JPH06277856A - Spot welding electrodes - Google Patents

Spot welding electrodes

Info

Publication number
JPH06277856A
JPH06277856A JP35752091A JP35752091A JPH06277856A JP H06277856 A JPH06277856 A JP H06277856A JP 35752091 A JP35752091 A JP 35752091A JP 35752091 A JP35752091 A JP 35752091A JP H06277856 A JPH06277856 A JP H06277856A
Authority
JP
Japan
Prior art keywords
cap
welded
spot welding
electrode
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35752091A
Other languages
Japanese (ja)
Other versions
JP2509497B2 (en
Inventor
Makoto Tan
良 丹
Eiichi Shigekura
栄一 重倉
Shigeo Kidachi
茂夫 木立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3357520A priority Critical patent/JP2509497B2/en
Publication of JPH06277856A publication Critical patent/JPH06277856A/en
Application granted granted Critical
Publication of JP2509497B2 publication Critical patent/JP2509497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PURPOSE:To obtain the electrodes suitable for spot welding of metallic sheets having high electric conductivity and heat conductivity such as aluminum and an aluminum alloy. CONSTITUTION:Metallic materials to be welded having high electric conductivity and heat conductivity such as the aluminum alloy are superposed on each other and these are held between a couple of upper and lower electrodes 1. These electrodes 1 are formed by fitting a titanium cup-shaped cap 4 integrally on a thread part 3 of the tip of a Cu-Cr alloy electrode main body 2 with the vertex surface 6 of a vertex wall 5 of the cap 4 as a part of the spherical surface and an indentation 8 having a round hole shape is formed on the central part of the vertex surface 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気伝導度、熱伝導度の
大きな金属材料のスポット溶接を行うために用いられる
電極に係り、特に小電流溶接に好適な電極構造に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode used for spot welding a metal material having high electric conductivity and thermal conductivity, and more particularly to an electrode structure suitable for small current welding.

【0002】[0002]

【従来技術および解決しようとする課題】スポット溶接
とは、二枚の金属板を重ね合せ、これを一対の丸棒状の
電極で挟持加圧して通電し、発生したジュール熱により
金属板を加熱溶融させて圧接する方法である。このスポ
ット溶接法によって電気伝導度、熱伝導度の大きなアル
ミニウム、アルミニウム合金、マグネシウム合金等の金
属板の溶接を行う場合には、ジュール熱の発生量が少な
く、しかも発生した熱が熱伝導性の良好な被溶接材を通
じて逸散してしまうため、鋼板等の溶接に比して大電
流、大きな加圧力(電極による)を必要とし、しかも短
時間で溶接を完了しなければならない。したがって、大
型トランスが必要であり、また大きな加圧力に対応して
作業性を損う大型スポット・ガンを採用しなければなら
ず、溶接機のポータブル化は難しかった。
2. Description of the Related Art Spot welding is a technique in which two metal plates are superposed, sandwiched between a pair of rod-shaped electrodes and pressed to energize, and the Joule heat generated heats and melts the metal plates. This is a method of pressure welding. When welding a metal plate such as aluminum, aluminum alloy, magnesium alloy, etc. having high electric conductivity and thermal conductivity by this spot welding method, the amount of Joule heat generated is small and the generated heat has a high thermal conductivity. Since it dissipates through a good material to be welded, it requires a large current and a large pressing force (due to the electrode) as compared with the welding of steel plates and the like, and the welding must be completed in a short time. Therefore, a large transformer is required, and a large spot gun that impairs workability in response to a large pressing force must be adopted, which makes it difficult to make the welding machine portable.

【0003】さらに、大電流を用いるにしても、多点ス
ポット溶接を行うに当っては、被溶接材の良好なる電気
伝導度に起因して、既溶接完了点を経由する分流が生
じ、現溶接箇所の溶接が健全に行われないという不具合
もあった。
Further, even when a large current is used, in performing multi-point spot welding, due to the good electric conductivity of the material to be welded, there is a shunt current passing through the already completed welding point, and There was also a problem that welding at the welded part was not performed properly.

【0004】このような不具合を解消するために発明さ
れたものとして、特開昭57-56175号公報がある。該公報
に記載された発明では、電極の先端と被溶接材との間
に、該被溶接材より熱伝導度および電気伝導度が低く融
点温度の高い金属材料からなる当て金を介在させてい
た。
Japanese Patent Application Laid-Open No. 57-56175 discloses an invention invented to solve such a problem. In the invention described in this publication, a metal plate made of a metal material having a lower thermal conductivity and electric conductivity than the material to be welded and a high melting point temperature is interposed between the tip of the electrode and the material to be welded. .

【0005】前記公報の発明では、被溶接材より熱伝導
度および電気伝導度が低い金属材料製当て金にジュール
熱を集中して発生させ、この当て金を高温に加熱させる
ことにより、熱伝導度および電気伝導度の高い被溶接材
にナゲットを形成してスポット溶接を行うようになって
いるが、この当て金は均一な厚みになっているため、両
電極間を通電して加圧したスポット溶接状態では、当て
金周縁部直下の被溶接材部分はその外方に向い流れてそ
の部分の接触面圧が低下し、当て金中央部の接触面圧が
最も大きくなって、電流が集中し、この当て金中央部に
接した被溶接材部分が過熱状態となり、ナゲットの径が
小さくなって溶接強度が低下し、また被溶接材部分の過
熱によってピックアップ現象(被溶接材が電極に付着す
る現象)が生じ、当て金の連続打点性が低下する。
In the invention of the above-mentioned publication, Joule heat is concentrated and generated in a metal material metal plate having lower thermal conductivity and electric conductivity than the material to be welded, and the metal plate is heated to a high temperature to achieve heat conduction. The nugget is formed on the material to be welded, which has a high degree of electrical conductivity, and spot welding is performed.However, since this metal has a uniform thickness, electricity was applied between both electrodes and pressure was applied. In spot welding, the part of the material to be welded immediately below the periphery of the pad metal flows outward and the contact surface pressure at that part decreases, and the contact surface pressure at the center part of the pad becomes the largest and the current concentrates. However, the part of the material to be welded that is in contact with the center of the pad becomes overheated, the diameter of the nugget becomes smaller and the welding strength decreases, and the overheating of the part of the material to be welded causes a pick-up phenomenon Phenomenon) occurs, Continuous RBI of the gold Te is reduced.

【0006】[0006]

【課題を解決するための手段および作用効果】本発明は
このような難点を克服したスポット溶接用電極の改良に
係り、被溶接材より熱伝導度および電気伝導度が低くか
つ融点温度の高い材料よりなるコップ形のキャップを電
極本体の先端に被嵌させてなり、該キャップは、その頭
頂面が球面に近い形状に形成されるとともに、頭頂壁の
肉厚が中央部で大きく、周辺部で小さく形成され、かつ
前記キャップの頭頂面中央に丸穴凹みが形成されたこと
を特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to an improvement in a spot welding electrode that overcomes the above problems, and it is a material having a lower thermal conductivity and electrical conductivity than the material to be welded and a high melting point temperature. A cup-shaped cap made of a metal is fitted on the tip of the electrode body, and the cap has a top surface close to a spherical surface, and the top wall has a large wall thickness in the central portion and a peripheral wall in the peripheral portion. It is characterized in that it is formed small and a round hole is formed in the center of the top surface of the cap.

【0007】本発明は前記したように被溶接材より熱伝
導度および電気伝導度が低くかつ融点温度の高い材料よ
りなるコップ形のキャップを電極本体の先端に被嵌した
ため、アルミニウム合金やマグネシウム合金等の材質の
比較的薄い2枚の重合せ被溶接材に1対の電極本体を先
端のキャップを挟み、該1対の電極を介して2枚の被溶
接材に通電を行うと、電気抵抗の大きな前記キャップの
抵抗発熱と、該キャップと被溶接材との接触抵抗発熱と
で、前記被溶接材における両キャップで挟まれた部分が
高温に加熱されて、該挟持部分の電気抵抗が大きくな
り、該被溶接材部分に高温のナゲットが生じ、所要のス
ポット溶接が遂行される。
According to the present invention, as described above, the cup-shaped cap made of a material having a lower thermal conductivity and a higher electric conductivity than the material to be welded and a higher melting point temperature is fitted on the tip of the electrode body. When a pair of electrode bodies are sandwiched by two pairs of relatively thin materials to be welded, such as a pair of electrodes, and a cap at the tip is sandwiched, and the two materials to be welded are energized through the pair of electrodes, the electrical resistance The resistance heat generation of the cap having a large size and the contact resistance heat generation of the cap and the material to be welded heat the portion of the material to be welded between both caps to a high temperature, and the electrical resistance of the sandwiched portion is large. Then, a high temperature nugget is generated in the welded material portion, and the required spot welding is performed.

【0008】また本発明では、前記キャップの頭頂面を
球面に近い形状に形成するとともに、頭頂壁の肉厚を中
央部で大きく周辺部で小さく形成したため、被溶接材と
の接触面圧が大きなキャップ頭頂面中央部において電流
が集中して加熱状態になるところを、このキャップ頭頂
面中央部の厚肉化によって、前記被溶接材における両キ
ャップで挟まれた部分の電流密度を均等化し、局部過熱
のない状態のナゲットを得ることができる。
Further, according to the present invention, the top surface of the cap is formed into a shape close to a spherical surface, and the wall thickness of the top wall is formed to be large in the central portion and small in the peripheral portion, so that the contact surface pressure with the material to be welded is large. Where the current concentrates in the central portion of the cap top surface and becomes a heating state, by thickening the central portion of the cap top surface, the current density of the portion sandwiched between both caps in the material to be welded is made uniform, You can get the nugget without overheating.

【0009】このように本発明を用いてスポット溶接を
行えば、局部過熱のない高温のナゲットを被溶接材にお
ける両キャップで挟まれた部分に発生させることがで
き、しかも、被溶接材よりも融点温度の高い材料よりな
るコップ形のキャップを電極本体の先端に被嵌させたた
め、被溶接材が電極に付着するピックアップや、電極に
付着した被溶接材が電極内部に拡散し浸透するエロージ
ョンを抑制し、良好な溶接部分を得ることができる。
By performing spot welding using the present invention as described above, a high-temperature nugget without local overheating can be generated in the portion of the material to be welded which is sandwiched between the two caps, and moreover than the material to be welded. A cup-shaped cap made of a material with a high melting point temperature was fitted on the tip of the electrode body, so there was a pick-up where the material to be welded adhered to the electrode and an erosion where the material to be welded adhered to the electrode diffused and penetrated into the electrode It is possible to suppress and obtain a good welded portion.

【0010】[0010]

【実 施 例】以下第1図ないし第3図に図示された本
発明の一実施例について説明する。図1、図2は、アル
ミニウム合金の如き電気伝導度および熱伝導率の大きい
金属材料で形成された板材である被溶接材12,13を重合
せ、これを上、下の電極1,1で挟みつけた状態を示し
ている。電極1は、第3図に図示されるように、汎用電
極材(例、Cu −Cr 合金)で形成された電極本体2の
先端部に形成されたネジ3部に、被溶接材12,13に比し
て電気伝導度および熱伝導率が小さく、融点温度の高い
チタン(Ti )で形成されたコップ形のキャップ4を螺
嵌することによって構成されている。
EXAMPLE An example of the present invention illustrated in FIGS. 1 to 3 will be described below. 1 and 2 show that the materials 12 and 13 to be welded, which are plate materials made of a metal material having a high electric conductivity and a high thermal conductivity, such as an aluminum alloy, are polymerized, and the upper and lower electrodes 1 and 1 are combined with each other. It shows the sandwiched state. As shown in FIG. 3, the electrode 1 is made of a general-purpose electrode material (eg, Cu-Cr alloy). It is configured by screwing a cup-shaped cap 4 formed of titanium (Ti) having a low melting point temperature and a low electric conductivity and a low thermal conductivity.

【0011】また、キャップ4の頭頂面6は球面の一部
として形成され(R形と称する)、その結果頭頂壁5の
肉厚は中央部7で大きく周辺部9で小さくなっており、
かつ頭頂壁5の外表面、すなわち頭頂面6の中央部に丸
穴形状の凹み8が形成されている(電極本体2の先端は
F形電極形状になされている)。
Further, the crown surface 6 of the cap 4 is formed as a part of a spherical surface (referred to as R shape), and as a result, the wall thickness of the crown wall 5 is large in the central portion 7 and small in the peripheral portion 9,
Moreover, a round hole-shaped recess 8 is formed on the outer surface of the crown wall 5, that is, in the center of the crown surface 6 (the tip of the electrode body 2 has an F-shaped electrode shape).

【0012】図1ないし図3に図示された実施例は前記
したように構成されているので、軟鋼板の溶接と同程度
の電流条件(小電流)で被溶接材12,13に通電を行う
と、被溶接材12,13の接触界面Aで接触抵抗発熱が生じ
るのは勿論であるが、電気抵抗の大きなチタンで形成さ
れたキャップ4,4と被溶接材12,13トの接触界面B,
Bで大きな接触抵抗発熱が生じ、キャップ4自体も抵抗
発熱することにより、接触界面B,Bで発生した熱が、
矢印Cで示すように、良好な熱伝導体である被溶接材1
2,13に効率良く伝えられる。被溶接材が軟鋼板であれ
ば、接触界面Aで生ずる接触抵抗発熱によって該界面A
の近傍にナゲット(溶融部)が生じるはずである。しか
しながら、この例では被溶接材12,13がアルミニウム合
金の如き電気伝導度および熱伝導率の大きな材料で形成
されているため、接触界面Aで生じる発生熱のみではナ
ゲットが生ずることはなく、接触界面Bから伝えられる
熱(矢印C)によってキャップ4,4間に挟まれた部分
が温度上昇し、それに伴って該部分の電気抵抗が大きく
なり、被溶接材12,13(キャップ4,4に挟まれた部
分)の抵抗発熱量が増大することともあいまって、被溶
接材12,13が円柱状に溶融し、第2図に示すようなナゲ
ット14が生ずる。このとき、被溶接材12,13に比してチ
タン製キャップ4の融点温度が十分高いため、キャップ
4の溶融が生じることはない。
Since the embodiment shown in FIGS. 1 to 3 is constructed as described above, the materials 12 and 13 to be welded are energized under the same current condition (small current) as that for welding mild steel plates. As a matter of course, contact resistance heat generation occurs at the contact interface A between the materials 12 and 13 to be welded, but the contact interface B between the caps 4 and 4 and the materials 12 and 13 to be welded which are formed of titanium having a large electric resistance. ,
A large amount of contact resistance heat is generated at B, and the cap 4 itself also generates resistance heat, so that the heat generated at the contact interfaces B and B is
As indicated by arrow C, the material to be welded 1 is a good heat conductor.
Can be efficiently transmitted to 2 and 13. If the material to be welded is a mild steel sheet, the contact interface A generates heat at the contact interface A due to contact resistance heat generation.
A nugget (melted part) should be generated in the vicinity of. However, in this example, since the materials to be welded 12 and 13 are made of a material having a large electric conductivity and a high thermal conductivity such as an aluminum alloy, a nugget does not occur only by the heat generated at the contact interface A, and the contact The heat (arrow C) transmitted from the interface B raises the temperature of the portion sandwiched between the caps 4 and 4, and accordingly the electric resistance of the portion increases, so that the materials to be welded 12 and 13 (on the caps 4 and 4). Along with an increase in the resistance heating amount of the sandwiched portion), the materials to be welded 12 and 13 are melted in a cylindrical shape, and a nugget 14 as shown in FIG. 2 is produced. At this time, since the melting point temperature of the titanium cap 4 is sufficiently higher than that of the materials 12 and 13 to be welded, melting of the cap 4 does not occur.

【0013】ところで、スポット溶接用電極に要求され
る重要な条件は連続打点性の良好なることである。アル
ミニウム合金等の被溶接材12,13に比して電気伝導度、
熱伝導率の小さなキャップ4用材料として炭素鋼、ステ
ンレス鋼、チタン(Ti )等を上げ得るが(表1参
照)、連続打点性を考慮すればチタンが最も適してい
る。チタンは、融点が高い、熱膨張係数が小さい、熱伝
導率が低いという特性の他に、適当に大きな強度、靱性
を有しており、チタン製キャップ4を用いることによっ
てピックアップ(被溶接材が電極に付着する現象)、エ
ロージョン(電極に付着した被溶接材が電極内部に拡散
浸透し合金化する現象)を抑制し、良好な連続打点性を
確保することができる。
By the way, an important condition required for the spot welding electrode is that the continuous spotting property is good. Electrical conductivity compared to materials 12 and 13 to be welded such as aluminum alloys,
Carbon steel, stainless steel, titanium (Ti) and the like can be used as the material for the cap 4 having a small thermal conductivity (see Table 1), but titanium is most suitable in view of the continuous hitting property. Titanium has properties such as a high melting point, a small thermal expansion coefficient, and a low thermal conductivity, as well as appropriately high strength and toughness. Titanium has a cap 4 made of titanium. Adhesion to electrodes) and erosion (a phenomenon in which the material to be welded adhered to the electrodes diffuses and permeates into the electrodes to form an alloy), and good continuous dot-forming properties can be secured.

【0014】[0014]

【表1】 [Table 1]

【0015】また、キャップ4の形状はその連続打点性
を向上させる上で重要である。キャップ4の頭頂面は球
面に近い形状、すなわちR型になされるが、被溶接材1
2,13との接触面圧は頭頂面中央部において最も大き
く、通電によってキャップ4、被溶接材12,13が温度上
昇してそれ等が熱膨張すると、その傾向がますます顕著
になる。そのため、キャップ4の頭頂面中央部に電流が
集中し、該中央部が過熱状態になり、小さな面積範囲で
集中的に被溶接材12,13に熱が投入される結果、ナゲッ
ト14の径が小さくなるとともにナゲット14も過熱状態に
なってピックアップ現象が生じ、結果的にキャップ4の
連続打点性が低下する傾向があるが、本実施例では、チ
タン製キャップ4の頭頂壁肉厚を中央部で大きく、周辺
部で小さく形成することによってこの問題を解決した。
The shape of the cap 4 is important for improving the continuous hitting property. The top surface of the cap 4 has a shape close to a spherical surface, that is, an R shape.
The contact surface pressure with 2 and 13 is the largest in the central part of the crown surface, and when the temperature of the cap 4 and the materials to be welded 12 and 13 rises due to energization and they thermally expand, this tendency becomes more and more remarkable. Therefore, the current is concentrated in the central portion of the top surface of the cap 4, the central portion is overheated, and heat is intensively applied to the welded materials 12 and 13 in a small area range. As a result, the diameter of the nugget 14 is reduced. As the size of the cap 4 becomes smaller, the nugget 14 also becomes overheated and a pickup phenomenon occurs, and as a result, the continuous hitting property of the cap 4 tends to deteriorate. However, in this embodiment, the thickness of the top wall of the titanium cap 4 is set at the center. This problem was solved by forming a large size on the periphery and a small size on the periphery.

【0016】本実施例は、通電抵抗が肉厚の大きさに比
例することを利用したものであり、頭頂壁5の肉厚が均
一である場合に比して頭頂壁5の中央部7における電流
密度が低下し、周辺部9における電流密度が増大する。
その結果、頭頂壁中央部7に集中しがちな電流が頭頂壁
5全体に分散され、頭頂面6と被溶接材12,13との接触
界面全体に均等な接触抵抗熱が生じ、被溶接材12,13へ
の入熱が大きな面積範囲で均等に行われ、局部過熱のな
い状態で図2に図示の如き大きなナゲット径を得ること
ができる。
This embodiment utilizes the fact that the energization resistance is proportional to the size of the wall thickness. Compared to the case where the wall thickness of the crown wall 5 is uniform, the central portion 7 of the crown wall 5 is larger. The current density decreases and the current density in the peripheral portion 9 increases.
As a result, the electric current that tends to concentrate in the central portion 7 of the crown wall is dispersed in the entire crown wall 5, and uniform contact resistance heat is generated in the entire contact interface between the crown surface 6 and the materials 12 and 13 to be welded. The heat input to 12 and 13 is evenly performed in a large area range, and a large nugget diameter as shown in FIG. 2 can be obtained without local overheating.

【0017】また、頭頂面6における電流密度が中央部
7から周辺部9に亘って均等化することにより、被溶接
材12,13の局部過熱が防止され、鋼に比して熱膨張係数
の大きなアルミニウム合金、マグネシウム合金等で形成
された被溶接材12,13が溶融熱膨張してキャップ4の頭
頂面6との間で増大する接触面圧が頭頂壁中央部7にお
いて過度に大きくなる現象を避けることができピックア
ップおよびそれに伴うエロージョンが抑制され良好な連
続打点性が保証される。さらに、小電流の通電を行なっ
てキャップ4と被溶接材12,13との接触界面Bで発生し
た接触抵抗熱を被溶接材12,13に投入してナゲットを生
成させるのであるから、既溶接点を経由する分流は問題
にならない。
Further, by making the current density on the crown surface 6 uniform from the central portion 7 to the peripheral portion 9, local overheating of the materials 12 and 13 to be welded is prevented, and the coefficient of thermal expansion of the material to be welded is higher than that of steel. Phenomenon in which the contact surface pressure that increases with the crown surface 6 of the cap 4 due to the thermal expansion of the materials to be welded 12 and 13 formed of a large aluminum alloy, magnesium alloy, etc. at the central portion 7 of the crown wall becomes excessively large Therefore, the pickup and the erosion accompanying it can be suppressed and a good continuous hitting property can be guaranteed. Furthermore, since a small amount of current is applied, the contact resistance heat generated at the contact interface B between the cap 4 and the materials 12 and 13 to be welded is injected into the materials 12 and 13 to be welded to generate a nugget. Shunting via points does not matter.

【0018】そして、頭頂壁5の中央部7に凹み8を形
成したため、周辺部9に比して中央部7の肉厚が大きい
ことともあいまって、通電時に電流が周囲に効果的に分
散されて頭頂面6と被溶接材12,13との接触界面で均等
に接触抵抗熱が発生し、頭頂壁5および被溶接材12,13
の局部過熱が起らず、十分大きな径のナゲット14(図2
参照)が形成されるとともに、ピックアップおよびそれ
に伴うエロージョンが抑制され、連続打点性が向上す
る。さらにまた、アルミニウム合金、マグネシウム合金
等で形成された被溶接材の熱膨張率は大きく(アルミニ
ウム合金の熱膨張係数は鋼の約3倍である)、通電時に
大きく熱膨張した被溶接材12,13の高温の溶融部が頭頂
面6を押して頭頂面6と被溶接材12,13との間の面圧が
過大になるところ、頭頂面6の中央部7には凹み8が形
成されているため、該凹み8内に熱膨張した高温の溶融
部(中央に位置する部分が最も高温である)が一部進入
し、面圧の上昇が緩和されてピックアップおよびそれに
伴うエロージョンの発生が防止される。
Since the recess 8 is formed in the central portion 7 of the parietal wall 5, the thickness of the central portion 7 is larger than that of the peripheral portion 9, so that the current is effectively dispersed to the surroundings when energized. Contact resistance heat is uniformly generated at the contact interface between the crown surface 6 and the materials 12, 13 to be welded, and the crown wall 5 and the materials 12, 13 to be welded are generated.
Nugget 14 with a sufficiently large diameter (Fig. 2)
(Refer to FIG. 3) is formed, pickup and erosion accompanying it are suppressed, and continuous dot performance is improved. Furthermore, the material to be welded formed of an aluminum alloy, a magnesium alloy, or the like has a large coefficient of thermal expansion (the coefficient of thermal expansion of the aluminum alloy is about three times that of steel), and the material to be welded 12 that has undergone large thermal expansion when energized, When the high temperature molten portion of 13 pushes the crown surface 6 and the surface pressure between the crown surface 6 and the materials to be welded 12, 13 becomes excessive, a recess 8 is formed in the central portion 7 of the crown surface 6. Therefore, a part of the hot-melted high-temperature melted portion (the portion located at the center is the highest temperature) that has thermally expanded enters the recess 8, and the rise in the surface pressure is moderated, and the occurrence of pickup and erosion accompanying it is prevented. It

【0019】しかも電極1,1を被溶接材12,13に接触
させて加圧、通電を行うとき、加圧による大きな荷重が
キャップ4に作用するとともに急激な温度上昇による熱
衝撃応力がキャップ4に生じる。荷重の作用および熱衝
撃によってキャップ4に生じる応力を緩和させる上でキ
ャップ4の丈長(L)を大きくするのは有効であり、熱
容量が増すとともに、螺合部11における電極本体2との
接触面積の増大によって水冷された電極本体2への熱伝
達が良好に行われ、かつ電極本体2との結合面積が増し
て反復使用する間のキャップ4の緩みを防止できる。ま
た、キャップ4の緩みが生じるとキャップ4の頭頂壁5
が電極本体2の先端面から離れ、加圧力によって頭頂壁
5が後退変形し、被溶接材12,13との接触が正しく行わ
れなくなることを考慮するならば、キャップ4の緩みを
防ぐことはその耐久性を向上させ得ることを意味してい
る。
Moreover, when the electrodes 1 and 1 are brought into contact with the materials 12 and 13 to be welded for pressurization and energization, a large load due to the pressurization acts on the cap 4, and thermal shock stress due to a rapid temperature rise is applied to the cap 4. Occurs in It is effective to increase the length (L) of the cap 4 in order to reduce the stress generated in the cap 4 by the action of load and thermal shock, and the heat capacity is increased, and the contact with the electrode body 2 at the screwing portion 11 is increased. Due to the increase of the area, the heat transfer to the water-cooled electrode body 2 is favorably performed, and the coupling area with the electrode body 2 is increased to prevent the cap 4 from loosening during repeated use. When the cap 4 is loosened, the top wall 5 of the cap 4 is
Is separated from the tip surface of the electrode body 2 and the crown wall 5 is retracted and deformed by the applied pressure, and the contact with the materials 12 and 13 to be welded is not correctly performed. This means that its durability can be improved.

【0020】そしてスポット溶接を行うに当って、キャ
ップ4の頭頂面6または被溶接材12,13の電極当接面に
予めシリコーンオイルを塗布しておくのは有効であり、
ピックアップおよびそれに伴うエロージョンが抑制さ
れ、連続打点性が向上する。シリコーンオイルの引火点
は低く(172 ℃)、キャップ4と被溶接材12,13との接
触界面で生じる接触抵抗熱によって大きな圧力下で気
化、燃焼、炭化して高温強度の大きな硬い薄被膜が形成
される。この被膜はキャップ4の頭頂面6を保護し、ピ
ックアップ、エロージョンを抑制し、常に安定した品質
のナゲットを得ることができる。
In performing spot welding, it is effective to apply silicone oil to the top surface 6 of the cap 4 or the electrode contact surfaces of the materials 12 and 13 to be welded beforehand.
Pickup and erosion accompanying it are suppressed, and continuous hitting property is improved. Silicone oil has a low flash point (172 ° C), and the contact resistance heat generated at the contact interface between the cap 4 and the materials 12 and 13 vaporizes, burns, and carbonizes it under a large pressure to form a hard thin film with high temperature strength. It is formed. This coating protects the crown surface 6 of the cap 4, suppresses pickup and erosion, and can always obtain a stable quality nugget.

【0021】図4に示された本発明の別実施例の電極1
Aでは、チタン製キャップ4Aの全表面に窒化処理を施
すとともに、全内面に窒化処理後の銅メッキ処理を施
し、電極本体2Aと頭頂壁5Aとの間に銀製介挿板15に
挟み込んだ点で電極1の構造と相違している。
An electrode 1 according to another embodiment of the present invention shown in FIG.
In A, the entire surface of the titanium cap 4A is subjected to nitriding treatment, and the entire inner surface is subjected to nitriding treatment with copper plating treatment, and is sandwiched between the electrode body 2A and the crown wall 5A by the silver interposer 15. The structure is different from that of the electrode 1.

【0022】電極1と異なる構造を採用したことによる
作用効果は以下の通りである。 窒化処理…窒化処理によってキャップ4Aの表面硬
度、剛性が向上する。窒化処理されないチタン材の硬度
はHv200 程度、窒化処理後のチタン材の硬度はHv1000程
度であり硬度の上昇は著しい。キャップ4Aの表面硬度
が大きければ、溶融した被溶接材が付着し難く、したが
ってピックアップ、エロージョンが効果的に抑制され、
耐摩耗性が良好であることともあいまって、連続打点性
の向上を企図し得る。
The effects obtained by adopting a structure different from that of the electrode 1 are as follows. Nitriding treatment ... The nitriding treatment improves the surface hardness and rigidity of the cap 4A. The hardness of the titanium material that is not nitrided is about Hv200, and the hardness of the titanium material after nitrided is about Hv1000, showing a remarkable increase in hardness. If the surface hardness of the cap 4A is large, it is difficult for the molten material to be welded to adhere, and therefore pickup and erosion are effectively suppressed,
Together with the good wear resistance, it is possible to attempt to improve the continuous hitting point property.

【0023】キャップ4Aの剛性が大きければ、被溶接
材12,13との加圧接触による歪発生、および通電時の急
激な温度上昇に伴う熱衝撃応力発生による歪発生が少な
く、変形防止効果が大きい。また、窒化処理されないチ
タンの電気比抵抗が最大50μΩ・cmであるのに対し、T
i Nの電気比抵抗が最大130 μΩ・cmであり、窒化処理
によってキャップ4Aの電気抵抗が増大する。したがっ
て、キャップ4Aと被溶接材12,13間の接触抵抗が増大
し、発熱促進を計ることができ、ナゲットの生成が更に
容易になる。
If the rigidity of the cap 4A is large, the distortion caused by the pressure contact with the materials 12 and 13 to be welded and the distortion caused by the thermal shock stress caused by the rapid temperature rise at the time of energization are small, and the deformation prevention effect is obtained. large. In addition, the maximum electric resistivity of titanium that is not nitrided is 50 μΩ · cm, while T
The electrical resistivity of i N is 130 μΩ · cm at maximum, and the nitriding treatment increases the electrical resistance of the cap 4A. Therefore, the contact resistance between the cap 4A and the materials 12 and 13 to be welded increases, heat generation can be promoted, and the generation of the nugget becomes easier.

【0024】銅メッキ処理…銅メッキ処理を施さない
場合には、通電時にキャップ4Aにおける頭頂壁5Aの
中央部7にジュール熱が集中し、中央部7と周辺部9と
の温度差が大きい。(図5(a)温度分布曲線参照)のに
対し、図4の実施例のようにキャップ4Aの内面に銅メ
ッキ処理を施したものでは、中央部7へのジュール熱の
集中が緩和され、中央部7と周辺部9の温度差が小さい
(図5(b) 温度分布曲線参照)。したがって、銅メッキ
処理を施すことによって被溶接材12,13の局部過熱を防
ぐことができ、ピックアップ、エロージョンの発生を抑
え、連続打点性の向上を企図し得る。
Copper plating treatment: When no copper plating treatment is performed, Joule heat is concentrated on the central portion 7 of the crown wall 5A of the cap 4A during energization, and the temperature difference between the central portion 7 and the peripheral portion 9 is large. On the other hand (see FIG. 5 (a) temperature distribution curve), in the case where the inner surface of the cap 4A is copper-plated as in the embodiment of FIG. 4, the concentration of Joule heat in the central portion 7 is relaxed, The temperature difference between the central portion 7 and the peripheral portion 9 is small (see the temperature distribution curve in Fig. 5 (b)). Therefore, it is possible to prevent local overheating of the materials to be welded 12 and 13 by performing the copper plating treatment, suppress the occurrence of pickup and erosion, and improve the continuous hitting property.

【0025】また、キャップ4Aは被溶接材12,13に対
する熱源として機能する部材であるから或る程度温度上
昇するのは好ましいことであるが、過度の温度上昇はそ
の劣化を促進するため避けなければならない。この意味
では、キャップ4Aの内面に熱伝導性の良好な銅メッキ
皮膜を付すのは有効であり、通水冷却された電極本体2
Aへの熱伝達が円滑に行われることから、キャップ4A
の過熱が防止される。
Further, since the cap 4A is a member that functions as a heat source for the materials to be welded 12, 13, it is preferable to raise the temperature to a certain extent, but an excessive temperature rise promotes its deterioration and must be avoided. I have to. In this sense, it is effective to apply a copper plating film having good thermal conductivity to the inner surface of the cap 4A, and the electrode body 2 cooled by water flow is effective.
Since the heat transfer to A is smoothly performed, the cap 4A
Overheating is prevented.

【0026】銀製介挿板15の使用…介挿板15は、銀に
限定されず、電極本体2Aよりも電気伝導性良好、キャ
ップ4Aよりも熱伝導性良好、キャップ4Aよりも硬度
小なる金属で形成したものであればよい。 そして銀製介挿板15を電極本体2Aと頭頂壁5Aとの間
に介装した作用効果は、銅メッキ処理の場合と類似して
おり、介挿板15が電極本体2Aおよびキャップ4Aに対
してよく密着し、電極本体2A−キャップ4A間の接触
抵抗の低減化によって電流効率が向上するとともに、頭
頂壁5Aの中央部に集中しがちなジュール熱が介挿板15
を通じて頭頂壁5Aの周辺部9に拡散され、中央部7と
周辺部9との温度差が小さくなることから、被溶接材1
2,13の局部過熱防止によるナゲット径の拡大、および
ピックアップ、エロージョンの抑制による連続打点性の
向上を企図し得る。また、介挿板15はキャップ4Aから
電極本体2Aへの熱伝達を良好ならしめ、キャップ4A
の過熱が防止される。
Use of silver intercalation plate 15 ... The intercalation plate 15 is not limited to silver, and is a metal having better electrical conductivity than the electrode body 2A, better thermal conductivity than the cap 4A, and less hardness than the cap 4A. It may be formed by. The function and effect of interposing the silver interposer 15 between the electrode body 2A and the top wall 5A are similar to those in the case of copper plating, and the interposer 15 is attached to the electrode body 2A and the cap 4A. The Joule heat, which adheres well and improves the current efficiency by reducing the contact resistance between the electrode body 2A and the cap 4A, tends to concentrate on the central portion of the crown wall 5A.
Is diffused to the peripheral portion 9 of the parietal wall 5A, and the temperature difference between the central portion 7 and the peripheral portion 9 becomes small.
It is possible to attempt to increase the nugget diameter by preventing local overheating in Nos. 2 and 13 and to improve continuous hitting property by suppressing pickup and erosion. Further, the interposing plate 15 ensures good heat transfer from the cap 4A to the electrode body 2A, and the cap 4A
Overheating is prevented.

【0027】さらに、加圧通電する際、加圧による大き
な荷重がキャップ4Aに作用するとともに急激な温度上
昇による熱衝撃応力がキャップ4Aに生じることは前述
の通りである。この荷重の作用および熱衝撃によって頭
頂壁キャップ4Aに生じる応力を緩和させる上で、頭頂
壁5Aと電極本体2Aとの間に介挿板15を介在させるの
は有効である。すなわち、加圧力によって頭頂壁5Aに
作用する荷重に対しては介挿板15が緩衝体として機能
し、熱衝撃に対しては、水冷された電極本体2に対する
良好な熱伝達媒体として介挿板15が機能することにより
頭頂壁5Aの急激な温度上昇が防止され、頭頂壁5Aの
劣化が抑制される。
Further, as described above, when a pressure is applied to the cap 4A, a large load is applied to the cap 4A and a thermal shock stress is generated in the cap 4A due to a rapid temperature rise. It is effective to interpose the interposition plate 15 between the parietal wall 5A and the electrode body 2A in order to relax the stress generated in the parietal wall cap 4A by the action of this load and the thermal shock. That is, the insertion plate 15 functions as a buffer against the load acting on the crown wall 5A due to the applied pressure, and as a good heat transfer medium for the water-cooled electrode body 2 against the thermal shock, the insertion plate 15 is used. The function of 15 prevents a rapid temperature rise of the parietal wall 5A and suppresses deterioration of the parietal wall 5A.

【0028】<溶接試験>斯かる作用効果が得られる電
極1Aを本発明例とし、鋼板溶接用単相交流式ポータブ
ル溶接機を用いて二枚のアルミニウム合金板(板厚1.0m
m )のスポット溶接を行なった。また、比較のためにチ
タン製キャップを用いることなく、鋼板溶接用単相交
流式ポータブル溶接機(比較例I)、単相交流式定置
溶接機(比較例II)、アルミニウム溶接用単相整流式
ポータブル溶接機(比較例III )にて二枚のアルミニウ
ム合金板(板厚1.0mm )のスポット溶接を行なった。そ
の溶接条件および溶接結果(ナゲット径、引張りせん断
強さ(平均値))を表2に示した。
<Welding test> Using the electrode 1A capable of obtaining the above-described effects as an example of the present invention, a single-phase AC portable welding machine for welding steel plates was used to produce two aluminum alloy plates (plate thickness 1.0 m).
m) spot welding was performed. For comparison, without using a titanium cap, a single-phase AC portable welder for welding steel sheets (Comparative Example I), a single-phase AC stationary welder (Comparative Example II), a single-phase rectifying type for aluminum welding Spot welding of two aluminum alloy plates (plate thickness 1.0 mm) was performed with a portable welder (Comparative Example III). The welding conditions and welding results (nugget diameter, tensile shear strength (average value)) are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】<試験結果の評価> 本発明例と比較例Iの対比から、チタン製キャップ4
Aを用いることにより、従来不可能であった小電流、短
い溶接時間での溶接が可能になることが判る。 本発明例と比較例III 、IVとの対比から、チタン製キ
ャップを用いることにより、小電流、小さな加圧力で溶
接しても大電流、大加圧で溶接したものと同等以上のナ
ゲット径、引張りせん断強度が得られることが判る。
<Evaluation of Test Results> From the comparison between the present invention example and the comparative example I, the titanium cap 4
It can be seen that the use of A enables welding with a small current and a short welding time, which has been impossible in the past. From the comparison of the present invention examples and Comparative Examples III, IV, by using a titanium cap, small current, large current even if welding with a small pressurizing force, a nugget diameter equal to or greater than those welded with large pressure, It can be seen that tensile shear strength is obtained.

【0031】また、本発明例にあっては、連続100 打
点の溶接を行い得ることが確認された。
Further, it was confirmed that in the example of the present invention, continuous 100 welding points could be welded.

【0032】電極にピックアップ、エロージョンが生
じたときにはその部分を除去しなければならないが、比
較例III 、IVでは5打点溶接毎に除去作業が必要であっ
たのに対し、本発明例では10打点溶接毎に除去作業が必
要であった。このことから、チタン製キャップ4Aでは
ピックアップ、エロージョンが生じ難く、連続打点性が
向上し、結果的に生産性の向上を計り得ることが判る。
When pickup or erosion occurs on the electrode, the portion must be removed. In Comparative Examples III and IV, the removal work was required every 5 welding points, whereas in the present invention example, 10 welding points were used. Removal work was required for each welding. From this, it can be seen that the titanium cap 4A is less likely to cause pickup and erosion, has improved continuous hitting property, and consequently has improved productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスポット溶接用電極の一実施例を用い
てスポット溶接を行なう状態を図示した概略図である。
FIG. 1 is a schematic view illustrating a state in which spot welding is performed using an embodiment of a spot welding electrode of the present invention.

【図2】前記実施例において、ナゲットができた状態の
概略図である。
FIG. 2 is a schematic view of a state where a nugget is formed in the above-mentioned embodiment.

【図3】前記実施例の要部拡大縦断正面図である。FIG. 3 is an enlarged vertical sectional front view of a main part of the embodiment.

【図4】本発明の他の実施例の要部拡大縦断正面図であ
る。
FIG. 4 is an enlarged vertical sectional front view of a main part of another embodiment of the present invention.

【図5】図1ないし図3に図示の実施例と図4に図示の
実施例の溶接通電時のキャップ頭頂面の温度分布の違い
を示す図で、(a) は第1実施例、(b) は第2実施例を示
している。
FIG. 5 is a diagram showing a difference in temperature distribution of the cap top surface at the time of energizing welding between the embodiment shown in FIGS. 1 to 3 and the embodiment shown in FIG. 4, (a) showing the first embodiment, b) shows the second embodiment.

【符号の説明】[Explanation of symbols]

1…電極、2…電極本体、3…ネジ、4…キャップ、5
…頭頂壁、6…頭頂面、7…中央部、8…凹み、9…周
辺部、10…周壁、11…ネジ、12,13…被溶接材、14…ナ
ゲット、15…介挿板。
1 ... Electrode, 2 ... Electrode body, 3 ... Screw, 4 ... Cap, 5
... parietal wall, 6 ... parietal surface, 7 ... central part, 8 ... dent, 9 ... peripheral part, 10 ... peripheral wall, 11 ... screw, 12,13 ... welded material, 14 ... nugget, 15 ... intercalation plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被溶接材より熱伝導度および電気伝導度
が低くかつ融点温度の高い材料よりなるコップ形のキャ
ップを電極本体の先端に被嵌させてなり、該キャップ
は、その頭頂面が球面に近い形状に形成されるととも
に、頭頂壁の肉厚が中央部で大きく、周辺部で小さく形
成され、かつ前記キャップの頭頂面中央に丸穴凹みが形
成されたことを特徴とするスポット溶接用電極。
1. A cup-shaped cap made of a material having a lower thermal conductivity and a higher electric conductivity than the material to be welded and having a high melting point temperature is fitted onto the tip of the electrode body, and the cap has a top surface thereof. Spot welding characterized in that it is formed in a shape close to a spherical surface, the wall thickness of the crown wall is large in the central part and small in the peripheral part, and a round hole recess is formed in the center of the crown surface of the cap. Electrodes.
【請求項2】 前記コップ形のキャップの全外表面に窒
化処理層を形成したことを特徴とする前記請求項1記載
のスポット溶接用電極。
2. The electrode for spot welding according to claim 1, wherein a nitriding layer is formed on the entire outer surface of the cup-shaped cap.
JP3357520A 1991-12-26 1991-12-26 Spot welding electrode Expired - Lifetime JP2509497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357520A JP2509497B2 (en) 1991-12-26 1991-12-26 Spot welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357520A JP2509497B2 (en) 1991-12-26 1991-12-26 Spot welding electrode

Publications (2)

Publication Number Publication Date
JPH06277856A true JPH06277856A (en) 1994-10-04
JP2509497B2 JP2509497B2 (en) 1996-06-19

Family

ID=18454550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357520A Expired - Lifetime JP2509497B2 (en) 1991-12-26 1991-12-26 Spot welding electrode

Country Status (1)

Country Link
JP (1) JP2509497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874290A (en) * 1981-09-30 1983-05-04 Tanaka Kikinzoku Kogyo Kk Electrode for resistance welding
JPS61127879U (en) * 1985-01-25 1986-08-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874290A (en) * 1981-09-30 1983-05-04 Tanaka Kikinzoku Kogyo Kk Electrode for resistance welding
JPS61127879U (en) * 1985-01-25 1986-08-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode

Also Published As

Publication number Publication date
JP2509497B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US4288024A (en) Method for making a bimetal resistance welding electrode
JPH03481A (en) Electrode formed of copper or copper alloy having excellent electric conductivity
US3689731A (en) Resistance welding electrode
CA1308175C (en) Electrodes for use in spot welding
JPH06292982A (en) Spot welding electrode
JP2509497B2 (en) Spot welding electrode
US4947019A (en) Composite electrode for resistance welding
JPH01170586A (en) Electrode for spot welding
JPH0515424Y2 (en)
JPH04113182U (en) Spot welding electrode
JPH04113181U (en) Spot welding electrode
KR960007148B1 (en) Electrically heatable caulking system and method
JP3537465B2 (en) Welding method of aluminum alloy plate
KR100804943B1 (en) Method for spot welding and its product thereof
JPS628269B2 (en)
JP3504727B2 (en) Resistance spot welding method for aluminum material
JP2898227B2 (en) Resistance spot welding method for aluminum material
JP2515562B2 (en) Resistance welding electrode
US1959154A (en) Resistance welding electrode
JPH0240427B2 (en)
JP4321960B2 (en) Resistance welding electrode
JPH05228642A (en) Resistance welding method for aluminum and aluminum alloy
JP3000706U (en) Electrode disk for seam welding
JP2005334935A (en) Method for evaluating spot weldability of steel sheet
JPH067957A (en) Resistance spot-welding method for aluminum alloy