JPH0515424Y2 - - Google Patents

Info

Publication number
JPH0515424Y2
JPH0515424Y2 JP1987196634U JP19663487U JPH0515424Y2 JP H0515424 Y2 JPH0515424 Y2 JP H0515424Y2 JP 1987196634 U JP1987196634 U JP 1987196634U JP 19663487 U JP19663487 U JP 19663487U JP H0515424 Y2 JPH0515424 Y2 JP H0515424Y2
Authority
JP
Japan
Prior art keywords
cap
welded
electrode
titanium
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987196634U
Other languages
Japanese (ja)
Other versions
JPH01100686U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987196634U priority Critical patent/JPH0515424Y2/ja
Priority to US07/288,187 priority patent/US4904839A/en
Priority to CA000586975A priority patent/CA1308175C/en
Priority to DE3844001A priority patent/DE3844001A1/en
Publication of JPH01100686U publication Critical patent/JPH01100686U/ja
Application granted granted Critical
Publication of JPH0515424Y2 publication Critical patent/JPH0515424Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は電気伝導度、熱伝導率の大きな金属材
料のスポツト溶接を行うために用いられる電極に
係り、特に小電流溶接に好適な電極構造に関する
ものである。 〔従来技術および解決しようとする課題〕 スポツト溶接とは、2枚の金属板を重ね合せ、
これを1対の丸棒状の電極で挟持加圧して通電
し、発生したジユール熱により金属板を加熱溶融
させて圧接する方法である。このスポツト溶接法
によつて電気伝導度、熱伝導率の大きなアルミニ
ウム合金またはマグネシウム合金製金属板の溶接
を行う場合には、ジユール熱の発生量が少なく、
しかも発生した熱が熱伝導性の良好な被溶接材を
通じて逸散してしまうため、鋼板等の溶接に比し
て大電流、大きな加圧力(電極による)を必要と
し、しかも短時間で溶接を完了しなければならな
い。したがつて、大型トランスが必要であり、ま
た大きな加圧力に対応して作業性を損う大型スポ
ツト・ガンを採用しなけれがならず、溶接機のポ
ータブル化は難しかつた。 さらに、大電流を用いるにしても、多点スポツ
ト溶接を行うに当つては、被溶接材の良好なる電
気伝導度に起因して、既溶接完了点を経由する分
流が生じ、現溶接箇所の溶接が健全に行われない
という不具合もあつた。 〔課題を解決するための手段および作用効果〕 本考案はこのような不具合を解消したスポツト
溶接用電極の改良に係り、アルミニウム合金また
はマグネシウム合金製金属板のスポツト溶接に用
いられるスポツト溶接用電極において、電極本体
の先端に電気伝導度の小さなコツプ形のチタン製
厚肉キヤツプを被嵌させてなり、該厚肉キヤツプ
の頭頂面は、該頭頂面の中央部より周辺部に向つ
て該中央部より緩やかに後退した弯曲凸面に形成
されるとともに、該厚肉キヤツプの頭頂壁の肉厚
は中央部から周辺部に向つて漸減したことを特徴
とするものである。 本考案は前記したように電気伝導度の小さなコ
ツプ形のチタン製厚肉キヤツプを電極本体の先端
に被嵌したため、2枚のアルミニウム合金または
マグネシウム合金製金属板に1対の電極本体の先
端のキヤツプを挟み、該1対の電極を介して前記
2枚の金属板に通電を行うと、電気抵抗の大きな
前記コツプ形チタン製厚肉キヤツプの抵抗発熱と
該キヤツプと金属板との接触抵抗発熱とで、該金
属板における両キヤツプで挟まれた部分が高温に
加熱されて、該金属板挟持部分の電気抵抗がさら
に大きくなり、該金属板挟持部分に高温ナゲツト
が生じ、所要のスポツト溶接が遂行される。 また本考案では、前記キヤツプの頭頂面中央部
より周辺部に向つて該中央部より緩やかに後退し
た弯曲凸面に形成するとともに該厚肉キヤツプの
頭頂壁の肉厚を中央部から周辺部に向つて漸減し
たため、金属板との接触面圧が大きなキヤツプ頭
頂面中央部において電流が集中して過熱状態にな
るところを、このキヤツプ頭頂面中央部の厚肉化
によつて、前記被溶接材における両キヤツプで挟
まれた部分の電流密度を均等化し、小電流で局部
過熱のない状態のナゲツトを得ることができる。 このように本考案を用いてスポツト溶接を行え
ば、局部過熱のない高温のナゲツトを金属板にお
ける両キヤツプで挟まれた比較的広い部分に発生
させることができ、しかも、金属板よりも融点温
度の高いチタン製コツプ形キヤツプを電極本体の
先端に嵌合させたため、金属板が電極に付着する
ピツクアツプや、電極に付着した金属板が電極内
部に拡散し浸透するエロージヨンを抑制し、良好
な溶接部分を得ることができるともに消費電力を
節減できる。 〔実施例〕 以下第1図ないし第3図に図示された本考案の
一実施例について説明する。第1図および第2図
は、アルミニウム合金の如き電気伝導度および熱
伝導率の大きい金属材料で形成された板材である
被溶接材12,13を重合せ、これを上、下の電
極1を挟みつけた状態を示している。電極1は、
第3図に図示されるように、汎用電極材(例、
Cu−Cr合金)で形成されたF型形状の電極本体
2の先端部に形成されたネジ部3に、被溶接材1
2,13に比して電気伝導度および熱伝導率が小
さく、融点温度の高いチタン(Ti)で形成され
たコツプ形のキヤツプ螺合させることによつて構
成されている。 図1において、軟鋼板の溶接と同程度の電流ア
ルミニウム合金の如き電気伝導度および熱伝導率
の大きい金属材料で形成された板材である被溶接
材12,13を重合せ、これを上、下の電極1,
1で挟みつけた状態を示している。電極1は、汎
用電極材(例、Cu・Cr合金)で形成された電極
体2の先端に、被溶接材10,11に比して電気
伝導度および熱伝導率が小さく、融点温度の高い
チタン(Ti)で形成されたコツプ形のキヤツプ
4を被嵌させたものである。 第1図において、軟鋼板の溶接と同程度の電流
条件(小電流)で被溶接材12,13に通電を行
うと、被溶接材12,13の接触界面Aで接触抵
抗発熱が生じるのは勿論であるが、電気抵抗の大
きなチタンで形成されたキヤツプ4,4と被溶接
材12,13との接触界面B,Bで大きな接触抵
抗発熱が生じ、キヤツプ4自体も抵抗発熱するこ
とにより、接触界面B,Bで発生した熱が、矢印
Cで示すように、良好な熱伝導体である被溶接材
12,13に効率良く伝えられる。被溶接材が軟
鋼板であれば、接触界面Aで生ずる接触抵抗発熱
によつて該界面Aの近傍にナゲツト(溶融部)が
生ずるはずである。しかしながら、この例では被
溶接材12,13がアルミニウム合金の如き電気
伝導度および熱伝導率の大きな材料で形成されて
いるため、接触界面Aで生じる発生熱のみではナ
ゲツトが生ずることはなく、接触界面Bから伝え
られる熱(矢印C)によつてキヤツプ4,4間に
挟まれた部分が温度上昇し、それに伴つて該部分
の電気抵抗が大きくなり、被溶接材12,13
(キヤツプ4,4に挟まれた部分)の抵抗発熱量
が増大することともあいまつて、被溶接材12,
13が円柱状に溶融し、第2図に示すようなナゲ
ツト14が生じる。このとき、被溶接材12,1
3に比してチタン製キヤツプ4の融点温度が十分
高いため、キヤツプ4の溶融が生じることはな
い。 ところで、スポツト溶接用電極に要求される重
要な条件は連結打点性の良好なることである。ア
ルミニウム合金等の被溶接材12,13に比して
電気伝導度、熱伝導率の小さなキヤツプ4用材料
として炭素鋼、ステンレス鋼、チタン(Ti)等
を挙げ得るが(表1参照)、連続打点性を考慮す
ればチタンが最も適している。チタンは、融点が
高い、熱膨張係数が小さい、熱伝導率が低いとい
う特性の他に、適当に大きな強度、靱性を有して
おり、チタン製キヤツプ4を用いることによつて
ピツクアツプ(被溶接材が電極に付着する現象)、
エロージヨン(電極に付着した被溶接材が電極内
部に拡散浸透し合金化する現象)を抑制し、良好
な連続打点性を確保することができる。
[Industrial Application Field] The present invention relates to an electrode used for spot welding metal materials with high electrical conductivity and high thermal conductivity, and particularly to an electrode structure suitable for low current welding. [Prior art and problems to be solved] Spot welding is the process of overlapping two metal plates.
This is a method in which the metal plate is held and pressed between a pair of round rod-shaped electrodes and then energized, and the generated Joule heat heats and melts the metal plate, thereby welding the metal plate under pressure. When welding aluminum alloy or magnesium alloy metal plates with high electrical conductivity and thermal conductivity using this spot welding method, the amount of joule heat generated is small;
Moreover, since the generated heat dissipates through the welded material, which has good thermal conductivity, it requires a higher current and greater pressure (using electrodes) than welding steel plates, etc., and can be welded in a short time. must be completed. Therefore, it was difficult to make the welding machine portable because a large transformer was required and a large spot gun had to be used, which could handle a large pressure and impair work efficiency. Furthermore, even if a large current is used, when performing multi-point spot welding, due to the good electrical conductivity of the material to be welded, a shunt flow occurs that passes through the already welded point, and the current welding point There was also a problem where welding was not done properly. [Means and effects for solving the problem] The present invention relates to an improvement of a spot welding electrode that eliminates the above-mentioned problems. , a thick-walled cap made of titanium with a small electrical conductivity is fitted onto the tip of the electrode body, and the top surface of the thick-walled cap extends from the center of the top surface toward the periphery. It is characterized in that it is formed into a curved convex surface that recedes more gently, and the thickness of the parietal wall of the thick cap gradually decreases from the center toward the periphery. As mentioned above, in this invention, a thick cup-shaped titanium cap with low electrical conductivity is fitted onto the tip of the electrode body, so a pair of aluminum alloy or magnesium alloy metal plates are attached to the tip of the pair of electrode bodies. When electricity is applied to the two metal plates through the pair of electrodes with the cap sandwiched between them, resistance heat generation occurs in the cup-shaped thick titanium cap with high electrical resistance and contact resistance heat generation between the cap and the metal plate. As a result, the part of the metal plate sandwiched between the two caps is heated to a high temperature, and the electrical resistance of the metal plate sandwiched part becomes even larger, and a high temperature nugget is generated in the metal plate sandwiched part, which prevents the required spot welding. carried out. Further, in the present invention, the top surface of the cap is formed into a curved convex surface that gently recedes from the center toward the periphery, and the thickness of the top wall of the thick cap is increased from the center toward the periphery. As a result, the current concentrates at the center of the top surface of the cap, where the contact pressure with the metal plate is large, resulting in an overheating state. By equalizing the current density in the area sandwiched between both caps, a nugget without local overheating can be obtained with a small current. In this way, by performing spot welding using the present invention, it is possible to generate high-temperature nuggets without local overheating in a relatively wide area of the metal plate sandwiched between both caps, and also to have a melting point temperature higher than that of the metal plate. A high-strength titanium cup-shaped cap is fitted to the tip of the electrode body, which suppresses pick-up where the metal plate adheres to the electrode and erosion where the metal plate adheres to the electrode diffuses and penetrates inside the electrode, resulting in good welding. It is possible to reduce power consumption at the same time. [Embodiment] An embodiment of the present invention illustrated in FIGS. 1 to 3 will be described below. In FIGS. 1 and 2, materials to be welded 12 and 13, which are plates made of a metal material with high electrical conductivity and thermal conductivity such as aluminum alloy, are overlapped, and upper and lower electrodes 1 are connected to each other. It shows a pinched state. Electrode 1 is
As illustrated in FIG. 3, general-purpose electrode materials (e.g.
The material to be welded 1 is attached to the threaded part 3 formed at the tip of the F-shaped electrode body 2 made of Cu-Cr alloy).
It is constructed by screwing together a cup-shaped cap made of titanium (Ti), which has lower electrical conductivity and thermal conductivity than those of Nos. 2 and 13, and has a high melting point. In FIG. 1, the materials to be welded 12 and 13, which are plates made of a metal material with high electrical conductivity and thermal conductivity, such as aluminum alloy, are overlapped, and the upper and lower parts are overlapped. electrode 1,
1 shows the sandwiched state. The electrode 1 has a material at the tip of an electrode body 2 made of a general-purpose electrode material (e.g., Cu/Cr alloy) that has lower electrical conductivity and thermal conductivity than the materials to be welded 10 and 11, and has a higher melting point temperature. A cup-shaped cap 4 made of titanium (Ti) is fitted therein. In Fig. 1, when the welded materials 12 and 13 are energized under the same current conditions (small current) as for welding mild steel plates, contact resistance heat generation occurs at the contact interface A of the welded materials 12 and 13. Of course, large contact resistance heat generation occurs at the contact interfaces B and B between the caps 4, 4 formed of titanium, which has a high electrical resistance, and the welded materials 12, 13, and the cap 4 itself also generates resistance heat generation. Heat generated at the contact interfaces B, B, as shown by arrow C, is efficiently transferred to the welded materials 12, 13, which are good heat conductors. If the material to be welded is a mild steel plate, the contact resistance heat generated at the contact interface A should produce a nugget (molten part) near the interface A. However, in this example, the materials to be welded 12 and 13 are made of a material with high electrical conductivity and thermal conductivity, such as aluminum alloy, so the heat generated at the contact interface A alone does not cause nuggets, and the contact The temperature of the portion sandwiched between the caps 4 and 4 increases due to the heat transmitted from the interface B (arrow C), and the electrical resistance of this portion increases accordingly, causing the welded materials 12 and 13 to increase in temperature.
Coupled with the increase in the resistance heat generation of the welded material 12 (the part sandwiched between the caps 4, 4),
13 is melted into a cylindrical shape, and a nugget 14 as shown in FIG. 2 is formed. At this time, the material to be welded 12,1
Since the melting point temperature of the titanium cap 4 is sufficiently higher than that of the titanium cap 4, the cap 4 does not melt. By the way, an important condition required for spot welding electrodes is good connection and spotting properties. Carbon steel, stainless steel, titanium (Ti), etc. can be cited as materials for the cap 4 that have lower electrical conductivity and thermal conductivity than the materials to be welded 12 and 13 such as aluminum alloys (see Table 1). Titanium is the most suitable material when considering the dot performance. In addition to the characteristics of high melting point, low coefficient of thermal expansion, and low thermal conductivity, titanium also has suitably high strength and toughness. (phenomenon in which materials adhere to electrodes),
Erosion (a phenomenon in which the material to be welded attached to the electrode diffuses into the electrode and forms an alloy) can be suppressed, and good continuous dotting performance can be ensured.

【表】 また、キヤツプ4の形状はその連続打点性を向
上させる上で重要である。キヤツプ4の頭頂面は
球面に近い形状、すなわちR型になされるが、被
溶接材12,13との接触面圧は頭頂面中央部に
おいて最も大きく、通電によつてキヤツプ4、被
溶接材12,13が温度上昇してそれ等が熱膨張
すると、その傾向がますます顕著になる。そのた
め、キヤツプ4の頭頂面中央部に電流が集中し、
該中央部が加熱状態になり、小さな面積範囲で集
中的に被溶接材12,13に熱が投入される結
果、ナゲツト14の径が小さくなるとともにナゲ
ツト14も過熱状態になつてピツクアツプ現象が
生じ、結果的にキヤツプ4の連続打点性が低下す
る傾向があるが、本実施例では、チタン製キヤツ
プ4の頭頂壁肉厚を中央部で大きく、周辺部で小
さく形成することによつてこの問題を解決した。
本実施例は、通電抵抗が肉厚の大きさに比例する
ことを利用したものであり、頭頂壁5の肉厚が均
一である場合に比して頭頂面5の中央部7におけ
る電流密度が低下し、周辺部9における電流密度
が増大する。その結果、頭頂壁中央部7に集中し
がちな電流が頭頂壁5全体に分散され、頭頂面6
と被溶接材12,13との接触界面全体に均等な
接触抵抗熱が生じ、被溶接材12,13への入熱
が大きな面積範囲で均等に行われ、局部過熱のな
い状態で第2図に図示の如き大きなナゲツト径を
得ることができる。 また、頭頂壁6における電流密度が中央部7か
ら周辺部9に亘つて均等化することにより、被溶
接材12,13の局部過熱が防止され、鋼に比し
て熱膨張係数の大きなアルミニウム合金またはマ
グネシウム合金で形成された被溶接材12,13
が溶融熱膨張してキヤツプ4の頭頂面6との間で
増大する接触面圧が頭頂面中央部7において過度
に大きくなる現象を避けることができピツクアツ
プおよびそれに伴うエロージヨンが抑制され良好
な連続打点性が保証される。 さらに、小電流の通電を行なつてキヤツプ4と
被溶接材12,13との接触界面Bで発生した接
触抵抗熱を被溶接材12,13に投入してナゲツ
トを生成させるのであるから、既溶接点を経由す
る分流は問題にならない。 さらに、頭頂壁5の中央部7に凹み8を形成し
たため、周辺部9に比して中央部7の肉厚が大き
いことともあいまつて、通電時に電流が周囲に効
果的に分散されて頭頂面6と被溶接材12,13
との接触界面で均等に接触抵抗熱が発生し、頭頂
壁5および被溶接材12,13の局部過熱が起ら
ず、十分大きな径のナゲツト14(第2図参照)
が形成されるとともに、ピツクアツプおよびそれ
に伴うエロージヨンが抑制され、連続打点性が向
上する。 さらにまた、アルミニウム合金またはマグネシ
ウム合金で形成された被溶接材の熱膨張率は大き
く(アルミニウム合金の熱膨張係数は鋼の約3倍
である)、通電時に大きく熱膨張した被溶接材1
2,13の高温の溶融部が頭頂面6を押して頭頂
面6と被溶接材12,13との間の面圧が過大と
なるところ、頭頂面6の中央部7には凹み8が形
成されているため、該凹み8内に熱膨張した高温
の溶融部(中央に位置する部分が最も高温であ
る)が一部進入し、面圧の上昇が緩和されてピツ
クアツプおよびそれに伴うエロージヨンの発生が
防止される。 しかも電極1,1を被溶接材12,13に接触
させて加圧、通電を行うとき、加圧による大きな
荷重がキヤツプ4に作用するとともに急激な温度
上昇による熱衝撃応力がキヤツプ4に生じる。荷
重の作用および熱衝撃によつてキヤツプ4に生じ
る応力を緩和させる上でキヤツプ4の丈長(L)
を大きくするのは有効であり、熱容量が増すとと
もに、螺合部11における電極本体2との接触面
積の増大によつて水冷された電極本体2への熱伝
達が良好に行われ、かつ電極本体2との結合面積
が増して反復使用する間のキヤツプ4の緩みを防
止てきる。また、キヤツプ4の緩みが生じるとキ
ヤツプ4の頭頂壁5が電極本体2の先端面から離
れ、加圧力によつて頭頂壁5が後退変形し、被溶
接材12,13との接触が正しく行われなくなる
ことを考慮するならば、キヤツプ4の緩みを防ぐ
ことはその耐久性を向上させ得ることを意味して
いる。 そしてスポツト溶接を行うに当つて、キヤツプ
4の頭頂面6または被溶接材12,13の電極当
接面に予めシリコーンオイルを塗布しておくのは
有効であり、ピツクアツプおよびそれに伴うエロ
ージヨンが抑制され、連続打点性が向上する。シ
リコーンオイルの引火点は低く(172℃)、キヤツ
プ4と被溶接材12,13との接触界面で生じる
接触抵抗熱によつて大きな圧力下で気化、燃焼、
炭化して高温強度の大きな硬い薄被膜が形成され
る。この被膜はキヤツプ4の頭頂面6を保護し、
ピツクアツプ、エロージヨンを抑制し、常に安定
した品質のナゲツトを得ることができる。 第4図に示された本考案の別実施例の電極1A
では、チタン製キヤツプ4Aの全表面に窒化処理
を施すとともに、全内面に窒化処理後の銅メツキ
処理を施し、電極本体2Aと頭頂壁5Aとの間に
銀製介挿板15を挟み込んだ点で電極1の構造と
相違している。 電極1と異なる構造を採用したことによる作用
効果は以下の通りである。 窒化処理…窒化処理によつてキヤツプ4Aの
表面硬度、剛性が向上する。窒化処理されない
チタン材の硬度はHv200程度、窒化処理後のチ
タン材の硬度はHv1000程度であり硬度の上昇
は著しい。キヤツプ4Aの表面硬度が大きけれ
ば、溶融した被溶接材が付着し難く、したがつ
てピツクアツプ、エロージヨンが効果的に抑制
され、耐摩耗性が良好であることもあいまつ
て、連続打点性の向上を企図し得る。 キヤツプ4Aの剛性が大きければ、被溶接材
12,13との加圧接触による歪発生、および
通電時の急激な温度上昇に伴う熱衝撃応力発生
による歪発生が少なく、変形防止効果が大き
い。 また、窒化処理されないチタンの電気比抵抗
が最大50μΩ・cmであるのに対し、T Nの電
気比抵抗が最大130μΩ・cmであり、窒化処理に
よつてキヤツプ4Aの電気抵抗が増大する。し
たがつて、キヤツプ4と被溶接材12,13間
の接触抵抗が増大し、発熱促進を計ることがで
き、ナゲツトの生成が更に容易になる。 銅メツキ処理…銅メツキ処理を施さない場合
には、通電時にキヤツプ4Aにおける頭頂壁5
Aの中央部7にジユール熱が集中し、中央部7
と周辺部9との温度差が大きい(第5図a温度
分布曲線参照)のに対し、第4図に図示の実施
例のようにキヤツプ4Aの内面に銅メツキ処理
を施したものでは、中央部7へのジユール熱の
集中が緩和され、中央部7と周辺部9の温度差
が小さい(第5図b温度分布曲線参照)。した
がつて、銅メツキ処理を施すことによつて被溶
接材12,13の局部過熱を防ぐことができ、
ピツクアツプ、エロージヨンの発生を抑え、連
続打点性の向上を企図し得る。 また、キヤツプ4Aは被溶接材12,13に
対する熱源として機能する部材であるから或る
程度温度上昇するのは好ましいことであるが、
過度の温度上昇はその劣化を促進するため避け
なければならない。この意味で、キヤツプ4A
の内面に熱伝導性の良好な銅メツキ皮膜を付す
のは有効であり、通水冷却された電極本体2A
への熱伝達が円滑に行われることから、キヤツ
プ4Aの過熱が防止される。 銀製介挿板15の使用…介挿板15は、銀に
限定されず、電極本体2Aよりも電気伝導性良
好、キヤツプ4Aよりも熱伝導性良好、キヤツ
プ4Aよりも硬度小なる金属で形成したもので
あればよい。そして銀製介挿板15を電極本体
2Aと頭頂壁5Aとの間に介装した作用効果は
銅メツキ処理の場合と類似しており、介挿板1
5が電極本体2Aおよびキヤツプ4Aに対して
よく密着し、電極本体2A−キヤツプ4A間の
接触抵抗の低減化によつて電流効率が向上する
とともに、頭頂壁5Aの中央部に集中しがちな
ジユール熱が介挿板15を通じて頭頂壁5Aの
周辺部9に拡散され、中央部7と周辺部9との
温度差が小さくなることから、被溶接材12,
13の局部過熱防止によるナゲツト径の拡大、
およびピツクアツプ、エロージヨンの抑制によ
る連続打点性の向上を企図し得る。また、介挿
板15はキヤツプ4Aから電極本体2Aへの熱
伝達を良好ならしめ、キヤツプ4Aの過熱が防
止される。 さらに、加圧通電する際、加圧による大きな
荷重がキヤツプ4Aに作用するとともに急激な
温度上昇による熱衝撃応力がキヤツプ4Aに生
じることは前述の通りである。この荷重の作用
および熱衝撃によつて頭頂壁キヤツプ4Aに生
じる応力を緩和させる上で、頭頂壁5Aと電極
本体2Aとの間に介挿板15を介在させるのは
有効である。すなわち、加圧力によつて頭頂壁
5Aに作用する荷重に対しては介挿板15が緩
衝体として機能し、熱衝撃に対しては、水冷さ
れた電極本体2に対する良好な熱伝達媒体とし
て介挿板15が機能することにより頭頂壁5A
の急激な温度上昇が防止され、頭頂壁5Aの劣
化が抑制される。 〈溶接試験〉 斯かる作用効果が得られる電極1Aを本考案例
とし、鋼板溶接用単相交流式ポータブル溶接機を
用いて二枚のアルミニウム合金板(板厚1.0mm)
のスポツト溶接を行つた。また、比較のためにチ
タン製キヤツプを用いることなく、鋼板溶接用
単相交流式ポータブル溶接機(比較例)、単
相交流式定置溶接機(比較例)、アルミニウ
ム溶接用単相整流式ポータブル溶接機(比較例
)にて二枚のアルミニウム合金板(板厚1.0mm)
のスポツト溶接を行なつた。その溶接条件および
溶接結果(ナゲツト径、引張りせん断強さ(平均
値))を表2に示した。
[Table] Furthermore, the shape of the cap 4 is important in improving its continuous dot performance. The top surface of the cap 4 has a shape close to a spherical surface, that is, an R-shape, but the contact surface pressure with the materials to be welded 12 and 13 is greatest at the center of the top surface, and when energized, the cap 4 and the materials to be welded 12 , 13 increases in temperature and thermally expands, this tendency becomes more and more noticeable. Therefore, the current concentrates at the center of the top surface of cap 4,
The central portion becomes heated, and heat is intensively input to the welded materials 12 and 13 in a small area. As a result, the diameter of the nugget 14 becomes smaller and the nugget 14 also becomes overheated, causing a pick-up phenomenon. As a result, the continuous dot performance of the cap 4 tends to deteriorate; however, in this embodiment, this problem is solved by making the thickness of the top wall of the titanium cap 4 larger at the center and smaller at the periphery. solved.
This embodiment utilizes the fact that the current conduction resistance is proportional to the wall thickness, and the current density at the center 7 of the parietal surface 5 is lower than that in the case where the parietal wall 5 has a uniform thickness. The current density in the peripheral region 9 increases. As a result, the current that tends to concentrate in the central part 7 of the parietal wall is dispersed throughout the parietal wall 5, and the parietal surface 6
Uniform contact resistance heat is generated over the entire contact interface between the material to be welded 12 and 13, and the heat input to the material to be welded 12 and 13 is uniform over a large area range, with no local overheating as shown in Fig. 2. A large nugget diameter as shown in the figure can be obtained. In addition, by equalizing the current density in the top wall 6 from the center part 7 to the peripheral part 9, local overheating of the welded materials 12 and 13 is prevented, and aluminum alloys with a larger coefficient of thermal expansion than steel can be used. Or welded materials 12, 13 made of magnesium alloy
It is possible to avoid the phenomenon in which the contact pressure, which is caused by thermal expansion of the cap 4 and increases with the crown surface 6 of the cap 4, becomes excessively large at the center portion 7 of the crown surface, and pick-up and accompanying erosion are suppressed, resulting in good continuous hitting points. gender is guaranteed. Furthermore, since a small current is applied and the contact resistance heat generated at the contact interface B between the cap 4 and the welded materials 12, 13 is injected into the welded materials 12, 13, nuggets are generated. Diversion through the weld point is not a problem. Furthermore, since the recess 8 is formed in the central part 7 of the parietal wall 5, the thickness of the central part 7 is larger than that of the peripheral part 9, and when electricity is applied, the current is effectively dispersed to the surrounding area. 6 and materials to be welded 12, 13
Contact resistance heat is generated evenly at the contact interface with the nugget 14 (see Fig. 2), which has a sufficiently large diameter so that local overheating of the crown wall 5 and the welded materials 12, 13 does not occur.
is formed, pick-up and accompanying erosion are suppressed, and continuous hitting performance is improved. Furthermore, the thermal expansion coefficient of the welded material made of aluminum alloy or magnesium alloy is large (the thermal expansion coefficient of aluminum alloy is approximately three times that of steel), and the welded material 1 which thermally expanded significantly when energized
When the high-temperature molten parts 2 and 13 press against the crown surface 6 and the contact pressure between the crown surface 6 and the welded materials 12 and 13 becomes excessive, a depression 8 is formed in the center 7 of the crown surface 6. Therefore, a part of the thermally expanded high-temperature molten part (the central part is the highest temperature) enters the recess 8, which alleviates the increase in surface pressure and prevents the occurrence of pick-up and associated erosion. Prevented. Moreover, when the electrodes 1, 1 are brought into contact with the materials to be welded 12, 13 and pressurized and energized, a large load due to the pressurization acts on the cap 4, and thermal shock stress is generated in the cap 4 due to a rapid temperature rise. The length (L) of the cap 4 is important in alleviating the stress generated in the cap 4 due to the action of load and thermal shock.
It is effective to increase the heat capacity, and by increasing the contact area with the electrode body 2 in the threaded part 11, heat transfer to the water-cooled electrode body 2 is performed well, and the electrode body This increases the bonding area with cap 2 and prevents loosening of cap 4 during repeated use. Furthermore, when the cap 4 becomes loose, the top wall 5 of the cap 4 separates from the tip surface of the electrode main body 2, and the top wall 5 deforms backward due to the pressure, so that proper contact with the materials 12 and 13 to be welded can be prevented. Considering that the cap 4 will not come loose, preventing the cap 4 from loosening means that its durability can be improved. When performing spot welding, it is effective to apply silicone oil in advance to the top surface 6 of the cap 4 or to the electrode contact surfaces of the welded materials 12 and 13, thereby suppressing pick-up and accompanying erosion. , continuous hitting performance is improved. The flash point of silicone oil is low (172°C), and it vaporizes and burns under large pressure due to the contact resistance heat generated at the contact interface between the cap 4 and the materials to be welded 12 and 13.
Carbonization forms a hard thin film with high high temperature strength. This coating protects the top surface 6 of the cap 4,
Pick-up and erosion are suppressed, and nuggets of stable quality can always be obtained. Electrode 1A of another embodiment of the present invention shown in FIG.
Now, the entire surface of the titanium cap 4A is nitrided, the entire inner surface is nitrided and then copper plated, and the silver insert plate 15 is inserted between the electrode body 2A and the top wall 5A. The structure is different from that of electrode 1. The effects of adopting a structure different from that of electrode 1 are as follows. Nitriding treatment: The surface hardness and rigidity of the cap 4A are improved by the nitriding treatment. The hardness of titanium material without nitriding treatment is about Hv200, and the hardness of titanium material after nitriding treatment is about Hv1000, and the increase in hardness is remarkable. If the surface hardness of the cap 4A is large, the molten material to be welded will not easily adhere to it, and therefore pick-up and erosion will be effectively suppressed.Coupled with good wear resistance, it will improve the continuous dot performance. It can be planned. If the rigidity of the cap 4A is large, the distortion caused by pressurized contact with the welded materials 12, 13 and the thermal shock stress caused by the rapid temperature rise during energization will be small, and the deformation prevention effect will be large. Further, while the electrical resistivity of titanium that is not nitrided is 50 μΩ·cm at the maximum, the electrical resistivity of TN is 130 μΩ·cm at the maximum, and the electrical resistance of the cap 4A is increased by the nitriding process. Therefore, the contact resistance between the cap 4 and the welded materials 12, 13 increases, heat generation can be accelerated, and nuggets can be formed more easily. Copper plating treatment...If copper plating treatment is not performed, the top wall 5 of the cap 4A will be damaged when energized.
The Joule heat is concentrated in the central part 7 of A, and the central part 7
In contrast, in the case where the inner surface of the cap 4A is plated with copper as in the embodiment shown in FIG. The concentration of Joule heat on the portion 7 is alleviated, and the temperature difference between the central portion 7 and the peripheral portion 9 is small (see the temperature distribution curve in FIG. 5b). Therefore, by performing copper plating treatment, local overheating of the welded materials 12 and 13 can be prevented,
It is possible to suppress the occurrence of pick-up and erosion, and to improve continuous hitting performance. Furthermore, since the cap 4A is a member that functions as a heat source for the materials to be welded 12 and 13, it is preferable that the temperature rises to some extent;
Excessive temperature rise accelerates its deterioration and must be avoided. In this sense, cap 4A
It is effective to apply a copper plating film with good thermal conductivity to the inner surface of the electrode body 2A, which is cooled by water flow.
Since heat is transferred smoothly to the cap 4A, overheating of the cap 4A is prevented. Use of silver insert plate 15...The insert plate 15 is not limited to silver, but is formed of a metal that has better electrical conductivity than the electrode body 2A, better thermal conductivity than the cap 4A, and less hardness than the cap 4A. It is fine as long as it is something. The effect of inserting the silver insert plate 15 between the electrode body 2A and the parietal wall 5A is similar to that of copper plating treatment, and the insert plate 1
5 is in close contact with the electrode body 2A and the cap 4A, and current efficiency is improved by reducing the contact resistance between the electrode body 2A and the cap 4A. The heat is diffused to the peripheral part 9 of the crown wall 5A through the insertion plate 15, and the temperature difference between the central part 7 and the peripheral part 9 becomes small, so that the welding material 12,
13. Enlargement of nugget diameter by preventing local overheating,
It is also possible to improve the continuous hitting performance by suppressing pick-up and erosion. Further, the interposed plate 15 improves heat transfer from the cap 4A to the electrode body 2A, and prevents the cap 4A from overheating. Furthermore, as described above, when pressurizing and energizing, a large load due to pressurization acts on the cap 4A, and thermal shock stress due to a rapid temperature rise is generated in the cap 4A. It is effective to interpose the interposed plate 15 between the parietal wall 5A and the electrode main body 2A in order to alleviate the stress generated in the parietal wall cap 4A due to the action of this load and thermal shock. That is, the interposed plate 15 functions as a buffer against the load acting on the parietal wall 5A due to pressurizing force, and acts as a good heat transfer medium for the water-cooled electrode body 2 against thermal shock. By functioning the insert plate 15, the parietal wall 5A
A rapid temperature rise is prevented, and deterioration of the parietal wall 5A is suppressed. <Welding test> Electrode 1A, which provides the above effects, was used as an example of the present invention, and two aluminum alloy plates (thickness: 1.0 mm) were welded using a single-phase AC portable welding machine for welding steel plates.
Performed spot welding. In addition, for comparison, we have developed a single-phase AC portable welding machine for steel plate welding (comparative example), a single-phase AC stationary welding machine (comparative example), and a single-phase rectifier portable welding machine for aluminum welding, without using a titanium cap. Two aluminum alloy plates (plate thickness 1.0mm) were made using a machine (comparative example).
spot welding was carried out. The welding conditions and welding results (nugget diameter, tensile shear strength (average value)) are shown in Table 2.

【表】 〈試験結果の評価〉 本考案例と比較例の対比から、チタン製キ
ヤツプ4Aを用いることにより、従来不可能で
あつた小電流、短い溶接時間での溶接が可能に
なることが判る。 本考案例と比較例,との対比から、チタ
ン製キヤツプを用いることにより、小電流、小
さな加圧力で溶接しても大電流、大加圧で溶接
したものと同等以上のナゲツト径、引張りせん
断強度が得られることが判る。 また、本考案例にあつては、連続100打点の
溶接を行い得ることが確認された。 電極にピツクアツプ、エロージヨンが生じた
ときにはその部分を除去しなければならない
が、比較例,では5打点溶接毎に除去作業
が必要であつたのに対し、本考案例では10打点
溶接毎に除去作業が必要であつた。このことか
ら、チタン製キヤツプ4Aではピツクアツプ、
エロージヨンが生じ難く、連続打点性が向上
し、結果的に生産性の向上を計り得ることが判
る。
[Table] <Evaluation of test results> From the comparison between the present invention example and the comparative example, it can be seen that by using the titanium cap 4A, it is possible to weld with a small current and short welding time, which was previously impossible. . Comparing the present invention example and the comparative example, it was found that by using a titanium cap, even when welded with a small current and a small pressure, the nugget diameter and tensile shear were equal to or greater than those welded with a large current and a large pressure. It can be seen that strength can be obtained. In addition, it was confirmed that in the case of the example of the present invention, welding of 100 consecutive points could be performed. When pick-up or erosion occurs on the electrode, it is necessary to remove that part. In the comparative example, removal work was required every 5 welding points, whereas in the present example, removal work was required every 10 welding points. was necessary. From this, with titanium cap 4A, pick-up,
It can be seen that erosion is less likely to occur, the continuous dot performance is improved, and productivity can be improved as a result.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本考案電極を用いたスポツト
溶接方法を示す概略図、第3図は本考案の一実施
例に係るスポツト溶接用電極を示す要部欠截図、
第4図は他の実施例に係るスポツト溶接用電極を
示す要部欠截図、第5図はチタン製キヤツプ内面
の銅メツキ皮膜の有無による溶接通電時のキヤツ
プ頭頂面の温度分布の違いを示すグラフ(aは皮
膜なし、bは皮膜有り)である。 1……電極、2……電極本体、3……ネジ、4
……キヤツプ、5……頭頂壁、6……頭頂面、7
……中央部、8……凹み、9……周辺部、10…
…周壁、11……ネジ、12,13……被溶接
材、14……ナゲツト、15……介挿板。
1 and 2 are schematic diagrams showing a spot welding method using the electrode of the present invention, and FIG. 3 is a cutaway diagram of essential parts showing a spot welding electrode according to an embodiment of the present invention.
Fig. 4 is a cutaway view of the main part showing a spot welding electrode according to another embodiment, and Fig. 5 shows the difference in temperature distribution on the top surface of the cap when welding current is applied depending on the presence or absence of a copper plating film on the inner surface of the titanium cap. This is a graph (a is without a film, b is with a film). 1... Electrode, 2... Electrode body, 3... Screw, 4
... Cap, 5 ... Parietal wall, 6 ... Parietal surface, 7
... central part, 8 ... recess, 9 ... peripheral part, 10 ...
...Peripheral wall, 11...screw, 12, 13...material to be welded, 14...nugget, 15...intervening plate.

Claims (1)

【実用新案登録請求の範囲】 アルミニウム合金またはマグネシウム合金製
金属板のスポツト溶接に用いられるスポツト溶
接用電極において、電極本体の先端に電気伝導
度の小さなコツプ形のチタン製厚肉キヤツプを
被嵌させてなり、該厚肉キヤツプの頭頂面は、
該頭頂面の中央部より周辺部に向つて該中央部
より緩やかに後退した弯曲凸面に形成されると
ともに、該厚肉キヤツプの頭頂壁の肉厚は中央
部から周辺部に向つて漸減したことを特徴とす
るスポツト溶接用電極。 (2) 前記コツプ形のチタン製厚肉キヤツプの全外
表面に窒化処理層を形成したことを特徴とする
前記請求項1記載のスポツト溶接電極。
[Claim for Utility Model Registration] A spot welding electrode used for spot welding metal plates made of aluminum alloy or magnesium alloy, in which the tip of the electrode body is fitted with a thick-walled cap made of titanium in the form of a cup with low electrical conductivity. The top surface of the thick cap is
The parietal surface is formed into a curved convex surface that gently recedes from the center toward the periphery, and the thickness of the parietal wall of the thick cap gradually decreases from the center toward the periphery. A spot welding electrode featuring: (2) The spot welding electrode according to claim 1, wherein a nitrided layer is formed on the entire outer surface of the cup-shaped thick titanium cap.
JP1987196634U 1987-12-25 1987-12-26 Expired - Lifetime JPH0515424Y2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1987196634U JPH0515424Y2 (en) 1987-12-26 1987-12-26
US07/288,187 US4904839A (en) 1987-12-25 1988-12-22 Electrodes for use in spot welding
CA000586975A CA1308175C (en) 1987-12-25 1988-12-23 Electrodes for use in spot welding
DE3844001A DE3844001A1 (en) 1987-12-25 1988-12-27 ELECTRODES FOR USE IN SPOT WELDING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987196634U JPH0515424Y2 (en) 1987-12-26 1987-12-26

Publications (2)

Publication Number Publication Date
JPH01100686U JPH01100686U (en) 1989-07-06
JPH0515424Y2 true JPH0515424Y2 (en) 1993-04-22

Family

ID=31487234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987196634U Expired - Lifetime JPH0515424Y2 (en) 1987-12-25 1987-12-26

Country Status (1)

Country Link
JP (1) JPH0515424Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127879U (en) * 1985-01-25 1986-08-11

Also Published As

Publication number Publication date
JPH01100686U (en) 1989-07-06

Similar Documents

Publication Publication Date Title
US3689731A (en) Resistance welding electrode
CA1308175C (en) Electrodes for use in spot welding
KR100232390B1 (en) Solid plate welding method
JPH0515424Y2 (en)
US2109461A (en) Resistance welding method
JPH01170586A (en) Electrode for spot welding
JPH06292982A (en) Spot welding electrode
KR20180101744A (en) Hot stamping steel sheet projection hardware welding method
JP2509497B2 (en) Spot welding electrode
CN110153546A (en) A kind of aluminium alloy sheet spot welding method
US4947019A (en) Composite electrode for resistance welding
JP5532466B1 (en) Projection bolt welding method to thin steel plate
JPH04113182U (en) Spot welding electrode
JPH04113181U (en) Spot welding electrode
JP3537465B2 (en) Welding method of aluminum alloy plate
US2186319A (en) Electrical conductor
JPWO2018123350A1 (en) Resistance spot welding method
US1959154A (en) Resistance welding electrode
JP2017140633A (en) Spot welding method
JP4321960B2 (en) Resistance welding electrode
JPH01210179A (en) Composite type electrode for spot welding
JPH1128576A (en) Spatter generation prevention method in electric resistance welding
JPH067957A (en) Resistance spot-welding method for aluminum alloy
JP2005313221A (en) Welding electrode for spot welding
JP2002160074A (en) Electrode for resistance welding