-01-31 Method for controlling fuel injection for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015172A JPH06100117B2 (en) 1984-02-01 1984-02-01 Engine fuel injection control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6000708A Division JP2738290B2 (en) 1994-01-10 1994-01-10 Engine fuel injection control method

Publications (2)

Publication Number Publication Date
JPS60162029A JPS60162029A (en) 1985-08-23
JPH06100117B2 true JPH06100117B2 (en) 1994-12-12

Family

ID=11881387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015172A Expired - Lifetime JPH06100117B2 (en) 1984-02-01 1984-02-01 Engine fuel injection control method

Country Status (1)

Country Link
JP (1) JPH06100117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258136A (en) * 1986-04-30 1987-11-10 Mazda Motor Corp Fuel feed control device for engine
JP2600698B2 (en) * 1987-07-29 1997-04-16 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JP2600697B2 (en) * 1987-07-29 1997-04-16 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
JP2997473B2 (en) * 1988-12-26 2000-01-11 株式会社日立製作所 Engine adaptive control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1154121A (en) * 1979-09-27 1983-09-20 Laszlo Hideg Fuel metering system for an internal combustion engine
JPS6052301B2 (en) * 1980-07-18 1985-11-18 株式会社デンソー Air fuel ratio control device

Also Published As

Publication number Publication date
JPS60162029A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
US4667640A (en) Method for controlling fuel injection for engine
KR930012226B1 (en) Control method for a fuel injection engine
US6718822B2 (en) Feed-forward observer-based control for estimating cylinder air charge
JPH08270492A (en) Electronic engine controller
JP3054360B2 (en) Control method of internal combustion engine
JP3610839B2 (en) Air-fuel ratio control device for internal combustion engine
JP2918624B2 (en) Engine fuel injection control method
KR930000813A (en) Speed control device of internal combustion engine
JP2000314342A (en) Air-fuel ratio control device for internal combustion engine
KR0158880B1 (en) Fuel injection control method in an engine
JPH06100117B2 (en) Engine fuel injection control method
JPH0281935A (en) Correction method of air-fuel ratio and correction device for the same
JP3469254B2 (en) Electronic fuel supply control device for internal combustion engine
JPH06323181A (en) Method and device for controlling fuel in internal combustion engine
JP2738290B2 (en) Engine fuel injection control method
US5546916A (en) Method and apparatus for adapting air values from a performance graph
JPS60166731A (en) Fuel injection controlling method
JPH04166637A (en) Air-fuel ratio controller of engine
JPS62121845A (en) Presumptively controlling method for air quantity in fuel system
JPH11223145A (en) Air-fuel ratio control device
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP2760175B2 (en) Evaporative fuel treatment system for internal combustion engines
JP2997473B2 (en) Engine adaptive control method
JP3156469B2 (en) Exhaust gas purification device for internal combustion engine
JPS6161940A (en) Prediction of liquid film fuel on intake tube wall face