JP2005313221A - Welding electrode for spot welding - Google Patents

Welding electrode for spot welding Download PDF

Info

Publication number
JP2005313221A
JP2005313221A JP2004136826A JP2004136826A JP2005313221A JP 2005313221 A JP2005313221 A JP 2005313221A JP 2004136826 A JP2004136826 A JP 2004136826A JP 2004136826 A JP2004136826 A JP 2004136826A JP 2005313221 A JP2005313221 A JP 2005313221A
Authority
JP
Japan
Prior art keywords
welding
electrode
welded
copper
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004136826A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Kai
美利 甲斐
Masao Ieyumi
正雄 家弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Giken KK
Original Assignee
Koyo Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Giken KK filed Critical Koyo Giken KK
Priority to JP2004136826A priority Critical patent/JP2005313221A/en
Publication of JP2005313221A publication Critical patent/JP2005313221A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pair of welding electrodes, at the time when resistance welding is performed with the lapped parts of the materials to be welded sandwiched, capable of performing the welding without being subjected to dressing treatment. <P>SOLUTION: In the welding electrodes 100 with which resistance spot welding is performed with the lapped parts of at least the two materials to be welded sandwiched, electrode caps 120, 120 each surrounding the tip thereof and matching thereto are provided. In the electrode caps 120, 120 the parts abutted on the materials to be welded sandwiched from both the sides are provided with hard parts 121 having more hardness compared with the other parts, and, as cooling water is fed to the back surfaces of the hard parts, water cooling is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はスポット溶接用溶接電極に係り、詳しくは、銅又はその合金などの導電性材料からなって鋼板、その他の金属材などの被溶接材をはさんで加圧、通電してスポット溶接する溶接電極に関するものである。   The present invention relates to a welding electrode for spot welding, and more specifically, spot welding is performed by pressurizing and energizing a material to be welded such as a steel plate or other metal material made of a conductive material such as copper or an alloy thereof. The present invention relates to a welding electrode.

例えば、鋼板、ステンレス鋼板、アルミニウム板などの金属板の接合、なかでも薄い金属板の接合にはスポット溶接が用いられている。スポット溶接は溶接すべき金属板(以下、被溶接材という)を重ね合わせ、この重ね合わせ部分を一対の溶接電極の間にはさみ加圧通電し、この通電時に生じる抵抗熱を熱源として被溶接材の溶接部を加熱溶融させて接合する溶接である。また、スポット溶接は抵抗溶接法のうちでも溶接部がスポット又は点として形成されるものであって、とくに、熱源としての抵抗熱を大きくするために、被溶接材をはさんで加圧通電する一対の溶接電極の断面積を絞って電流密度を高め、短時間で大電流を流し、このようにして被溶接材の接合部分を局部的に加熱して溶融し、ご石状のナゲットを形成して溶接するところに特徴があって、自動車、家電製品その他板金製品に広く適用されている。   For example, spot welding is used for joining metal plates such as steel plates, stainless steel plates, and aluminum plates, especially for joining thin metal plates. In spot welding, a metal plate to be welded (hereinafter referred to as a material to be welded) is overlapped, the overlapped portion is sandwiched between a pair of welding electrodes, and energized with pressure. It is welding which heat-melts the welding part of and joins. Also, spot welding is a welding method in which the welded portion is formed as a spot or a spot. In particular, in order to increase the resistance heat as a heat source, pressurization energization is performed across the material to be welded. By narrowing the cross-sectional area of a pair of welding electrodes, the current density is increased, a large current is passed in a short time, and in this way, the joint portion of the welded material is locally heated and melted to form a stone-like nugget And is widely applied to automobiles, home appliances and other sheet metal products.

すなわち、スポット溶接は、熱源が被溶接材の接触面に発生するジュ−ル熱である。このため、被溶接材の物理的性質に左右され、熱源の温度が適格に制御できないという、欠点がある。それにも拘らず、スポット溶接は、ア−ク溶接などのように溶接棒やフラックスを必要とせずに接合できる長所をもっているため、広く用いられている。   That is, spot welding is Joule heat generated by a heat source on the contact surface of the workpiece. For this reason, there is a drawback that the temperature of the heat source cannot be adequately controlled depending on the physical properties of the material to be welded. Nevertheless, spot welding is widely used because it has the advantage that it can be joined without requiring a welding rod or flux, such as arc welding.

このため、スポット溶接機としては用途に応じてきわめて多岐にわたるものが提案されているが、これらスポット溶接機の中で最も普及しているものが定置型といわれる溶接機であって、スポット溶接機というと、直ちに定置型のものが連想されている。   For this reason, a wide variety of spot welders have been proposed depending on the application, but the most popular of these spot welders is a welder called a stationary type, which is a spot welder. That said, the stationary type is immediately associated.

更にくわしく説明すると、定置型スポット溶接機は、重ね合わせ被溶接材をはさんで溶接するために、一対の溶接電極が上下に対向して配置され、それぞれの溶接電極の先端は断面を絞って構成され、各溶接電極を加圧する加圧装置が強固な機械的な保持装置で支持され、この保持装置や加圧装置とともに上下の溶接電極が一定の場所に据付けられて構成されている。   More specifically, in the stationary spot welding machine, a pair of welding electrodes are arranged facing each other in order to weld the overlapped workpieces, and the tip of each welding electrode is narrowed in cross section. The pressurizing device configured to pressurize each welding electrode is supported by a strong mechanical holding device, and the upper and lower welding electrodes are installed in a certain place together with the holding device and the pressurizing device.

このため、定置型のスポット溶接機を用いると、高い加圧力がかけられるため、高い強度の溶接継手が得られるという、大きな利点があって、溶接の都度被溶接材を溶接機のところまで移動させなければならないが、小ロッドの金属枠や金属箱などの製造から大型の構造物の溶接にいたるまで適用されている。   For this reason, the use of a stationary spot welder has the great advantage that a high-strength weld joint can be obtained because a high pressure is applied, and the welded material is moved to the welder each time welding is performed. However, it is applied from the manufacture of small rod metal frames and metal boxes to the welding of large structures.

しかし、この定置型スポット溶接機において上下の電極として使用される溶接電極の使用頻度が高まると、被溶接材の金属成分が溶接電極先端のチップの銅成分と合金化して溶接電極先端のチップに付着し、溶接性が損なわれるとともにこの付着物が次の被溶接材の表面に付着して汚染することになって、これの除去に非常に手間がかかる。とくに、最近は、被溶接材として各種化成処理鋼板、ちなみに、ボンド処理鋼板やパ−カライジング鋼板が用いられ、さらに、鋼板に較べて導電率や熱伝導率が高いアルミニウム材が用いられるようになって、この点の改善が求められている。   However, if the frequency of use of the welding electrodes used as the upper and lower electrodes in this stationary spot welder increases, the metal component of the material to be welded will alloy with the copper component of the tip of the welding electrode to form the tip of the welding electrode. It adheres, the weldability is impaired, and this deposit adheres to the surface of the next material to be welded and is contaminated, which takes much time to remove. In particular, recently, various types of chemically treated steel sheets are used as materials to be welded. Incidentally, bond-treated steel sheets and parkerizing steel sheets are used, and aluminum materials having higher electrical conductivity and thermal conductivity than steel sheets are used. Therefore, improvement of this point is demanded.

このところから、特開平4−32280号明細書に記載されるような抵抗溶接方法やその装置が提案されている。しかしながら、この溶接方法や装置は溶接電極と被溶接材との間に連続的に送られる銅などの導電性テ−プを介在させて溶接する技術であって、導電性テ−プを介在させることによって装置の構造が複雑になって好ましくない。   From this point of view, a resistance welding method and apparatus as described in JP-A-4-32280 have been proposed. However, this welding method and apparatus is a technique for welding by interposing a conductive tape such as copper continuously fed between a welding electrode and a material to be welded, and interposing the conductive tape. This complicates the structure of the apparatus, which is not preferable.

すなわち、この方法は、電極と被溶接材との間に銅などから成る導電性テ−プを連続的に供給し、この導電性テ−プを介して溶接する抵抗溶接方法である。また、この方法を実施する装置は送りロ−ル、支持ロ−ル、巻取ロ−ルおよび電極を具え、この送りロ−ルより送出された導電性テ−プを支持ロ−ルにより支持し、電極と被溶接材料との間に連続的に供給するものである。   That is, this method is a resistance welding method in which a conductive tape made of copper or the like is continuously supplied between an electrode and a material to be welded, and welding is performed via this conductive tape. An apparatus for carrying out the method includes a feed roll, a support roll, a winding roll and an electrode, and the conductive tape fed from the feed roll is supported by the support roll. However, it is continuously supplied between the electrode and the material to be welded.

この溶接装置は、銅などの導電性テ−プの送りロ−ル、支持ロ−ルが設けられ、電極間に導電性材料が供給されるものである。このような構造であるため、構造が複雑化し、経済的な意味からして好ましくない。さらに、溶接時に硬化された導電性テ−プは連続かつ円滑に巻取るのに支障がある。
特開平4−32280号
This welding apparatus is provided with a feed roll and a support roll of a conductive tape such as copper, and a conductive material is supplied between the electrodes. Because of such a structure, the structure becomes complicated, which is not preferable from an economical point of view. Further, the conductive tape cured at the time of welding has a hindrance to continuous and smooth winding.
JP-A-4-32280

本発明は上記のところの欠点を解決することを目的とし、なかでも、溶接時に既存の溶接機の溶接電極に取付けるだけで、種別、材質などにかかわらず、いずれの被溶接材をスポット溶接でき、取扱いが簡単な電極キャップを提案する。   The object of the present invention is to solve the above-mentioned drawbacks. In particular, any welding material can be spot welded regardless of the type, material, etc. by simply attaching it to the welding electrode of an existing welding machine during welding. We propose an electrode cap that is easy to handle.

すなわち、本発明は、少なくとも2つの被溶接材の重合部分をはさんで抵抗溶接する溶接電極であって、この溶接電極の少なくとも先端部に整合するよう包囲する電極キャップを設け、この電極キャップにおける被溶接材との当接部分に硬い硬質部を設ける。   That is, the present invention provides a welding electrode that is resistance-welded across the overlapped portions of at least two materials to be welded, and is provided with an electrode cap that surrounds the welding electrode so as to align with at least the tip of the welding electrode. A hard portion is provided at a contact portion with the material to be welded.

この電極キャップに設けた硬質部をその裏面から水冷するように構成する。   The hard portion provided on the electrode cap is configured to be water-cooled from the back surface.

この電極キャップは無酸素銅板、タフピッチ銅板またはりん脱酸銅から構成し、被溶接材との当接部分を鍛造加工により加工硬化させた加工硬化部として構成する。   This electrode cap is comprised from an oxygen-free copper plate, a tough pitch copper plate, or phosphorus deoxidized copper, and is comprised as a work hardening part which worked and hardened the contact part with a to-be-welded material by a forge process.

また、被溶接材との当接部分の硬質部を、例えばクロム、ベリウムなどの析出硬化成分を含む銅合金から構成し、この硬質部を鍛造加工、熱処理などにより硬化させて構成する。   Moreover, the hard part of the contact part with a to-be-welded material is comprised, for example from the copper alloy containing precipitation hardening components, such as chromium and belium, and this hard part is hardened by forging, heat processing, etc., and is comprised.

以上のとおり、本発明は、少なくとも2つの被溶接材の重合部分をはさんで抵抗溶接する溶接電極の少なくとも先端部を電極キャップで包囲し、この包囲する電極キャップの被溶接材の当接部分に硬い硬質部を設けている。したがって、溶接時に被溶接材に当接して高い加圧力をかけるのが電極キャップであり、この電極キャップを換えるのみで種別を問わず広く多種の被溶接材が溶接できる。   As described above, the present invention surrounds at least the tip portion of the welding electrode that is resistance-welded across the overlapped portions of at least two workpieces with the electrode cap, and the contact portion of the surrounding electrode cap with the workpiece to be welded Are provided with hard parts. Therefore, it is the electrode cap that abuts the material to be welded during welding and applies a high pressure, and a wide variety of materials to be welded can be welded regardless of the type by simply changing the electrode cap.

また、溶接電極の先端はドレシングなどにより研摩、切断する必要がないため、溶接電極にドレシング代をとる必要がなく、冷却水の冷却通路を溶接電極の先端面まで形成でき、冷却効果を向上させることができる。   In addition, since it is not necessary to polish or cut the tip of the welding electrode by dressing or the like, it is not necessary to take a dressing allowance on the welding electrode, and a cooling water cooling passage can be formed up to the tip surface of the welding electrode, improving the cooling effect. be able to.

さらに、電極キャップを無酸素銅板、タフピッチ銅板またはりん脱酸銅から構成し、その被溶接材との当接部分を鍛造加工により加工硬化させて硬質部を構成してもその裏面からほぼ直接に近く水冷できるため、硬化の程度がほとんど戻ることがない。   Furthermore, the electrode cap is made of an oxygen-free copper plate, a tough pitch copper plate or phosphorous deoxidized copper, and even if the hard part is formed by forging the contact part with the material to be welded, it is almost directly from the back side. Since it can be cooled with water, the degree of curing hardly returns.

さらに、溶接電極は必ずしも高価な析出硬化銅合金から構成する必要がなく、価格の安い無酸素銅板、タフピッチ銅板またはりん脱酸銅から構成することができ、その上、これら純銅に近い銅板は導電性および熱伝導性もすぐれるため、電流ロスを大巾に軽減できる。   Furthermore, the welding electrode does not necessarily need to be composed of an expensive precipitation-hardened copper alloy, and can be composed of an inexpensive oxygen-free copper plate, tough pitch copper plate or phosphorous deoxidized copper, and the copper plate close to pure copper is conductive. The current loss can be greatly reduced due to excellent heat conductivity and thermal conductivity.

なお、図1は本発明の一つの実施例に係るスポット溶接用溶接電極の説明図である。   FIG. 1 is an explanatory view of a welding electrode for spot welding according to one embodiment of the present invention.

図2は図1に示す溶接電極におけるその本体のチップ本体の一部を断面で示す正面図である。   FIG. 2 is a front view showing, in section, a part of the tip body of the main body of the welding electrode shown in FIG.

図3は図1に示す溶接電極における電極キャップの一例の縦断面図である。   FIG. 3 is a longitudinal sectional view of an example of an electrode cap in the welding electrode shown in FIG.

まず、図1において符号100は本発明の一つの実施例に係る溶接電極であって、この溶接電極100は一般的に上下一対を成し、これら溶接電極100の間に被溶接材(図示せず)がはさまれて加圧通電することによってスポット溶接される。これら一対を成す溶接電極100は略々同じ構造であって、所謂定置式といわれるものに取付けられる溶接電極としても構成できる。   First, in FIG. 1, reference numeral 100 denotes a welding electrode according to one embodiment of the present invention. The welding electrode 100 generally forms a pair of upper and lower parts, and a welded material (not shown) is interposed between the welding electrodes 100. ) Is spot welded by sandwiching and applying pressure. The pair of welding electrodes 100 have substantially the same structure, and can be configured as a welding electrode attached to what is called a stationary type.

すなわち、図1に示すとおり、溶接電極100は、溶接チップ101がシャンク102に冷却水がもれないようにテ−パ103を介して結合され、シャンク102はテ−パ104を介してシャンクホルダ105に接続され、溶接時の使用頻度が増加したときに研摩、切断するために、溶接チップ101がテ−パ面103を介して結合できるように構成されている。しかし、本発明は後記のように切断や研摩などのドレシング処理の必要がないため、これらは一体に構成することもできる。   That is, as shown in FIG. 1, the welding electrode 100 is coupled via the taper 103 so that the welding tip 101 does not leak cooling water to the shank 102, and the shank 102 is connected via the taper 104 to the shank holder. The welding tip 101 can be coupled via the taper surface 103 for polishing and cutting when the frequency of use during welding increases. However, since the present invention does not require dressing processing such as cutting and polishing as will be described later, these can also be configured integrally.

また、スポット溶接するに当って、上下に配置された溶接電極100の間に鋼板やその他の金属板を重ね合わせた被溶接材(図示せず)をはさみ、重合部分を上下の溶接電極100、100によって両側から加圧通電してスポット溶接する。   Further, in spot welding, a welding target material (not shown) in which steel plates or other metal plates are superimposed is sandwiched between welding electrodes 100 arranged above and below, and the overlapped portion is joined to the upper and lower welding electrodes 100, 100 is applied with pressure from both sides and spot welding is performed.

次に、以上の通りに上下に配置された溶接電極100、100は通常同じ構造に構成され、各溶接電極100にはチップ本体110が設けられ、このチップ本体110の先端部はそれに整合するよう包囲する電極キャップ120がはめ合わされている。すなわち、上下の各溶接電極100は従来例の定置型スポット溶接機であっても、その溶接電極の先端部に電極キャップ120をはめ合わせ、これらが組み合わされて溶接電極100が構成されている。   Next, the welding electrodes 100, 100 arranged one above the other as described above are usually configured in the same structure, and each welding electrode 100 is provided with a tip body 110, and the tip of the tip body 110 is aligned with it. An enclosing electrode cap 120 is fitted. That is, even if each of the upper and lower welding electrodes 100 is a stationary spot welder of a conventional example, the welding electrode 100 is configured by fitting the electrode cap 120 to the tip of the welding electrode and combining them.

換言すると、チップ本体110として従来例のスポット溶接機、なかでも定置式といわれるスポット溶接機の溶接電極をそのまま用いることができる。   In other words, a spot welding machine of a conventional example, particularly a welding electrode of a spot welding machine called a stationary type can be used as the chip body 110 as it is.

更にくわしく説明すると、スポット溶接すべき被溶接材には、上下の溶接電極100、100により必要な加圧力と溶接電流が伝達される。しかし、図1に示す溶接電極100、100は従来例のものと相違してチップ本体110に電極キャップ120を組み合わせて構成される。とくに、電極キャップ120を直接被溶接材に当接させて加圧通電させて溶接するもので、被溶接材や電極キャップ120との境界面に発生する熱を速やかににがしかつ高い加圧力に充分に耐えるよう構成する必要がある。   More specifically, necessary welding force and welding current are transmitted to the workpiece to be spot welded by the upper and lower welding electrodes 100, 100. However, unlike the conventional example, the welding electrodes 100 and 100 shown in FIG. 1 are configured by combining the tip body 110 with the electrode cap 120. In particular, the electrode cap 120 is directly brought into contact with the material to be welded and pressurized and energized for welding, and the heat generated at the interface between the material to be welded and the electrode cap 120 is quickly removed and high pressure is applied. Need to be configured to withstand

このため、溶接電極100は、従来例のものと同様に、析出硬化型成分としてクロム1%程度含むクロム銅合金から構成することもできるが、このクロム銅合金より導電性や熱伝導性にすぐれる純銅に近い無酸素銅、タフピッチ銅、又はりん脱酸銅から構成できるところに特徴の一つがある。このようにチップ本体110そのものを純銅に近いものから構成すると、熱伝導性が全く損なわれることなくチップ本体110からの熱放散が促進され、冷却効果が十分に発揮できる。このため、後に示すとおり、電極キャップ120の底部を加工硬化することによって硬質部を設けて強化をはかっても、溶接時の加熱によってこの硬質部における加工硬化がほとんど消失することがない。   For this reason, the welding electrode 100 can be composed of a chromium copper alloy containing about 1% of chromium as a precipitation hardening type component as in the conventional example. However, the welding electrode 100 has a higher conductivity and thermal conductivity than the chromium copper alloy. One feature is that it can be made of oxygen-free copper, tough pitch copper, or phosphorous deoxidized copper close to pure copper. Thus, if the chip body 110 itself is made of a material close to pure copper, heat dissipation from the chip body 110 is promoted without any loss of thermal conductivity, and the cooling effect can be sufficiently exerted. For this reason, as will be described later, even if a hard portion is provided and hardened by work hardening the bottom portion of the electrode cap 120, work hardening in the hard portion hardly disappears due to heating during welding.

また、チップ本体110は、内部冷却方式をとるように構成することができる。例えば、図1や図2に示すように、シャンク102やチップ本体110の軸方向に冷却パイプ111を配置し、このパイプ111の先端から冷却水を噴射し、内面からチップ本体110の先端部を内部から冷却する構造に構成することができる。   Further, the chip body 110 can be configured to adopt an internal cooling system. For example, as shown in FIGS. 1 and 2, a cooling pipe 111 is arranged in the axial direction of the shank 102 and the chip body 110, cooling water is sprayed from the tip of the pipe 111, and the tip of the chip body 110 is moved from the inner surface. It can be configured to cool from the inside.

このようにチップ本体110の内部に冷却パイプ111を設け、この冷却パイプ111の先端から噴射される冷却水は冷却後チップ本体110内の冷却パイプ111の外周の環状通路を経て戻るように構成することができ、途中に冷却器などを介在させると、チップ本体110に整合する電極キャップ120を冷却することができ、寿命を大巾に向上させることができる。   As described above, the cooling pipe 111 is provided inside the chip body 110, and the cooling water sprayed from the tip of the cooling pipe 111 is configured to return through the annular passage on the outer periphery of the cooling pipe 111 in the chip body 110 after cooling. If a cooler or the like is interposed in the middle, the electrode cap 120 aligned with the chip body 110 can be cooled, and the life can be greatly improved.

すなわち、このようにチップ本体110の内部から冷却水によって先端部が冷却されるように構成されるが、従来例のとおり、チップ本体110の先端を直接被溶接材に押付けて溶接すると、どうしても、つぎのとおりの障害があり、これが被溶接材として表面処理鋼板、アルミニウム材などを用いるときには、溶接電極の寿命が短くなり、大きな問題となる。   That is, the tip portion is configured to be cooled by cooling water from the inside of the chip body 110 as described above, but as in the conventional example, if the tip end of the chip body 110 is directly pressed against the workpiece and welded, There are the following obstacles, and when a surface-treated steel plate, an aluminum material or the like is used as a material to be welded, the life of the welding electrode is shortened, which becomes a serious problem.

すなわち、チップ本体110の先端と被溶接材との当接又は接触により銅成分とこれとなじむ成分が互いに合金し、この合金層が溶接電極側に移行する。このため、溶接電極の先端、つまりチップ本体の先端が摩耗や消耗する。一方、被溶接材においては溶接部のナゲット径は減少し、形成されるナゲットの剪断強度や引張り強度が低下して好ましくない。とくに、この先端部の摩耗や消耗は溶接電極先端の中心部で大きくなり、先端形状は凹形になる。このような形状の溶接電極で加圧されても所望のナゲット径は得ることができず、このナゲット径の低下は剪断や引張りなどの強度の低下を招来する。   That is, the contact between the tip of the tip body 110 and the material to be welded causes the copper component and the component compatible therewith to alloy with each other, and the alloy layer moves to the welding electrode side. For this reason, the tip of the welding electrode, that is, the tip of the tip body is worn or consumed. On the other hand, in the material to be welded, the nugget diameter of the welded portion is decreased, and the shear strength and tensile strength of the formed nugget are decreased, which is not preferable. In particular, the wear and consumption of the tip end portion are increased at the center of the welding electrode tip end, and the tip shape becomes concave. Even if the welding electrode is pressed with such a shape, a desired nugget diameter cannot be obtained, and a decrease in the nugget diameter causes a decrease in strength such as shearing or tension.

このようなところを除去するため、すでにのべたとおり、従来例の溶接電極では先端形状を切断又は研摩して(要するに、ドレシングして)、再度正規の形状に戻して溶接することが行なわれている。   In order to remove such a place, as described above, in the welding electrode of the conventional example, the tip shape is cut or polished (in short, dressing), and then returned to the regular shape and welded again. Yes.

しかしながら、研摩やドレシングを行なうことは溶接能率が低下させる。とくに、最近用いられている表面処理鋼板や、アルミニウム材になると、この研摩やドレシングの頻度が高くなり、ドレシングによる切断や研摩を行なうことを見込んで溶接電極の先端部は、ドレシング代をとる必要があってどうしても厚くなる。このため、冷却水の温度や流速を調整しても先端部の冷却が不十分になり、溶接電極先端部の摩耗や消耗などの問題が解決できない。   However, performing polishing and dressing reduces the welding efficiency. In particular, in the case of surface-treated steel sheets and aluminum materials that have been used recently, the frequency of this polishing and dressing increases, and the tip of the welding electrode needs to take a dressing allowance in anticipation of cutting or polishing by dressing. There is always a thick. For this reason, even if the temperature and flow rate of the cooling water are adjusted, the cooling of the tip becomes insufficient, and problems such as wear and wear of the welding electrode tip cannot be solved.

そこで、本発明に係る溶接電極100ではチップ本体110と電極キャップ120とを組み合わせて構成し、従来ではドレシング代として残した部分を薄くして冷却効果を高めることができる。   Therefore, the welding electrode 100 according to the present invention is configured by combining the tip body 110 and the electrode cap 120, and conventionally, the portion left as a dressing allowance can be thinned to enhance the cooling effect.

また、チップ本体110に組み合わされる電極キャップ120を被溶接材に直接接触させ、直接接触する当接部分に硬質部121を設ける。電極キャップ120の硬質部121によって被溶接材に十分な加圧力が加えられるように構成する。   In addition, the electrode cap 120 combined with the chip body 110 is brought into direct contact with the material to be welded, and the hard portion 121 is provided at the contact portion in direct contact. The hard cap 121 of the electrode cap 120 is configured so that a sufficient pressing force is applied to the material to be welded.

このようにチップ本体110に電極キャップ120を組み合わせた溶接電極100であると、チップ本体110は、通常のスポット溶接機の溶接電極と同様に、クロムを1%程度含むクロム銅合金から構成することもできるが、直接被溶接物に接触して加圧することがないため、純銅に近い無酸素銅やタフピッチ銅、りん脱酸銅からも構成でき、電極としての導電率や熱伝導性を高めることができる。ちなみに、これら純銅に近いものの導電率を100%すると、クロム銅合金の導電率は80%程度であり、電流ロスを少なくできる。   When the welding electrode 100 is such that the electrode cap 120 is combined with the tip body 110 as described above, the tip body 110 is made of a chromium copper alloy containing about 1% of chromium, similarly to the welding electrode of a normal spot welder. However, since it does not press directly against the work piece, it can be made of oxygen-free copper, tough pitch copper, or phosphorous deoxidized copper, which is close to pure copper, to increase the electrical conductivity and thermal conductivity of the electrode. Can do. Incidentally, when the conductivity of those close to pure copper is 100%, the conductivity of the chromium copper alloy is about 80%, and the current loss can be reduced.

一方において、電極キャップ120も銅を1%程度含む析出硬化型の銅合金板を深絞りして構成することもできるが、その成形性にある程度支障がある。しかし、電極キャップ120はその底部に硬質部121を設けるため、電極キャップ120は無酸素銅板、タフピッチ銅板またはりん脱酸銅板などを容器状に深絞りして構成し、その一部を局部的に鍛造などにより加工硬化させて硬質部121を構成することができる。   On the other hand, the electrode cap 120 can also be formed by deep-drawing a precipitation hardening type copper alloy plate containing about 1% of copper, but its formability is somewhat hindered. However, since the electrode cap 120 is provided with a hard portion 121 at the bottom, the electrode cap 120 is formed by deep drawing an oxygen-free copper plate, a tough pitch copper plate, or a phosphorous deoxidized copper plate into a container shape, and a part thereof is locally The hard portion 121 can be formed by work hardening by forging or the like.

このように構成すると、ほとんど他の合金成分を含むことなく純銅に近い金属的性質、つまり、面心立方格子系金属としての特性をいかして絞り加工できるほか、高い導電率や熱伝導率が利用でき、さらに、底部に鍛造をくり返し与えることによって銅の加工硬化性がいちぢるしく高いことを利用して底部に硬質部121を形成することができる。   With this configuration, it is possible to draw the metal properties close to pure copper with almost no other alloy components, that is, the characteristics as a face-centered cubic lattice metal, and use high conductivity and thermal conductivity. Furthermore, the hard part 121 can be formed in the bottom part by utilizing the fact that the work hardening of copper is extremely high by repeatedly forging the bottom part.

一般に、銅は電気抵抗が低く電流をよく通し、熱伝導率が銀に次いで高く、面心立方格子系金属として延ばし易く加工性にすぐれることが知られている。銅は加工硬化性がきわめて高く古来よりこれを利用した鋭い刃をもつ刃物も知られている。しかし、このような性質は、合金元素や不純物を含まない銅において最も高くあらわれ、合金成分などが含まれるとそれに応じて低下する。例えば、電気抵抗に対応して導電率をみると、ほとんど純銅に近い無酸素銅、タフピッチ銅、りん脱酸銅などの導電率に較べると、1%程度のクロムしか含まないクロム銅のそれは80%程度となり、他の成分、例えばベリウムを含む銅合金の導電率はさらに低下する。一方、加工性からみても、クロム銅は焼入れ、焼戻しによる析出硬化型の合金のため、軟化温度が500℃前後のように高く高温に耐えられるが、クロムの添加によって加工性がやや劣化するし、加工硬化の程度、つまり加工硬化性も低減する。   In general, it is known that copper has a low electric resistance and allows a current to pass through, has a heat conductivity next to that of silver, and is easy to extend as a face-centered cubic lattice metal, and has excellent workability. Copper has an extremely high work-hardening property, and a blade having a sharp blade using this has been known since ancient times. However, such a property appears most highly in copper containing no alloying elements or impurities, and when alloying components are contained, it decreases accordingly. For example, the conductivity corresponding to the electrical resistance is 80% that of chromium copper containing only about 1% of chromium compared to the conductivity of oxygen-free copper, tough pitch copper, phosphorous deoxidized copper, etc., which are almost similar to pure copper. The electrical conductivity of the copper alloy containing other components such as beryllium is further reduced. On the other hand, from the viewpoint of workability, chrome copper is a precipitation hardening type alloy by quenching and tempering, so that the softening temperature is as high as about 500 ° C. and it can withstand high temperatures. The degree of work hardening, that is, work hardenability is also reduced.

これらのところから、電極キャップ120はタフピッチ銅、無酸素銅などのほとんど銅から成る板材を深絞りしその底部をさらにプレス圧延をくり返して加工硬化させ、硬度をいちぢるしく高めて底部を硬質部として形成する。このように硬質部を形成すると、ほとんど銅から成る無酸素銅やタフピッチ銅であると、その加工硬化率は鉄や鋼よりははるかに高く、アルミニウム材や、さらにクロム銅そのほかの銅合金より高いため、導電率や熱伝導率を損なわずに硬質部121を形成できる。さらに、電極キャップ120はチップ本体110の形状に整合する筒状体として構成され、とくに、筒状の側壁部122は絞り代が集約され、ある程度の延性、弾性(スプリングハック)が保持できるため、これを利用してチップ本体110に整合させて保持できる。   From these points, the electrode cap 120 is made by deep drawing a plate made of almost copper, such as tough pitch copper and oxygen-free copper, and the bottom portion thereof is further press-rolled to work and harden it. Form as part. When the hard part is formed in this way, if it is oxygen-free copper or tough pitch copper, which is almost copper, its work hardening rate is much higher than that of iron or steel, and higher than that of aluminum or even chromium copper or other copper alloys Therefore, the hard part 121 can be formed without impairing the conductivity and thermal conductivity. Furthermore, the electrode cap 120 is configured as a cylindrical body that matches the shape of the chip body 110, and in particular, the cylindrical side wall portion 122 has a reduced drawing margin, and can maintain a certain degree of ductility and elasticity (spring hack). By utilizing this, the chip body 110 can be aligned and held.

なお、以上のとおり、電極キャップ120の底部を加工硬化させて硬質部121を形成する場合、溶接時に加熱されて軟化され、硬質部121の加工硬化が失われ易い。   As described above, when the hard portion 121 is formed by work hardening the bottom portion of the electrode cap 120, the hard portion 121 is easily softened by being heated during welding.

この点について本発明者らは実際にスポット溶接を行なって検討したところ、スポット溶接においては通電時間がきわめて短かく、冷却水量の調整によって冷却能を高めると、電極キャップ120の硬質部121を銅の再結晶温度(約200℃)以上に高めても、この温度に維持されるのはきわめて短かく、再結晶速度が加工硬化に十分に打ち勝つことができる時間になることがなく、加工硬化が十分に維持できることが確かめられた。   The present inventors examined this point by actually carrying out spot welding, and it was found that the energization time was extremely short in spot welding, and when the cooling capacity was increased by adjusting the amount of cooling water, the hard part 121 of the electrode cap 120 was made copper. Even if it is raised above the recrystallization temperature (about 200 ° C.), it is very short to be maintained at this temperature, and the recrystallization speed does not become a time that can sufficiently overcome the work hardening. It was confirmed that it could be maintained sufficiently.

また、加工硬化に関連して溶接時に電極キャップ120は高温で荷重を支持し加工硬化と焼なましの両作用をうける可能もあり、このクリ−プ挙動(高温においてひずみが応力と時間とに依存する現象)を配慮する必要がある。この点を配慮して電極キャップ120の寿命の基準を予め定めておき、この基準に達したときに新しく交換すれば十分である。   In addition, in connection with work hardening, the electrode cap 120 supports a load at a high temperature during welding, and may be subjected to both work hardening and annealing. This creep behavior (strain becomes stress and time at high temperature). It is necessary to consider the phenomenon). Considering this point, it is sufficient to predetermine a standard for the life of the electrode cap 120 and replace it when the standard is reached.

この電極キャップ交換における一応の目安とする判定基準は、つぎのとおりである。
(1)ナゲット径又は剪断強さが規定の値以下になるまで連続打点数、
(2)電極キャップの底面に電極キャップと被溶接材との合金層ができ、それが被溶接材の溶接部に転写されて溶接部の外観が損なわれる、ピックアップ現象が発生するまでの連続打点数、
(3)電極キャップが被溶接材に溶着してとれなく現象が起る前までの連続打点数、
である。
Judgment criteria used as a temporary guide in this electrode cap replacement are as follows.
(1) The number of consecutive hits until the nugget diameter or shear strength is below a specified value,
(2) An alloy layer of the electrode cap and the welded material is formed on the bottom surface of the electrode cap, which is transferred to the welded portion of the welded material and the appearance of the welded portion is impaired, and continuous hitting until the pickup phenomenon occurs Points,
(3) The number of continuous hit points before the phenomenon occurs when the electrode cap is welded to the workpiece,
It is.

以上のとおり、本発明に係る溶接電極は広くスポット溶接の分野に利用できるもので溶接機としても定置式といわれるものはもちろん、産業上でも、自動車、電気製品のほか、所謂板金作業と称される分野にも用いることができる。   As described above, the welding electrode according to the present invention can be widely used in the field of spot welding and is not only called a stationary type as a welding machine, but also industrially referred to as so-called sheet metal work in addition to automobiles and electrical products. It can also be used in other fields.

本発明の一つの実施例に係るスポット溶接用溶接電極の説明図である。It is explanatory drawing of the welding electrode for spot welding which concerns on one Example of this invention. 図1に示す溶接電極におけるその本体のチップ本体の一部を断面で示す正面図である。It is a front view which shows a part of chip | tip main body of the main body in the welding electrode shown in FIG. 図1に示す溶接電極における電極キャップの一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the electrode cap in the welding electrode shown in FIG.

符号の説明Explanation of symbols

100 溶接電極
110 チップ本体
111 冷却パイプ
121 硬質部

100 Welding electrode 110 Chip body 111 Cooling pipe 121 Hard part

Claims (8)

少なくとも2つの被溶接材の重合部分をはさみ加圧通電してスポット溶接する溶接電極においてこの溶接電極の先端部に整合し包囲する電極キャップを設け、この電極キャップにおける前記被溶接材との当接部分に硬い硬質部を設けてなることを特徴とするスポット溶接用溶接電極。   An electrode cap is provided in a welding electrode that is spot-welded by sandwiching at least two overlapped parts of the welded material, and is in contact with the welded material in the electrode cap. A welding electrode for spot welding, characterized in that a hard part is provided in the part. 前記電極キャップにおける前記硬質部をその裏面から水冷することを特徴とする請求項1記載のスポット溶接用溶接電極。   The welding electrode for spot welding according to claim 1, wherein the hard portion of the electrode cap is water-cooled from the back surface thereof. 前記電極キャップを無酸素銅板、タフピッチ銅板またはりん脱酸銅から構成することを特徴とする請求項1又は2記載のスポット溶接用溶接電極。   The welding electrode for spot welding according to claim 1 or 2, wherein the electrode cap is made of an oxygen-free copper plate, a tough pitch copper plate, or phosphorous deoxidized copper. 前記電極キャップにおける前記硬質部を鍛造加工により加工硬化させた加工硬化部として構成することを特徴とする請求項1および3記載のスポット溶接用溶接電極。   The spot welding welding electrode according to claim 1 or 3, wherein the hard portion of the electrode cap is formed as a work-hardened portion obtained by work hardening by forging. 前記電極キャップにおける前記硬質部を析出硬化銅合金から構成することを特徴とする請求項1記載のスポット溶接用溶接電極。   The welding electrode for spot welding according to claim 1, wherein the hard portion of the electrode cap is made of a precipitation hardened copper alloy. 前記溶接電極を析出硬化銅合金から構成するとともに、前記電極キャップの少なくとも前記硬質部を冷却する冷却水の流通通路を設けることを特徴とする請求項1、2、4又は5記載のスポット溶接用溶接電極。   6. The spot welding according to claim 1, 2, 4 or 5, wherein the welding electrode is made of a precipitation hardening copper alloy and a cooling water flow passage for cooling at least the hard part of the electrode cap is provided. Welding electrode. 前記電極を析出硬化銅合金から構成する一方、前記電極キャップを無酸素銅板、タフピッチ銅板またはりん脱酸銅から構成することを特徴とする請求項1又は2記載のスポット溶接用溶接電極。   The spot welding welding electrode according to claim 1 or 2, wherein the electrode is made of a precipitation hardened copper alloy, and the electrode cap is made of an oxygen-free copper plate, a tough pitch copper plate, or phosphorous deoxidized copper. 前記電極キャップを、無酸素銅板、タフピッチ銅板又はりん脱酸銅板を深絞りして筒状容器に成型し、この筒状容器の底部を鍛造加工により加工硬化させて前記硬質部を構成することを特徴とする請求項1記載のスポット溶接用溶接電極。
The electrode cap is formed into a cylindrical container by deep-drawing an oxygen-free copper plate, a tough pitch copper plate or a phosphorus deoxidized copper plate, and the hard portion is formed by forging and processing the bottom of the cylindrical container. The spot welding welding electrode according to claim 1.
JP2004136826A 2004-04-30 2004-04-30 Welding electrode for spot welding Pending JP2005313221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136826A JP2005313221A (en) 2004-04-30 2004-04-30 Welding electrode for spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136826A JP2005313221A (en) 2004-04-30 2004-04-30 Welding electrode for spot welding

Publications (1)

Publication Number Publication Date
JP2005313221A true JP2005313221A (en) 2005-11-10

Family

ID=35441192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136826A Pending JP2005313221A (en) 2004-04-30 2004-04-30 Welding electrode for spot welding

Country Status (1)

Country Link
JP (1) JP2005313221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172901A (en) * 2009-01-27 2010-08-12 I & T:Kk Tip base for repair of electrode arm for spot welding, and method of reproducing electrode arm for spot welding using the tip base
JP2015027680A (en) * 2013-07-30 2015-02-12 新光機器株式会社 Upper electrode device of spot welder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172901A (en) * 2009-01-27 2010-08-12 I & T:Kk Tip base for repair of electrode arm for spot welding, and method of reproducing electrode arm for spot welding using the tip base
JP2015027680A (en) * 2013-07-30 2015-02-12 新光機器株式会社 Upper electrode device of spot welder

Similar Documents

Publication Publication Date Title
TWI601588B (en) Resistance point welding method
CN107848065B (en) Friction welding method
EP1637270B1 (en) Method of liquid phase diffusion bonding of metallic machine parts
WO2018123350A1 (en) Resistance spot welding method
JP2013078782A (en) Resistance spot welded joint for high-strength thin steel sheet, and resistance spot welding method
Cheon et al. Optimization of pulsed current in resistance spot welding of Zn-coated hot-stamped boron steels
JP2005334971A (en) Resistance spot welding method for aluminum material and steel material, and weld joint
KR100722130B1 (en) Spot welding method for high strength steel sheet
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP2002103048A (en) Method for spot welding of high strength steel plate
JP6315161B1 (en) Resistance spot welding method
JP2005313221A (en) Welding electrode for spot welding
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP6852035B2 (en) Spot welding method
KR100804943B1 (en) Method for spot welding and its product thereof
JP2017140633A (en) Spot welding method
JP6225717B2 (en) Formation method of welded joint
JPS6018485B2 (en) Composite cemented carbide hot rolling roll
JP6852036B2 (en) Electrode insert for resistance spot welding
JP2006212649A (en) Method for spot-welding aluminum-plated steel sheet
JPH01210179A (en) Composite type electrode for spot welding
JP2005313222A (en) Spot welder
JP7269191B2 (en) spot welding method
JP2737817B2 (en) Joint between Ni-Ti alloy and dissimilar metal and joining method thereof
JP2021074737A (en) Manufacturing method for resistance spot welded joint