JPH0627872B2 - Measuring device of plane projected rainfall on a slope - Google Patents

Measuring device of plane projected rainfall on a slope

Info

Publication number
JPH0627872B2
JPH0627872B2 JP32187190A JP32187190A JPH0627872B2 JP H0627872 B2 JPH0627872 B2 JP H0627872B2 JP 32187190 A JP32187190 A JP 32187190A JP 32187190 A JP32187190 A JP 32187190A JP H0627872 B2 JPH0627872 B2 JP H0627872B2
Authority
JP
Japan
Prior art keywords
slope
rainfall
measuring
measuring device
rain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32187190A
Other languages
Japanese (ja)
Other versions
JPH04191621A (en
Inventor
恭四郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKEDA KEIKI SEISAKUSHO KK
Original Assignee
IKEDA KEIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKEDA KEIKI SEISAKUSHO KK filed Critical IKEDA KEIKI SEISAKUSHO KK
Priority to JP32187190A priority Critical patent/JPH0627872B2/en
Publication of JPH04191621A publication Critical patent/JPH04191621A/en
Publication of JPH0627872B2 publication Critical patent/JPH0627872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は斜面に於る平面投影雨量を計測するための装置
に関するものである。
Description: TECHNICAL FIELD The present invention relates to an apparatus for measuring the amount of projected rainfall on a slope.

(従来の技術) 降水量の計測には雨量計が用いられている。その雨量計
は周知の通り口径20cmの円筒型を有し、内蔵の雨量ます
などにより受けた降水の量を定時に計測する。即ち計測
地に於て周囲に流出せずかつ周囲からの流入がないと仮
定した場合、そこに雨水が何mm溜るかを見るものであ
る。
(Prior Art) A rain gauge is used to measure precipitation. As is well known, the rain gauge has a cylindrical shape with a diameter of 20 cm, and measures the amount of precipitation received by a built-in rain gauge on a regular basis. That is, if it is assumed that there is no outflow and no inflow from the surroundings at the measurement site, it is to see how many millimeters of rainwater accumulate there.

従来行なわれた降水量の計測は殆んど上記の雨量計によ
って来たが、山地など斜面雨量の計測値は、実際を反映
していないのではないかという指摘がある。例えば雨量
計の示す計測値はさほどでもないのに河川の増水量が異
常であるとか、鉄砲水が起ったとかいう、現象との不整
合に基づいた指摘である。このような従来の雨量計のデ
ータで問題とされるのは、山地等斜面に於る計測値が特
に過少と考えられることである。
Most of the conventional measurements of precipitation have come from the above-mentioned rain gauges, but it is pointed out that the measured values of rainfall on slopes such as mountains may not reflect the actual situation. For example, it is a point based on inconsistency with phenomena such as abnormal increase of river water or flash flood, although the measured value of rain gauge is not so high. A problem with such conventional rain gauge data is that the measured values on slopes such as mountains are considered to be particularly small.

この問題について気象学者や気象観測に携わる者或いは
本件出願人のような気象器械の製造に携わる者などは従
来から様々な研究を行ない、その原因究明に努めた来
た。各種の論文も発表されており、機器の改良も試みら
れているが未だ納得のいく答えは得られていない。その
中で、斜面雨量の誤差の第1の原因と考えられているの
は風の影響である。気象現象として雨に多少の風を伴な
うことはむしろ普通であり、特に山地ではその傾向が強
いからである。この事実が、従来の計測値過少の原因を
風と仮定する説の根拠である。このような立場の者は雨
量計を風の方向へ向けること、つまり雨量計開口面を風
向に正対させることを提唱して種々実験を行なってい
る。
A meteorologist, a person who is involved in meteorological observation, or a person who is involved in the manufacture of meteorological instruments, such as the applicant of the present invention, has carried out various studies on this problem, and has been trying to find the cause. Various papers have been published and attempts have been made to improve the equipment, but no convincing answer has been obtained yet. Among them, the effect of wind is considered to be the first cause of the error in slope rainfall. It is rather common for rain to be accompanied by some wind as a meteorological phenomenon, especially in mountainous areas. This fact is the basis for the conventional theory that the cause of insufficient measurement values is the wind. Those in this position have proposed various experiments by proposing to direct the rain gauge toward the wind, that is, to make the rain gauge opening face the wind direction.

しかしながら風の影響があるとすればそれは平地でも同
じ筈である。けれども、平地雨量の風向による誤差が問
題となるほど大きい、という指摘は多くなく、またその
事実もないようである。この点は第1図に示す如く、雨
量計Aの開口面Bと計測面である平地Cとが平行である
ことにより、雨の降る方向Dに拘らず、開口面Bの平地
Cへの投影である受水面積Sは常に一定という事実に
よって説明できると考えられる。実際にも多少風下部分
で捕捉率が低下するものの平地では風による受水量の違
いはないと考えて良い。
However, if there is a wind effect, it should be the same on flat land. However, there are not many indications that the error due to the wind direction of the level rainfall is so large that it is a problem, and it seems that there is no such fact. As shown in FIG. 1, since the opening surface B of the rain gauge A and the flat surface C that is the measurement surface are parallel to each other, the projection of the opening surface B onto the flat surface C is prevented regardless of the direction D of rain. It is thought that this can be explained by the fact that the water receiving area S O is always constant. Actually, although the capture rate slightly decreases in the leeward part, it can be considered that there is no difference in the amount of water received by the wind on flat land.

ところが、平地に於るのと同じ方法により雨量計を斜面
Eに設置した場合は、風向によって受水面積が変化する
現象が起る(第2図)。雨量計Aの開口面Bと計測面で
ある斜面Eとが平行でないため、開口面Bの投影形状が
風向により相違し受水面積S′、S″…は、無風時を最
大に、風があれば減少するからである。
However, when the rain gauge is installed on the slope E by the same method as in the flat ground, the water receiving area changes depending on the wind direction (Fig. 2). Since the opening surface B of the rain gauge A and the slope E that is the measurement surface are not parallel, the projected shape of the opening surface B differs depending on the wind direction, and the water receiving areas S ′, S ″ ... It will decrease if there is.

以上の事実は、水文解析では平地、斜面を問わず平面投
影雨量が重要であることを示唆する、と理解することが
できる。ここで平面投影雨量(R)は、第4図に示す
ように斜面Eでの受水面積を水平面に投影した場合にお
ける雨量である。
It can be understood that the above facts suggest that the plane projection rainfall is important in hydrological analysis regardless of the level or slope. Here, the plane projection rainfall amount (R P ) is the rainfall amount when the water receiving area on the slope E is projected on the horizontal plane as shown in FIG.

本発明者はこのような考究の結果、斜面降水量の計測に
於ても、平地に於る雨量計の場合と同様に、開口面Bの
斜面への投影である受水面積Sは、第3図に示すように
風向に拘らず常に一定となるようにあるべきではないか
との結論に達した。但し雨量計を斜面に垂直にする方法
は、その方向以外の降雨に対して有効面積を減じるの
で、避けなければならない。
As a result of such a study, the present inventor has found that when measuring rainfall on a slope, the water receiving area S, which is a projection of the opening B onto the slope, is the same as in the case of a rain gauge on a flat land. As shown in Figure 3, it was concluded that it should always be constant regardless of the wind direction. However, the method of making the rain gauge vertical to the slope must be avoided because it reduces the effective area for rainfall other than that direction.

(技術的課題) 本発明は前記の知見に基ずいてなされたもので、その課
題とするところは斜面に於る水文解析の基礎データとし
て必要な平面投影雨量を可能な限りその実情に則して把
握し、ひいては現象面とのキャップをなくすことであ
る。
(Technical problem) The present invention has been made on the basis of the above-mentioned findings, and the problem is that the plane projection rainfall required as basic data for hydrological analysis on a slope is based on the actual situation as much as possible. It is to remove the cap from the phenomenon side.

(技術的手段) 前記課題を解決するため本発明は、所定口径を有し、そ
の中に捕捉される降水量を計測するための円筒体を備
え、前記円筒体はその中心軸が鉛直をなすように斜面に
設置され、円筒体上端に、開口面が斜面と実質的に平行
をなすように形成された受水口を設けるという手段を講
じたものである。
(Technical Means) In order to solve the above problems, the present invention comprises a cylindrical body for measuring the amount of precipitation captured therein, which has a predetermined diameter, and the central axis of the cylindrical body is vertical. As described above, a means for providing a water inlet which is installed on a slope and whose opening surface is formed to be substantially parallel to the slope is provided at the upper end of the cylinder.

(作用) 前記の如く構成された本発明に係る計測装置では、第3
図に示されるように受水口と平行な斜面を有するので、
受水口が斜面に投影された受水面積Sは降水の方向によ
らず一定である。受水面積Sが、斜面斜度に応じて平面
より増すのは、斜面の単位面積を考えるとき、それを平
面に投影した面積より大になることを反映している。
(Operation) In the measuring device according to the present invention configured as described above,
As it has a slope parallel to the water inlet as shown in the figure,
The water receiving area S in which the water receiving port is projected on the slope is constant regardless of the direction of precipitation. The fact that the water receiving area S increases from the flat surface in accordance with the slope inclination reflects that when the unit area of the slope is considered, it becomes larger than the area projected on the flat surface.

本発明に係る計測装置による平面投影雨量Rは、第4
図に示されるように受水口2に捕捉される雨量をR、斜
面斜度30°、降雨傾斜角45°とすれば、Rcos 30°とあ
らわせる。このRcos 30°であらわされる量Rは受水
口の傾斜角が0°のとき、つまり平地雨量計の場合と同
一である。これからも前述の知見の正しいことが裏付け
られる。
The plane projection rainfall amount R P by the measuring device according to the present invention is the fourth
As shown in the figure, if the amount of rainfall captured in the water inlet 2 is R, the slope inclination is 30 °, and the rainfall inclination angle is 45 °, it can be expressed as Rcos 30 °. The amount R P represented by this R cos 30 ° is the same as when the inclination angle of the water inlet is 0 °, that is, in the case of a flatland rain gauge. The fact that the above findings are correct will be supported from now on.

これに対し平面雨量計による斜面降水量の計測の場合、
第4図によれば、受水面積Sの開口面に於る水平雨量
をR、傾斜角、斜度は前記と同じとすると斜面雨量R
は、 R=R・cos 45°・sec 15°=0.732R 平面投影雨量Rは、 R=R・cos 30°=0.634R ということになり、実に3分の2未満の雨量しか捕捉で
きていないことが分る。なお風速と降雨の傾斜角との関
係は第7図に示す通りであり、斜面の斜度と降雨傾斜角
の変化による従来の雨量計の斜面最小捕捉率は次表の通
りになる。
On the other hand, in the case of slope rainfall measurement using a flat rain gauge,
According to FIG. 4, assuming that the horizontal rainfall on the opening surface of the water receiving area S O is R O , the inclination angle, and the slope are the same as those described above, the rainfall R
S is R S = R O · cos 45 ° · sec 15 ° = 0.732R O Plane projection rainfall R P is R P = R S · cos 30 ° = 0.634R O , which is actually two-thirds It can be seen that the amount of rainfall that is less than is captured. The relationship between the wind speed and the inclination angle of rainfall is as shown in Fig. 7, and the minimum catch rate of the slope of the conventional rain gauge according to the change of the slope of the slope and the inclination angle of rainfall is as shown in the following table.

(実施例) 以下図面を参照して説明する。 (Example) Hereinafter, description will be given with reference to the drawings.

第5図に本発明に係る計測装置が例示されており、1は
内径20cmの円筒体、2はその上端に形成された受水口
で、円筒体1の中心軸と直交する平面から角度θで立上
がる斜度を持っている。該角度θはこの計測装置が設置
される前述の斜面Eの斜度を代表するような角度に合わ
せて設定される。本発明の装置は、受水口2の開口面が
斜面Eと実質的に平行となるように構成されることを特
徴とする。この場合実質的な平行とは、或る場合にはこ
の斜面全体を代表すると考えられる仮想的な角度であ
り、また或る場合には計測地の周囲の傾斜の平均値であ
るような斜度を設定して得られる状態であって、必らず
しも計測地と受水口2の平行を意味する訳ではない。
A measuring device according to the present invention is illustrated in FIG. 5, 1 is a cylindrical body having an inner diameter of 20 cm, 2 is a water inlet formed at the upper end thereof, and at an angle θ from a plane orthogonal to the central axis of the cylindrical body 1. It has a rising slope. The angle θ is set according to an angle representative of the slope of the slope E on which the measuring device is installed. The device of the present invention is characterized in that the opening surface of the water receiving port 2 is configured to be substantially parallel to the slope E. In this case, “substantially parallel” is a virtual angle that is considered to represent the entire slope in some cases, and in some cases is an average value of the slope around the measurement site. Is a state obtained by setting, and does not necessarily mean that the measurement site and the water inlet 2 are parallel to each other.

このような受水口2を設けるには、既存の雨量計の開口
縁に取付けられる、アダプタ3を使用することができ
る。その例は第6図に例示されており、例示のものは受
水口2の先端内周部4に嵌合する内周部6を持った接続
環5を下端に一体に有し、受水口2の下に係止する止め
金7を前記接続環5に止めねじ8により取付けたもの
で、着脱可能な構造を有する。このアダプタ式の受水口
によれば、受水口開口面の角度θの異なるものを多種準
備しておき、斜面に応じて選択でき、向きの設定も容易
であるから実施し易い。
To provide such a water inlet 2, an adapter 3 attached to the opening edge of an existing rain gauge can be used. An example thereof is illustrated in FIG. 6, and the illustrated one integrally has a connecting ring 5 having an inner peripheral portion 6 fitted to the tip inner peripheral portion 4 of the water inlet 2 at the lower end, A stopper plate 7 that is locked below is attached to the connecting ring 5 with a set screw 8 and has a detachable structure. According to this adapter type water receiving port, various types having different angles θ of the water receiving port opening surface can be prepared, and can be selected according to the slope, and the orientation can be easily set.

前記第5図に示されたものに於て、9は受水口より所要
高さ下位に配置される漏斗、10はそれから雨水を転倒ま
す11を導入する濾水タンク、12、13は転倒ます11からの
排水を落す排水口、14、15は転倒ます11左右のストッ
パ、16はそれらの基台、17は脚を示す。
In the one shown in FIG. 5, 9 is a funnel which is arranged at a required height lower than the water receiving port, 10 is the rainwater, and then rainwater is tumbled, 11 is a drainage tank, 12 and 13 are tumbled. Drainage outlets for draining water from, 14 and 15 fall down 11 Left and right stoppers, 16 are their bases, 17 are legs.

(効果) 本発明は以上の如く構成されかつ作用するものであるか
ら、斜面に於る平面投影雨量がその斜度に応じた度合で
把握され、斜面降水量の実態を把握し易く、現象面と計
測値とのギャップをなくすことができるので、山地の強
雨等による被害の防止その他に顕著な効果を奏する。
(Effects) Since the present invention is configured and operates as described above, the plane projection rainfall on a slope is grasped at a degree according to the inclination, and it is easy to grasp the actual state of the rainfall on the slope, and Since it is possible to eliminate the gap between the measured value and the measured value, it has a remarkable effect in preventing damage due to heavy rain in the mountains.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に係る計測装置の実施例に関するもので第
1図、第2図、第3図は従来の雨量計乃至本発明に係る
計測装置の理解のための説明図、第4図は従来の雨量計
と本発明に係る計測装置による計測値の差を示す説明
図、第5図は本発明に係る計測装置の断面図、第6図は
変形例の断面図、第7図は風速と降雨の傾斜角との関係
を示すグラフである。
The drawings relate to an embodiment of a measuring apparatus according to the present invention, and FIGS. 1, 2, and 3 are explanatory views for understanding a conventional rain gauge or the measuring apparatus according to the present invention, and FIG. Explanatory diagram showing the difference between the measured values of the rain gauge and the measuring device according to the present invention, FIG. 5 is a sectional view of the measuring device according to the present invention, FIG. 6 is a sectional view of a modified example, and FIG. It is a graph which shows the relationship with the inclination angle of rainfall.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】所定口径を有し、その中に捕捉される降水
量を計測するための円筒体を備え、前記円筒体はその中
心軸が鉛直をなすように斜面に設置され、円筒体上端
に、開口面が斜面と実質的に平行をなすように形成され
た受水口を有することを特徴とする斜面に於る平面投影
雨量の計測装置。
1. A cylinder having a predetermined diameter and for measuring the amount of precipitation trapped therein, said cylinder being installed on an inclined surface such that its central axis is vertical, and the cylinder upper end. An apparatus for measuring a projected rainfall on a slope, characterized in that it has a water inlet whose opening surface is formed to be substantially parallel to the slope.
【請求項2】円筒体上端の開口面が、設置斜面を代表す
る傾斜角度をなしている請求項第1項記載の斜面に於る
平面投影雨量の計測装置。
2. The apparatus for measuring rainfall on a flat surface according to claim 1, wherein the opening surface at the upper end of the cylindrical body forms an inclination angle representative of the installation slope.
【請求項3】円筒体は、その中心軸と直交する開口面に
取付けられ、設置斜面と実質的に平行をなす角度の受水
口を持ったアダプタを有する請求項第1項記載の斜面に
於る平面投影雨量の計測装置。
3. The inclined surface according to claim 1, wherein the cylindrical body has an adapter attached to an opening surface orthogonal to the central axis of the cylindrical body and having a water inlet whose angle is substantially parallel to the installation inclined surface. A device for measuring the amount of rainfall projected on a plane.
JP32187190A 1990-11-26 1990-11-26 Measuring device of plane projected rainfall on a slope Expired - Lifetime JPH0627872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32187190A JPH0627872B2 (en) 1990-11-26 1990-11-26 Measuring device of plane projected rainfall on a slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32187190A JPH0627872B2 (en) 1990-11-26 1990-11-26 Measuring device of plane projected rainfall on a slope

Publications (2)

Publication Number Publication Date
JPH04191621A JPH04191621A (en) 1992-07-09
JPH0627872B2 true JPH0627872B2 (en) 1994-04-13

Family

ID=18137336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32187190A Expired - Lifetime JPH0627872B2 (en) 1990-11-26 1990-11-26 Measuring device of plane projected rainfall on a slope

Country Status (1)

Country Link
JP (1) JPH0627872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077511A1 (en) * 2012-11-14 2014-05-22 주식회사 대양계기 Electronic bucket-type precipitation meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039713A (en) * 2006-08-10 2008-02-21 Sogo Bosai System Kenkyusho:Kk Rainfall gaging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077511A1 (en) * 2012-11-14 2014-05-22 주식회사 대양계기 Electronic bucket-type precipitation meter
US9547106B2 (en) 2012-11-14 2017-01-17 Daeyang Instrument Co., Ltd. Electronic bucket-type precipitation meter

Also Published As

Publication number Publication date
JPH04191621A (en) 1992-07-09

Similar Documents

Publication Publication Date Title
Herwitz et al. Three-dimensional modeling of canopy tree interception of wind-driven rainfall
Hamilton Rainfall sampling on rugged terrain
JP6936538B2 (en) Falling rain gauge
CN107121074A (en) A kind of method that length of dry sand of tailings reservoir measurement is carried out using machine vision
CN105547241B (en) A kind of measurement method with laser range finder receiver
US7066021B1 (en) Runoff rain gauge
JPH0627872B2 (en) Measuring device of plane projected rainfall on a slope
Herwitz et al. Spatial variability in the interception of inclined rainfall by a tropical rainforest canopy
Hyson et al. Algebraic and electronic corrections of measured uw covariance in the lower atmosphere
Lacy Observations with a directional raingauge
Smallshaw Some precipitation‐altitude studies of the Tennessee Valley Authority
CN109269469B (en) Underwater terrain measuring device and method
CN107765034A (en) A kind of detector tested wind direction and can taken shelter from the thunder
CN105526976B (en) Flow measurement device and method
Osborn et al. Distribution of precipitation on rugged terrain in central Arizona
Franco et al. Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans
JP6326155B1 (en) Ground tilt confirmation method using ground inclinometer
CN113959397A (en) Method, equipment and medium for monitoring attitude of electric power tower
KR100929237B1 (en) Measuring apparatus of heights
Zhiwen et al. Observations of several characteristics of aeolian sand movement in the Taklimakan Desert
US5918278A (en) Raingage for providing improved measurement of local rainfall
CN209894282U (en) Sponge city river water level collection system
US5918277A (en) Apparatus for measuring directional rainfall or snow
Johnson Determination of Kutter's n for sewers partly filled
CN205484873U (en) It is fixed open -air from device of counting rain gage bucket