JPH06275874A - Oxide superconducting current lead device - Google Patents

Oxide superconducting current lead device

Info

Publication number
JPH06275874A
JPH06275874A JP5082584A JP8258493A JPH06275874A JP H06275874 A JPH06275874 A JP H06275874A JP 5082584 A JP5082584 A JP 5082584A JP 8258493 A JP8258493 A JP 8258493A JP H06275874 A JPH06275874 A JP H06275874A
Authority
JP
Japan
Prior art keywords
magnetic field
current lead
oxide superconducting
superconducting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5082584A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
山田  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP5082584A priority Critical patent/JPH06275874A/en
Publication of JPH06275874A publication Critical patent/JPH06275874A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To relatively lower the intensity of a magnetic field affecting a current lead and to prevent a drop in the super-conductive-characteristic, especially the critical current density and the critical current value of an oxide super- conducting bulk current lead by a method wherein a magnetic field in a direction opposite to a leakage magnetic field from a superconducting apparatus is applied. CONSTITUTION:When a leakage magnetic field 4 acts perpendicularly to an oxide superconducting bulk current lead 2, permanent magnets 1 are installed, an application magnetic filed 5 is given, and the intensity of a magnetic field affecting the current lead is lowered relatively. When the magnetic field in a direction opposite to the leakage magnetic field 4 is applied, the intensity of the magnetic field affecting the current lead is lowered relatively, and it is possible to prevent a drop in the superconductive characteristic, especially the critical current density and the critical current value of the oxide superconducting current lead 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導電流リード
の臨界電流低下を押さえる磁気シールドを備えた電流リ
ード装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead device provided with a magnetic shield for suppressing a decrease in critical current of an oxide superconducting current lead.

【0002】[0002]

【従来の技術】酸化物超電導バルクは磁場下において超
電導特性、特に臨界電流密度(Jc)が低下することが
知られている。図1に、Bi系酸化物超電導バルクの臨
界電流密度の磁場依存性のグラフを示す。液体窒素温度
(77K)下で通電方向に垂直な磁場および通電方向に
平行な磁場が作用する場合と、併せて、液体ヘリウム温
度(4.2K)において、通電方向に垂直な磁場が作用
する場合について示している。
2. Description of the Related Art It is known that an oxide superconducting bulk has a low superconducting property, particularly a critical current density (Jc), under a magnetic field. FIG. 1 shows a graph of the magnetic field dependence of the critical current density of a Bi-based oxide superconducting bulk. When a magnetic field perpendicular to the current-carrying direction and a magnetic field parallel to the current-carrying direction act at the liquid nitrogen temperature (77K), and also when a magnetic field perpendicular to the current-carrying direction acts at the liquid helium temperature (4.2K). Is shown.

【0003】図中、プロットマーク付きのグラフ線は中
空筒状酸化物超電導バルク電流リードについて、実線の
グラフ線は中実丸棒状の酸化物超電導バルク電流リード
について示している。
In the figure, the graph line with plot marks shows the hollow cylindrical oxide superconducting bulk current lead, and the solid graph line shows the solid round bar-shaped oxide superconducting bulk current lead.

【0004】このグラフから、円筒状バルクの臨界電流
密度は液体窒素温度77Kにおいて、数10ミリテスラ
で半減すること、また通電方向に対して垂直に磁場がか
かるほうが臨界電流密度の低下が大きいことなどがわか
る。
From this graph, the critical current density of the cylindrical bulk is halved at several tens of millitesla at the liquid nitrogen temperature of 77K, and the lowering of the critical current density is larger when the magnetic field is applied perpendicularly to the energizing direction. I understand.

【0005】したがって、酸化物超電導バルク電流リー
ドに対して、漏洩磁場の影響が心配される場合は、何ら
かの磁気シールドを施して臨界電流密度の低下を防止す
る必要がある。磁気シールドとして、現在、鉄等の金属
製磁気シールドと、酸化物超電導体の磁気シールドが用
いられている。
Therefore, when there is a concern about the influence of the leakage magnetic field on the oxide superconducting bulk current lead, it is necessary to provide some kind of magnetic shield to prevent the reduction of the critical current density. As magnetic shields, magnetic shields made of metal such as iron and magnetic shields of oxide superconductors are currently used.

【0006】[0006]

【発明が解決しようとする課題】上記のように、酸化物
超電導バルク電流リードに用いる磁気シールド材として
は酸化物超電導体、または金属が用いられている。以前
から磁気シールド材として利用されてきた金属の場合、
磁気シールド性能を高めるためには、厚みや大きさが必
要であり、充分な磁気シールド性能が得にくい。
As described above, an oxide superconductor or a metal is used as the magnetic shield material used for the oxide superconducting bulk current lead. In the case of metal that has been used as a magnetic shield material for a long time,
In order to improve the magnetic shield performance, it is necessary to have thickness and size, and it is difficult to obtain sufficient magnetic shield performance.

【0007】金属製磁気シールド体は、大きさ、重量が
かさむため、作製や取扱いに不便であるといった欠点が
ある。また、金属は、一般に高い熱伝導率を有するた
め、熱の侵入を嫌う超電導機器への給電を行う酸化物超
電導バルク電流リードの磁気シールド材として用いるこ
とには、問題がある。
The metal magnetic shield body is disadvantageous in that it is inconvenient to manufacture and handle because it is bulky in size and weight. In addition, since metal generally has high thermal conductivity, there is a problem in using it as a magnetic shield material for an oxide superconducting bulk current lead for supplying power to a superconducting device which is insensitive to heat penetration.

【0008】酸化物超電導体を用いた磁気シールドは、
熱伝導率が低いため、冷却効率の改善等を狙って開発さ
れているが、現状ではまだシールド磁場は、数10ミリ
テスラ程度にとどまっている。
A magnetic shield using an oxide superconductor is
Since the thermal conductivity is low, it has been developed with the aim of improving the cooling efficiency, etc., but at present, the shield magnetic field is still only about several tens of millitesla.

【0009】酸化物超電導バルク電流リードを用いた給
電を実用化するには、超電導機器からの漏洩磁場を遮蔽
し、酸化物超電導バルク電流リードの超電導特性を保持
して通電状態を安定させることが重要不可欠である。
In order to put power into practical use using the oxide superconducting bulk current lead, it is necessary to shield the leakage magnetic field from the superconducting device, maintain the superconducting characteristics of the oxide superconducting bulk current lead, and stabilize the energized state. It is essential.

【0010】本発明は、超電導機器からの漏洩磁場を有
効に遮蔽できる磁気シールド方法を得て、給電時の酸化
物超電導バルク電流リードの超電導特性を守り、通電を
安定させることを目的とする。
An object of the present invention is to obtain a magnetic shield method capable of effectively shielding a leakage magnetic field from a superconducting device, to protect superconducting characteristics of an oxide superconducting bulk current lead at the time of power feeding, and to stabilize energization.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の装置では、酸化物超電導電流リードに対
して超電導機器から漏洩する磁場と反対方向の磁場を印
加することで磁気シールド効果を実現するものである。
In order to solve the above-mentioned problems, in the device of the present invention, a magnetic field is applied to the oxide superconducting current lead in a direction opposite to the magnetic field leaking from the superconducting device. It realizes the effect.

【0012】漏洩磁場と反対方向の磁場を印加すること
により、電流リードに影響のおよぶ磁場の強さを相対的
に下げ、酸化物超電導電流リードの超電導特性、特に臨
界電流密度および臨界電流値の低下を防止する。
By applying a magnetic field in the direction opposite to the leakage magnetic field, the strength of the magnetic field affecting the current lead is relatively reduced, and the superconducting characteristics of the oxide superconducting current lead, particularly critical current density and critical current value Prevent decline.

【0013】図2および図3は本発明の装置で用いる磁
気シールドについての説明図である。図は酸化物超電導
バルク電流リード2に対して、漏洩磁場4が垂直に作用
している場合を平面的に示している。永久磁石1を図の
ように設置して、印加磁場5を与え、電流リードに影響
する磁場の強さを相対的に低下させることができる。
2 and 3 are explanatory views of the magnetic shield used in the apparatus of the present invention. The figure shows a plan view of the case where the leakage magnetic field 4 acts perpendicularly on the oxide superconducting bulk current lead 2. The permanent magnet 1 can be installed as shown in the figure to apply an applied magnetic field 5 to relatively reduce the strength of the magnetic field affecting the current lead.

【0014】図4および図5は、本発明の装置における
電流リードにかかる磁場の強さと通電電流との関係を示
すグラフであって、酸化物超電導電流リードに永久磁石
を配置した場合について示している。図4においては、
超電導機器からの漏洩磁場は、通電電流にほぼ比例して
増加しているが、磁場の向きが漏洩磁場と反対方向に成
るように永久磁石を設置して磁場を印加すると、磁場の
強さが相殺され、電流リードに影響が及ぶ磁場の絶対値
が小さくなるため、臨界電流密度等の超電導特性の低下
を抑制することが出来る。
FIGS. 4 and 5 are graphs showing the relationship between the strength of the magnetic field applied to the current lead and the applied current in the device of the present invention, showing the case where a permanent magnet is arranged in the oxide superconducting current lead. There is. In FIG.
The leakage magnetic field from the superconducting device increases almost in proportion to the applied current, but when a permanent magnet is installed so that the direction of the magnetic field is opposite to the leakage magnetic field, the magnetic field strength is increased. Since the absolute value of the magnetic field that cancels out and affects the current lead becomes small, it is possible to suppress the deterioration of the superconducting characteristics such as the critical current density.

【0015】図5に示した関係図は図4に比べて永久磁
石により印加する磁場の強さを強めることにより、通電
電流が高く、臨界電流密度の低下が最も懸念される領域
で、電流リードに影響を及ぼす磁場の強さをさらに小さ
く抑えるものである。
The relationship diagram shown in FIG. 5 is a region in which the current flow is high and the reduction of the critical current density is most likely to occur by increasing the strength of the magnetic field applied by the permanent magnets as compared with FIG. It further reduces the strength of the magnetic field that affects the.

【0016】このような漏洩磁場と反対方向の磁場を印
加する方法としては、以上のような永久磁石による方法
が簡便であるが、電磁石によっても同じ効果が得られ
る。図6は、本発明の酸化物超電導電流リードの磁気シ
ールド方法の他の一例の説明図であって、図2、図3と
同様に、酸化物超電導バルク電流リード2に対して垂直
に作用する漏洩磁場4に、電磁石3を用いて磁気シール
ドを行う場合について示している。図6のような電磁石
3を用いて漏洩磁場4と反対方向の印加磁場5を与える
場合、漏洩磁場の強さに対応させて磁場を印加すること
が出来る。漏洩磁場と印加磁場との合成磁場をおおよそ
0に調整することが可能である。
As a method of applying a magnetic field in the direction opposite to the leakage magnetic field, the method using a permanent magnet as described above is simple, but the same effect can be obtained using an electromagnet. FIG. 6 is an explanatory diagram of another example of the magnetic shield method for the oxide superconducting current lead of the present invention, which acts perpendicularly to the oxide superconducting bulk current lead 2 as in FIGS. 2 and 3. A case where a magnetic shield is applied to the leakage magnetic field 4 by using the electromagnet 3 is shown. When applying the applied magnetic field 5 in the opposite direction to the leakage magnetic field 4 using the electromagnet 3 as shown in FIG. 6, the magnetic field can be applied according to the strength of the leakage magnetic field. It is possible to adjust the combined magnetic field of the leakage magnetic field and the applied magnetic field to approximately 0.

【0017】図7に、本発明の他の一例における電流リ
ードにかかる磁場の強さと通電電流との関係の説明図で
あって、酸化物超電導電流リードに磁気シールドのため
の電磁石を設置した場合について示している。電磁石か
ら生じる磁場を制御し、漏洩磁場の大きさに応じた磁場
を印加する。電磁石によって、漏洩磁場を打ち消すこと
により、電流リードにかかる磁場を0とすることが出来
る。
FIG. 7 is an explanatory view of the relationship between the strength of the magnetic field applied to the current lead and the applied current in another example of the present invention, in the case where an electromagnet for magnetic shielding is installed on the oxide superconducting current lead. Is shown. The magnetic field generated from the electromagnet is controlled and a magnetic field according to the magnitude of the leakage magnetic field is applied. By canceling the leakage magnetic field with the electromagnet, the magnetic field applied to the current lead can be made zero.

【0018】[0018]

【発明の効果】以上のように、本発明の酸化物超電導電
流リード装置の磁気シールドは永久磁石または電磁石を
用いて磁場を印加することにより、電流リードの通電方
向に垂直な磁場を抑制し、超電導特性、特に臨界電流密
度の低下を防ぎ、通電の安定を図ることが出来る。電磁
石により印加磁場を制御することにより、電流リードに
およぶ磁場を概ね排除することが可能となる。
As described above, the magnetic shield of the oxide superconducting current lead device of the present invention suppresses the magnetic field perpendicular to the current lead conduction direction by applying a magnetic field using a permanent magnet or an electromagnet, It is possible to prevent deterioration of superconducting properties, especially critical current density, and to stabilize the current flow. By controlling the applied magnetic field with the electromagnet, it is possible to almost eliminate the magnetic field that reaches the current lead.

【0019】本発明の装置により漏洩磁場から電流リー
ドの超電導特性を守ることが出来るため、超電導機器へ
の給電用に酸化物超電導電流リードの実用化が期待でき
る等の効果がある。
Since the device of the present invention can protect the superconducting property of the current lead from the leakage magnetic field, there is an effect that the oxide superconducting current lead can be expected to be put into practical use for supplying power to the superconducting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi系酸化物超電導バルクの臨界電流密度の磁
場依存性を示すグラフである。
FIG. 1 is a graph showing the magnetic field dependence of the critical current density of a Bi-based oxide superconducting bulk.

【図2】本発明の酸化物超電導電流リード装置の磁気シ
ールドについての説明図である。
FIG. 2 is an explanatory diagram of a magnetic shield of the oxide superconducting current lead device of the present invention.

【図3】本発明の酸化物超電導電流リード装置の磁気シ
ールドについての説明図である。
FIG. 3 is an explanatory diagram of a magnetic shield of the oxide superconducting current lead device of the present invention.

【図4】電流リードにかかる磁場の強さと超電導機器の
通電電流との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the strength of the magnetic field applied to the current lead and the energizing current of the superconducting device.

【図5】本発明の電流リードにかかる磁場の強さと超電
導機器の通電電流との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the strength of the magnetic field applied to the current lead of the present invention and the energizing current of the superconducting device.

【図6】本発明の酸化物超電導バルク電流リードの磁気
シールド手段の一例についての説明図である。
FIG. 6 is an explanatory view of an example of a magnetic shield means of the oxide superconducting bulk current lead of the present invention.

【図7】本発明の装置における電流リードにかかる磁場
の強さと超電導機器の通電電流との関係の説明図であ
る。
FIG. 7 is an explanatory diagram of the relationship between the strength of the magnetic field applied to the current lead and the energizing current of the superconducting device in the device of the present invention.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 酸化物超電導電流リード 3 電磁石 4 漏洩磁場 5 印加磁場 1 Permanent magnet 2 Oxide superconducting current lead 3 Electromagnet 4 Leakage magnetic field 5 Applied magnetic field

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超電導機器への給電等に用いる酸化物超
電導体からなる電流リードに対して、超電導機器等の周
辺機器からの漏洩磁場と反対方向の磁場を印加する手段
を備えたことを特徴とする酸化物超電導電流リード装
置。
1. A means for applying a magnetic field in a direction opposite to a leakage magnetic field from a peripheral device such as a superconducting device to a current lead made of an oxide superconductor used for supplying power to the superconducting device or the like. Oxide superconducting current lead device.
【請求項2】 前記漏洩磁場と反対方向の磁場を印加す
る手段が永久磁石からなることを特徴とする超電導電流
リード装置。
2. The superconducting current lead device according to claim 2, wherein the means for applying a magnetic field in a direction opposite to the leakage magnetic field is a permanent magnet.
【請求項3】 前記漏洩磁場と反対方向の磁場を印加す
る手段が電磁石からなることを特徴とする超電導電流リ
ード装置。
3. The superconducting current lead device according to claim 1, wherein the means for applying a magnetic field in a direction opposite to the leakage magnetic field comprises an electromagnet.
JP5082584A 1993-03-17 1993-03-17 Oxide superconducting current lead device Pending JPH06275874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082584A JPH06275874A (en) 1993-03-17 1993-03-17 Oxide superconducting current lead device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082584A JPH06275874A (en) 1993-03-17 1993-03-17 Oxide superconducting current lead device

Publications (1)

Publication Number Publication Date
JPH06275874A true JPH06275874A (en) 1994-09-30

Family

ID=13778534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082584A Pending JPH06275874A (en) 1993-03-17 1993-03-17 Oxide superconducting current lead device

Country Status (1)

Country Link
JP (1) JPH06275874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527161A (en) * 2007-05-15 2010-08-05 フィリップ セイント ゲア アーゲー Method for influencing magnetic coupling between two objects at a predetermined distance from each other and apparatus for carrying out the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527161A (en) * 2007-05-15 2010-08-05 フィリップ セイント ゲア アーゲー Method for influencing magnetic coupling between two objects at a predetermined distance from each other and apparatus for carrying out the method

Similar Documents

Publication Publication Date Title
Ren et al. Quasi permanent superconducting magnet of very high field
Müller et al. New permanent magnets
Tanaka et al. Microstructures and critical current densities of superconducting V3Ga tapes made by a composite process
JPH06275874A (en) Oxide superconducting current lead device
Sekitani et al. Measurement of the upper critical field of optimally-doped YBa2Cu3O7-δ in megagauss magnetic fields
JPH06188466A (en) Superconductor magnet cooling system
Zeisberger et al. Optimization of levitation forces [in superconducting magnetic bearings]
JP3727122B2 (en) Superconducting bulk magnet
JP3695010B2 (en) Superconducting magnetron sputtering system
Chandrasekaran et al. Demagnetization of a complete superconducting radiofrequency cryomodule: Theory and practice
Ikuta et al. Melt processing and the performance as a superconducting permanent magnet of RE–Ba–Cu–O/Ag (RE= Sm, Nd)
JP3635828B2 (en) Magnetization method of superconductor
Curreri et al. High T c composite silver/oxide superconductors
JP2000262486A (en) Device and method for generating static magnetic field
Sato et al. Superconductivity in intermetallic compound La3Co
Fujimoto Cyclotron absorption in n-type lead telluride
JP3052662B2 (en) AC magnet using oxide superconducting wire
JP3170949B2 (en) Cooling device for AC magnets using oxide superconducting wires
JPH08279411A (en) Cylindrical superconducting magnet and magnetizing method thereof
JPS63239875A (en) Superconducting shield
JPS57173986A (en) Current supply device for super conductive apparatus
JPH06314612A (en) Oxide superconducting current lead
JPH01241807A (en) Thermal insulation supporting device for superconductive coil
Kumakura et al. Development of Bi-2212 tapes and coils applying the dip-coating process
JPH0496298A (en) Formation of extreme low magnetic filed