JPH06279763A - Reforming of heavy oil - Google Patents

Reforming of heavy oil

Info

Publication number
JPH06279763A
JPH06279763A JP7157493A JP7157493A JPH06279763A JP H06279763 A JPH06279763 A JP H06279763A JP 7157493 A JP7157493 A JP 7157493A JP 7157493 A JP7157493 A JP 7157493A JP H06279763 A JPH06279763 A JP H06279763A
Authority
JP
Japan
Prior art keywords
oil
heavy oil
water
viscosity
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7157493A
Other languages
Japanese (ja)
Inventor
Heiji Enomoto
兵治 榎本
Nakamichi Yamazaki
仲道 山崎
Hisaaki Makino
久昭 牧野
Takehiko Moriya
武彦 守谷
Shiro Ishii
四郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Onoda Cement Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Onoda Cement Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP7157493A priority Critical patent/JPH06279763A/en
Publication of JPH06279763A publication Critical patent/JPH06279763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To convert a heavy oil into a low-bolding oil of lower viscosity by contacting and reacting the heavy oil with high-temperature water containing supercritical water in a reactor. CONSTITUTION:The charging rate of water in the reactor is 10vol.% or above, and the reaction temperature is 300-500 deg.C. For instance, the apparatus shown in Fig. is composed of a reaction vessel 1 (of a capacity of 50ml), a flange 2, a heater 3, a thermocouple 4, a pressure transducer 5, a temperature controller 6 and a recorder 7. Oil sand is used as the heavy oil, it is washed with toluene, the sand is filtered off, and the filtrate is stripped of the toluene to obtain an oil sands oil sample. This is introduced into the vessel 1, deionized water is introduced at a charging rate of 10vol.% or above preferably 15-70mol.%, and the vessel 2 is sealed with the flange 2. If necessary, in addition to the deionized water, an alkali solution or a catalyst may be added to the vessel 1. The entire mixture is heated up to 300-500 deg.C, and then slowly cooled by stopping the heating. Thus, the oil sands having a viscosity of 25000 cp or higher at 30 deg.C is converted into a low-boiling oil having a viscosity of 5-35 cp at 30 deg.C in a yield of 85-90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オイルサンド、重質原
油、減圧残渣油等の重質油の改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming heavy oil such as oil sand, heavy crude oil and vacuum residue oil.

【0002】[0002]

【従来の技術】オイルサンド(タールサンド油、ビチュ
メン等を含む)は世界的に埋蔵量が多く、石油に次ぐ貴
重な炭化水素源として、その開発が進められているが、
改質、精製が困難であって、従来、水素化精製法、熱分
解法、接触分解法、溶剤抽出法などが試みられている
が、いずれの方法もコークスなどの副生物が多く、液収
率が低いなどの問題があった。
2. Description of the Related Art Oil sands (including tar sand oil, bitumen, etc.) have large reserves worldwide and are being developed as valuable hydrocarbon sources next to petroleum.
Since reforming and refining are difficult, hydrorefining methods, thermal decomposition methods, catalytic cracking methods, solvent extraction methods, etc. have been tried so far. There were problems such as low rates.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明
は、方法的に簡単でコークスなどの副生物が極めて少な
く、液収率が高い重質油の改質方法を提供することを目
的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for reforming heavy oil, which is simple in method, has a very small amount of by-products such as coke, and has a high liquid yield.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題を
解決するため、重質油の改質に超臨界水を含む高温熱水
を利用するという手段を採用した。
In order to solve the above problems, the present inventor has adopted a means of utilizing high temperature hot water containing supercritical water for reforming heavy oil.

【0005】すなわち、本発明は、重質油を反応器内で
超臨界水を含む高温熱水と接触、反応せしめ、より低粘
度の油に軽質化することを特徴とする重質油の改質方法
を提供するものである。
That is, according to the present invention, a heavy oil is modified by contacting and reacting the heavy oil with high temperature hot water containing supercritical water in a reactor to lighten the oil to a lower viscosity oil. It provides a quality method.

【0006】なお、反応器内での水の充填率は、後述の
ように反応器内の圧力の大きさに直接影響し、かつ、得
られる油の粘度に関係し、目的に応じ適宜選択しうる
が、通常、10容量%以上、好ましくは15ないし70
容量%の範囲で適宜選択することができる。また、反応
温度は通常、300ないし500℃とすることが好まし
い。用いられる水としては、純水のほか、必要に応じて
添加物、例えばアルカリ溶液、触媒を含むものであって
もよい。
The filling rate of water in the reactor directly influences the magnitude of pressure in the reactor as described later and is related to the viscosity of the obtained oil, and is appropriately selected according to the purpose. However, it is usually 10% by volume or more, preferably 15 to 70%.
It can be appropriately selected within the range of volume%. The reaction temperature is usually preferably 300 to 500 ° C. The water used may be pure water or, if necessary, additives such as an alkaline solution and a catalyst.

【0007】[0007]

【作用】本発明では、反応器内での水の充填率に応じて
任意の粘度の軽質油に短時間で改質することができ、か
つ、従来の方法と比較してコークスなどの副生物が極め
て少なくすることができる。
In the present invention, light oil having an arbitrary viscosity can be reformed in a short time according to the filling rate of water in the reactor, and by-products such as coke are compared with the conventional method. Can be extremely reduced.

【0008】[0008]

【実施例】以下、図示の実施例を参照して本発明をより
具体的に説明する。 (実施例1)
The present invention will be described more specifically below with reference to the illustrated embodiments. (Example 1)

【0009】図1に示す装置を用いて、カナダ国、アサ
バスカ産のオイルサンドの改質処理をおこなった。図1
の装置において、1は反応容器(容量50ml)、2は
フランジ、3はヒーター、4は熱電対、5は圧力変換
器、6は温度コントローラー、7は記録計である。
Using the apparatus shown in FIG. 1, an oil sand produced in Athabasca, Canada was modified. Figure 1
1 is a reaction vessel (volume 50 ml), 2 is a flange, 3 is a heater, 4 is a thermocouple, 5 is a pressure converter, 6 is a temperature controller, and 7 is a recorder.

【0010】このアサバスカ産のオイルサンドは、粘度
が25000cp以上(30℃)、比重が1.004
(15/4℃)、灰分3.4重量%、アスファルテン2
1.79重量%、マルテン74.71重量%、ベンゼン
不溶分3.50重量%のものであった。このオイルサン
ドをまず、トルエンで洗い、砂と分離濾過し、ついでト
ルエンを除去し、オイルサンド油試料を得た。
The oil sand from Athabasca has a viscosity of 25,000 cp or more (30 ° C.) and a specific gravity of 1.004.
(15/4 ° C), ash content 3.4% by weight, asphaltene 2
The content was 1.79% by weight, marten 74.71% by weight, and benzene insoluble content 3.50% by weight. This oil sand was first washed with toluene, separated and filtered from sand, and then toluene was removed to obtain an oil sand oil sample.

【0011】このオイルサンド油試料5gをまず、反応
容器1に充填し、純水を反応容器1の容量50mlに対
し20容量%(10g)、30容量%(15g)、40
容量%(20g)、50容量%(25g)、60容量%
(30g)とそれぞれ変えて反応容器1に充填しフラン
ジ2で密封したのち、400℃まで加熱したのち(反応
時間:0時間)、加熱を停止し徐冷させた(図2参
照)。
First, 5 g of this oil sand oil sample was filled in the reaction vessel 1, and pure water was added to the reaction vessel 1 in a volume of 50 ml of 20% by volume (10 g), 30% by volume (15 g), 40% by volume.
Volume% (20g), 50volume% (25g), 60volume%
After changing to (30 g) and filling the reaction vessel 1 and sealing with the flange 2, after heating up to 400 ° C. (reaction time: 0 hour), heating was stopped and gradually cooled (see FIG. 2).

【0012】その結果、収率85〜90%で粘度約5〜
35cp(30℃)の油に軽質化されたことが確認され
た。この実験における水の充填率と圧力の関係を図3
に、圧力と粘度の関係を図4に、この反応生成物の分子
量分布を図5、図6に示す。また、圧力とガス発生量と
の関係を図7に示す。
As a result, the yield is 85 to 90% and the viscosity is about 5 to 5.
It was confirmed that the oil was lightened to 35 cp (30 ° C). The relationship between the filling rate of water and the pressure in this experiment is shown in FIG.
Fig. 4 shows the relationship between pressure and viscosity, and Fig. 5 and Fig. 6 show the molecular weight distribution of this reaction product. Further, FIG. 7 shows the relationship between the pressure and the gas generation amount.

【0013】図5から明らかなように、水充填率20〜
40容量%(気相的雰囲気)においては、ピークの分子
量は3000〜5000で、水充填率の増大とともに高
分子側へ全体的に移動している。また、図6から明らか
なように、水充填率50〜60容量%(液相的雰囲気)
においては、ピークにはほとんど変化がないが、水充填
率60容量%のとき分布幅が狭くなる傾向を示してい
る。
As is apparent from FIG. 5, the water filling rate is 20-
At 40% by volume (gas phase atmosphere), the peak molecular weight is 3000 to 5000, and the molecular weight is entirely moved to the polymer side as the water filling rate increases. Further, as is clear from FIG. 6, the water filling rate is 50 to 60% by volume (liquid phase atmosphere).
, There is almost no change in the peak, but the distribution width tends to become narrow when the water filling rate is 60% by volume.

【0014】また、図8は水充填率20〜40容量%に
おける生成油のSFC(超臨界CO2 クロマトグラフィ
ー)の分析結果であり、C10〜C30のピークに注目する
と、充填率の増加にともないn−パラフィンは減少する
傾向を示している。このことは図5の低分子側の減少と
一致している。 (実施例2)実施例1と同様のアサバスカ産のオイルサ
ンドを用い、トルエンで処理し、オイルサンド油試料を
得た。
FIG. 8 shows the results of SFC (supercritical CO 2 chromatography) analysis of the product oil at a water filling rate of 20 to 40% by volume. Focusing on the peaks of C 10 to C 30 , the filling rate increases. Accordingly, the n-paraffin tends to decrease. This is consistent with the decrease on the low molecular side in FIG. Example 2 The same oil sand from Athabasca as in Example 1 was used and treated with toluene to obtain an oil sand oil sample.

【0015】このオイルサンド油試料を、5g、10
g、15gに変化させ、反応容器1にそれぞれ充填し、
純水を反応容器1の容量50mlに対し40容量%(2
0g)充填しフランジ2で密封したのち、400℃まで
加熱したのち(反応時間:0時間)、加熱を停止し徐冷
させた(図2参照)。
5 g of this oil sand oil sample and 10
g, 15 g, and filled in the reaction container 1 respectively,
40 volume% (2
0 g) After filling and sealing with the flange 2, after heating up to 400 ° C. (reaction time: 0 hours), heating was stopped and gradually cooled (see FIG. 2).

【0016】その結果得られた生成油の粘度を測定した
ところ、図9に示すような結果が得られた。この結果か
ら明らかなように、オイルサンドの量を増やしても、同
様に軽質化が可能なことが確認された。 (実施例3)実施例1と同様のアサバスカ産のオイルサ
ンドを用い、トルエンで処理し、オイルサンド油試料を
得た。
When the viscosity of the resulting product oil was measured, the results shown in FIG. 9 were obtained. As is clear from this result, it was confirmed that even if the amount of oil sand was increased, the weight reduction could be achieved similarly. Example 3 The same oil sand from Athabasca as in Example 1 was used and treated with toluene to obtain an oil sand oil sample.

【0017】このオイルサンド油試料5gを反応容器1
に充填し、純水を反応容器の容量50mlに対し40容
量%(20g)充填しフランジ2で密封したのち、30
0℃まで加熱し、この温度にて10時間保ったのち(反
応時間:10時間)、加熱を停止し徐冷させた。その結
果、実施例1と同様に粘度約1500〜1600cp
(50℃)の油に軽質化されたことが確認された。この
実験におけるガスの総発生量は59ccであり、その成
分は表1に示す通りであった。なお、この表1に実施例
1において純水の充填率を40容量%(20g)とした
場合のガス成分の発生割合を合わせて示す。
5 g of this oil sand oil sample was added to the reaction vessel 1.
Then, 40% by volume (20 g) of pure water was filled in 50 ml of the reaction vessel, and sealed with the flange 2, then 30
After heating to 0 ° C. and maintaining at this temperature for 10 hours (reaction time: 10 hours), heating was stopped and gradually cooled. As a result, the viscosity was about 1500 to 1600 cp as in Example 1.
It was confirmed that the oil (50 ° C) was lightened. The total amount of gas generated in this experiment was 59 cc, and the components were as shown in Table 1. It should be noted that Table 1 also shows the generation rate of gas components when the filling rate of pure water in Example 1 was 40% by volume (20 g).

【0018】[0018]

【表1】 [Table 1]

【0019】なお、上記実施例では、オイルサンドの改
質処理について説明したが、オイルサンド以外の重質原
油、減圧残渣油等の重質油についても、同様に高い液収
率を以て軽質化することができることが確認された。
Although the oil sand reforming treatment is described in the above embodiment, heavy oils other than oil sands, such as heavy crude oil and reduced pressure residual oil, are also lightened with a high liquid yield. It was confirmed that it was possible.

【0020】[0020]

【発明の効果】以上詳述したように、本発明によれば、
従来のように水素を用いることなしに粘度3500程度
(50℃)の重質油を粘度5〜35程度(30℃)の軽
質な油に改質することができ、さらにコークスの生成が
少なく、反応温度、反応圧力を適当に選ぶことにより短
時間で任意の粘度の軽質油に改質することができる。
As described in detail above, according to the present invention,
It is possible to reform heavy oil with a viscosity of about 3500 (50 ° C) into a light oil with a viscosity of about 5 to 35 (30 ° C) without using hydrogen as in the past, and to reduce coke generation. By appropriately selecting the reaction temperature and the reaction pressure, it is possible to reform into light oil having an arbitrary viscosity in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに用いられるオート
クレーブの模式図。
FIG. 1 is a schematic diagram of an autoclave used to carry out the method of the present invention.

【図2】本発明の方法における温度と圧力との経時変化
を示す線図。
FIG. 2 is a diagram showing changes over time in temperature and pressure in the method of the present invention.

【図3】本発明の方法における水の充填率と圧力との関
係を示す線図。
FIG. 3 is a diagram showing the relationship between water filling rate and pressure in the method of the present invention.

【図4】本発明の方法における圧力と生成物の粘度との
関係を示す線図。
FIG. 4 is a diagram showing the relationship between pressure and product viscosity in the method of the present invention.

【図5】本発明の方法で得られた生成物の分子量分布を
示す線図。
FIG. 5 is a diagram showing the molecular weight distribution of the product obtained by the method of the present invention.

【図6】本発明の方法で得られた生成物の分子量分布を
示す線図。
FIG. 6 is a diagram showing the molecular weight distribution of the product obtained by the method of the present invention.

【図7】本発明の方法で得られるガス発生量と圧力との
関係を示す線図。
FIG. 7 is a diagram showing the relationship between the gas generation amount and pressure obtained by the method of the present invention.

【図8】本発明の方法で得られる生成油のSFC(超臨
界CO2 クロマトグラフィー)の分析結果を示す線図。
FIG. 8 is a diagram showing the results of SFC (supercritical CO 2 chromatography) analysis of the product oil obtained by the method of the present invention.

【図9】本発明の方法におけるオイルサンドの充填量と
粘度との関係を示す線図。
FIG. 9 is a graph showing the relationship between the filling amount of oil sand and the viscosity in the method of the present invention.

【符号の説明】[Explanation of symbols]

1…反応容器 2…フランジ 3…ヒーター 4…熱電対 5…圧力変換器 6…温度コントローラー 7…記録計 DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Flange 3 ... Heater 4 ... Thermocouple 5 ... Pressure converter 6 ... Temperature controller 7 ... Recorder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 仲道 高知県高岡郡佐川町甲107 (72)発明者 牧野 久昭 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 守谷 武彦 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社応用技術研究所内 (72)発明者 石井 四郎 千葉県佐倉市大作2丁目4番2号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yamazaki Nakamichi Ko Sagawa, Takaoka-gun, Kochi 107 Ko (72) Inventor Hisaki Makino 7-2-1, Nakayama, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. (72) Inventor Takehiko Moriya 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture, Tohoku Electric Power Co., Inc. Applied Technology Laboratory (72) Inventor Shiro Ishii 2-4-2 Daisaku Sakura City, Chiba Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重質油を反応器内で超臨界水を含む高温
熱水と接触、反応せしめ、より低粘度の油に軽質化する
ことを特徴とする重質油の改質方法。
1. A method for reforming heavy oil, which comprises contacting and reacting heavy oil with high temperature hot water containing supercritical water in a reactor to lighten the oil to a lower viscosity oil.
【請求項2】 該反応器内での水の充填率を10容量%
以上とすることを特徴とする請求項1記載の重質油の改
質方法。
2. The filling rate of water in the reactor is 10% by volume.
The method for reforming heavy oil according to claim 1, wherein the method is as described above.
【請求項3】 反応温度を300ないし500℃とする
ことを特徴とする請求項1記載の重質油の改質方法。
3. The method for reforming heavy oil according to claim 1, wherein the reaction temperature is 300 to 500 ° C.
【請求項4】 重質油がオイルサンドであることを特徴
とする請求項1記載の重質油の改質方法。
4. The method for reforming heavy oil according to claim 1, wherein the heavy oil is oil sand.
JP7157493A 1993-03-30 1993-03-30 Reforming of heavy oil Pending JPH06279763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7157493A JPH06279763A (en) 1993-03-30 1993-03-30 Reforming of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157493A JPH06279763A (en) 1993-03-30 1993-03-30 Reforming of heavy oil

Publications (1)

Publication Number Publication Date
JPH06279763A true JPH06279763A (en) 1994-10-04

Family

ID=13464614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157493A Pending JPH06279763A (en) 1993-03-30 1993-03-30 Reforming of heavy oil

Country Status (1)

Country Link
JP (1) JPH06279763A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151384A (en) * 1995-11-29 1997-06-10 Tohoku Electric Power Co Inc Modification and/or break down to low molecule of fossil fuel or high molecular material
JP2007063319A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Heavy oil reforming system and gas turbine power generation system utilizing heavy oil
JP2007112923A (en) * 2005-10-21 2007-05-10 Hitachi Zosen Corp Method for reducing viscosity of heavy oil
JP2008297459A (en) * 2007-05-31 2008-12-11 Japan Energy Corp Method for decomposing polycyclic aromatic compound and heavy oil containing the same
JP2008297458A (en) * 2007-05-31 2008-12-11 Japan Energy Corp Method for decomposing polycyclic aromatic compound and heavy oil containing the same
US7591983B2 (en) 2003-08-05 2009-09-22 Hitachi, Ltd. Heavy oil treating method and heavy oil treating system
JP2009242467A (en) * 2008-03-28 2009-10-22 Japan Energy Corp Method for cracking hydrocarbon oil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151384A (en) * 1995-11-29 1997-06-10 Tohoku Electric Power Co Inc Modification and/or break down to low molecule of fossil fuel or high molecular material
US7591983B2 (en) 2003-08-05 2009-09-22 Hitachi, Ltd. Heavy oil treating method and heavy oil treating system
JP2007063319A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Heavy oil reforming system and gas turbine power generation system utilizing heavy oil
JP2007112923A (en) * 2005-10-21 2007-05-10 Hitachi Zosen Corp Method for reducing viscosity of heavy oil
JP2008297459A (en) * 2007-05-31 2008-12-11 Japan Energy Corp Method for decomposing polycyclic aromatic compound and heavy oil containing the same
JP2008297458A (en) * 2007-05-31 2008-12-11 Japan Energy Corp Method for decomposing polycyclic aromatic compound and heavy oil containing the same
JP2009242467A (en) * 2008-03-28 2009-10-22 Japan Energy Corp Method for cracking hydrocarbon oil

Similar Documents

Publication Publication Date Title
US4840725A (en) Conversion of high boiling liquid organic materials to lower boiling materials
US4543177A (en) Production of light hydrocarbons by treatment of heavy hydrocarbons with water
CN101970609B (en) Process to upgrade highly waxy crude oil by hot pressurized water
US5069775A (en) Heavy crude upgrading using remote natural gas
US4115246A (en) Oil conversion process
US4698149A (en) Enhanced recovery of hydrocarbonaceous fluids oil shale
US4446012A (en) Process for production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4594141A (en) Conversion of high boiling organic materials to low boiling materials
US4579646A (en) Bottoms visbreaking hydroconversion process
US4214979A (en) Method of thermally cracking heavy petroleum oil
EP0087324A1 (en) Process for the hydrogenation of carbonaceous material
US3075912A (en) Hydroconversion of solid carbonaceous materials
JPH06279763A (en) Reforming of heavy oil
JPH0678527B2 (en) Method of catalytic hydrogenation of coal
EP0035864A2 (en) Process for upgrading heavy hydrocarbonaceous oils
US1344671A (en) Process for obtaining light hydrocarbons from heavy hydrocarbons
JPS6158513B2 (en)
JPH05117663A (en) Reforming of hydrocarbon material
US1970248A (en) Production of valuable hydrocarbons from varieties of coal, tars, mineral oils, and the like
Carter et al. Secondary coking and cracking of shale oil vapours from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor
US2345877A (en) Manufacture of liquid hydrocarbons
Kleinpeter et al. Process development for improved SRC options: interim short residence time studies
JPH0823020B2 (en) Contact two-stage coal hydrotreating and hydroconversion method
US3352776A (en) Process for the preparation of binder oils
US2600671A (en) Hydrofluoric acid refining of hydrocarbon oils