JP3635828B2 - Magnetization method of superconductor - Google Patents

Magnetization method of superconductor Download PDF

Info

Publication number
JP3635828B2
JP3635828B2 JP32789996A JP32789996A JP3635828B2 JP 3635828 B2 JP3635828 B2 JP 3635828B2 JP 32789996 A JP32789996 A JP 32789996A JP 32789996 A JP32789996 A JP 32789996A JP 3635828 B2 JP3635828 B2 JP 3635828B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconductor
pulse magnetic
pulse
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32789996A
Other languages
Japanese (ja)
Other versions
JPH10154620A (en
Inventor
陽介 柳
徹雄 岡
佳孝 伊藤
雅章 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP32789996A priority Critical patent/JP3635828B2/en
Priority to US08/879,040 priority patent/US6111490A/en
Publication of JPH10154620A publication Critical patent/JPH10154620A/en
Priority to US09/586,956 priority patent/US6441710B1/en
Priority to US10/066,680 priority patent/US7026901B2/en
Application granted granted Critical
Publication of JP3635828B2 publication Critical patent/JP3635828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,超電導体の着磁方法,特にバルク形状の高温超電導体に高い磁場を捕捉させる場合の着磁方法に関する。
【0002】
【従来技術】
例えば,YBaCuO系などの一部の高温超電導体では,その組織制御により液体窒素温度でも永久磁石では不可能な1T(テスラ)を超える大きな磁場が捕捉できるものが得られるようになった。これらの高温超電導体は,材料開発により一層の特性向上が期待でき,また,液体窒素温度(77K)よりも低温に冷却すると,さらに大きな磁場が捕捉可能になることが知られている。そこで,これらのバルク状の高温超電導体を着磁して,これまで容易には得られなかった強力な磁場を発生する磁石として使うことが検討されるようになってきた。
【0003】
バルク状の超電導体が磁石として機能するのは,超電導遷移温度以下に冷却されて超電導状態になった超電導体内部に磁束線がピン止めされるためである。したがって,冷却した超電導体の内部に磁束線がピン止めされた状態を実現するための方法,すなわち着磁方法が課題となる。
【0004】
実験的によく使われる着磁方法は,大きな外部磁場中で超電導体内部に磁束線が十分入った状態で冷却して超電導状態にした後に外部磁場を取り去り,その際にピン止めされた磁束線が超電導体内に残って着磁される,磁場中冷却(FC)と呼ばれる方法である。しかし,この方法は高磁場を長時間超電導体に印加する必要があること,着磁後に超電導体の温度を保ったまま使用したい場所に移動させるのが困難なことなど,実用的には問題が多い。
【0005】
そのため,簡易な手段でバルク状の超電導体を着磁する方法として,パルス磁場を超電導体に印加して着磁する,パルス着磁という方法(特開平6−468823号公報,特願平8−180058号公報)が提案されている。この方法では,機器等の内部に組み込まれた超電導体を着磁することも可能であり,実用的には多くのメリットがある。
【0006】
【解決しようとする課題】
しかしながら,上記従来のパルス着磁においては,次の問題がある。
即ち,特性のよい(捕捉可能な磁場が大きい)超電導体は磁場を強くシールドするため,印加磁場が小さいと磁場が十分に超電導体内に侵入しないので,着磁にそれだけ大きな印加磁場が必要となる。
【0007】
ところが,大きな印加磁場を加えると,着磁の際に前記超電導体に侵入する磁束線の量が増え,パルス着磁過程における超電導体内部での磁束線の運動に伴う発熱が増える。例えば,上記YBaCuO系の超電導体においては,温度77Kにおいても印加磁場がある程度以上大きくなると,その発熱による温度上昇が原因で捕捉磁場の減る現象が知られている。このような現象は,超電導体を低温にすればするほどその比熱が減少して温度上昇が大きくなり,特に顕著に現れる。
【0008】
その結果,低温において特性の高い超電導体をパルス着磁した場合には,大きな印加磁場をかけて超電導体内部に十分な磁場を侵入させると,その際の発熱によって逆に捕捉磁場が減ってしまう。結局,低温においてパルス着磁する場合には,どのような印加磁場をかけても,静磁場中で冷却して着磁した場合(すなわち超電導体の捕捉可能な磁場まで着磁できた場合)に比べて,超電導体に捕捉できる磁場が少なくなってしまうという問題が生じていたのである。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,特に低温において特性の高い超電導体をパルス着磁する場合に,超電導体を十分に着磁できる方法を提供しようとするものである。
【0010】
【課題の解決手段】
請求項1の発明は,超電導体を超伝導遷移温度以下に冷却し,該超電導体にパルス磁場を印加して着磁する方法において,
上記超電導体に複数回のパルス磁場を印加する過程の最初又は途中で少なくとも1回の最大パルス磁場を印加し,その後,該最大パルス磁場よりも小さいパルス磁場を印加する工程を有することを特徴とする超電導体の着磁方法にある。
【0011】
本発明において最も注目すべきことは,上記パルス磁場は,上記超電導体に対して複数回印加することである。
上記パルス磁場とは,磁場が急激に最大値まで立ち上がり,その後急激に消滅していく磁場をいう。このパルス磁場は,例えば上記超電導体の近傍に配設した着磁コイルにパルス電流を通電することにより発生させることができる。
【0012】
次に,本発明の作用について説明する。
本発明においては,上記のごとく,上記超電導体に対して複数回のパルス磁場を印加する。そのため,パルス磁場を1回だけ印加する場合に比べて,着磁後の捕捉磁場を増加させることができる。
【0013】
この理由は次のように考えられる。
まず一般に,超電導体が捕捉できる磁場(捕捉可能磁場)は,温度が低いほど大きくなり,温度が高いほど小さくなる。一方,パルス着磁においては,着磁過程における超電導体中への磁場侵入時の発熱により超電導体の温度が上昇する。その温度上昇率は,超電導体へ侵入する磁場が大きいほど高い。
そのため,大きなパルス磁場を1回だけ印加した場合には,超電導体へ侵入した磁場によって超電導体の温度が上昇して捕捉可能磁場自体が小さくなり,実際に捕捉される磁場が制限されてしまう。
【0014】
また,パルス磁場を印加した後の超電導体内部の捕捉磁場分布は,印加するパルス磁場の大きさおよび波形だけでなく,超電導体内部の着磁前の磁場分布によっても影響を受ける。
すなわち,同じパルス磁場を印加した場合でも,超電導体内部に既に磁場が捕捉されているときは全く磁場が捕捉されていないときに比べ,着磁の際に超電導体中に侵入する磁束線の量が既に捕捉された磁場の分だけ少なくなる。
【0015】
そのため,その侵入磁束線の減少分だけパルス着磁の際の発熱が減るので,超電導体の温度上昇が少なくなる。それ故,超電導体内部に既に磁場が捕捉されている場合には,全く磁場が捕捉されていない場合に比べ,より多くの磁場を超電導体中に捕捉できるようになる。
したがって,複数回のパルス磁場を印加する場合には,初めの1回の着磁を除いて超電導体内部に既に磁場が捕捉された状態で着磁することになるので,1回だけ着磁する場合に比べて着磁後の捕捉磁場を増やすことができる。
【0016】
次に,請求項2の発明のように,上記各パルス磁場の印加は,上記超電導体を所定温度以下に冷却した後に行うことが好ましい。上記所定温度とは,超電導体が所望の大きさの磁場を捕捉した着磁状態を維持しうる温度をいい,例えば,上記超電導体の使用温度,或いは使用温度よりも若干高い温度などである。
この場合には,各パルス磁場を印加する前の超電導体を,常に一定以上の捕捉可能磁場を有する状態に維持することができ,確実に捕捉磁場の増加を図ることができる。
【0017】
また,本発明では,上記超電導体に複数回のパルス磁場を印加する過程の最初又は途中で少なくとも1回の最大パルス磁場を印加し,その後,該最大パルス磁場よりも小さいパルス磁場を印加する
【0018】
この場合には,次のような作用が得られる。
即ち,上記したように,パルス着磁においては,着磁過程における超電導体中への磁場侵入時の発熱により超電導体の温度が上昇する。この温度上昇は,超電導体中に侵入する磁束線の量が多いほど大きくなる。また,既にある大きさの最大パルス磁場が印加されて一定の磁場分布を持った超電導体に,それと同じもしくはそれより小さいパルス磁場を印加すると,超電導体内部に侵入する磁束線の量は,既に侵入している磁束線がある分および印加磁場が小さくなった分だけ少なくなる。その結果その前の着磁に比べ,超電導体中での温度上昇が減り,侵入した磁束線が有効に捕捉されるようになるため,着磁後の捕捉磁場を増やすことができる。
【0019】
また,請求項の発明のように,上記最大パルス磁場は,着磁前の温度における上記超電導体の最大捕捉可能磁場よりも大きな磁場が上記超電導体の内部全体に侵入するようなパルス磁場であることが好ましい。ここで,上記超電導体の捕捉可能磁場とは,超電導体がその内部に捕捉しうる磁場の大きさをいう。また最大捕捉可能磁場とは,上記超電導体内部の捕捉可能磁場の分布における最大の値をいう。
【0020】
この場合には,次のような作用が得られる。
即ち,上記のような大きな最大パルス磁場を超電導体に印加すると,パルス磁場の増磁過程で超電導体内部の最大捕捉可能磁場の得られる部分にまで十分な磁場が侵入する。
一方,着磁過程に起こる上記の発熱のために超電導体の温度が上昇して超電導体の磁束線のピン止め力が下がる。そのため,最大パルス磁場印加後の超電導体の捕捉磁場は,着磁前の温度において上記超電導体が捕捉し得る最大の捕捉可能磁場よりも減る。
【0021】
しかしながら,上記最大パルス磁場を印加した場合,磁束線は,超電導体内部で相対的に磁束線のピン止め力の強い領域,すなわち比較的高い温度になっても磁束線に有効なピン止め力が働く領域に多く保持された状態となる。このような高い印加磁場は,1回の着磁では最終の捕捉磁場が減ってしまうが,これを一旦印加することにより,超電導体の最大捕捉磁場部分のピン止め力の強い領域には,磁場を十分捕捉させることができる。
【0022】
それ故,上記最大パルス磁場印加後に,それとと同等又はそれよりも小さい複数回のパルス磁場の印加を行うことにより,上記最大捕捉磁場部分に既に捕捉された磁場を維持しつつ,その周囲の捕捉磁場を増加させることができ,超電導体全体の捕捉磁場を格段に増加させることができる。
【0023】
また,請求項の発明のように,上記超電導体に上記最大パルス磁場を少なくとも1回印加した後に印加する各パルス磁場は,その直前のパルス磁場と同等又はそれより小さいパルス磁場であることが好ましい。即ち,上記最大パルス磁場を印加した後は,印加するパルス磁場を徐々に小さくすることが好ましい。
【0024】
この場合には次のような作用が得られる。
即ち,上記最大パルス磁場印加後の各パルス磁場がその直前のパルス磁場より小さい場合には,パルス磁場の増磁過程で超電導体内部に侵入する磁束線の量は,その直前の着磁の時より少なくなる。また,その直前のパルス磁場と同じ大きさのパルス磁場を印加した場合でも,印加前の超電導体内部に捕捉された磁束線が増えていることにより,侵入しようとする磁束線が既に捕捉されている磁束線から受ける反発力がその直前の着磁の際に比べて増えるため,磁束線の侵入量は少なくなる。
【0025】
したがって,各パルス磁場が直前のパルス磁場と同等又はそれより小さい,いずれの場合においても,その直前の着磁の際よりも超電導体内部を動く磁束線の量が減るため,超電導体内部での発熱量が減る。結局,直前の着磁の際より温度上昇が少なくなって,捕捉磁場が増える。
【0026】
そのため,このようにして徐々に小さな磁場を印加していくことを繰り返すと,超電導体の捕捉磁場は増加する。それ故,低温において特性の高い超電導体に,着磁前の温度で捕捉し得る最大の磁場に近い磁場を捕捉させることが可能となる。
【0027】
また,請求項の発明のように,上記各パルス磁場は,上記超電導体に対して一定の温度において印加することが好ましい。この場合には,上記の複数回のパルス磁場印加の効果をさらに確実に発揮することができる。ここで,超電導体を一定の温度にするためには,例えば後述する実施形態例1に示すごとく,超電導体を冷却するためのコールドヘッド温度を一定に制御すること等により行うことができる。
【0028】
また,請求項の発明のように,上記超電導体に上記複数回のパルス磁場を印加した後,さらに,最後のパルス磁場よりも大きいパルス磁場を印加することもできる。この場合には,上記超電導体に十分に強い磁場を一旦捕捉させた後,上記最後のパルス磁場よりも大きいパルス磁場をさらに印加することにより,超電導体の捕捉磁場の大きさを所望の大きさに調整することができる。
【0029】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる超電導体の着磁方法につき,図1,図2を用いて説明する。
図1に,本例において用いた超電導磁石装置の一つを示す。本例において用いた超電導磁石装置は,冷凍機20によって冷却される断熱容器1内に配設されたコールドヘッド2と,前記断熱容器1内でコールドヘッド2に銅部材30を介して接触させて配設され熱伝導により超電導遷移温度以下に冷却される超電導体3とを有する。
【0030】
また,前記断熱容器1の外部には,前記超電導体3に磁場を印加するための着磁コイル4が配設され,該着磁コイル4には種々の大きさのパルス電流を通電することにより前記超電導体3の印加磁場を任意に制御できるパルス電源5が接続されている。なお,符号21は冷凍機用コンプレッサである。
【0031】
本例においては,前記超電導磁石装置に直径φ36mm,厚さ15mmのバルク形状のYBaCuO系超電導体を用いた。
また,本例においては,超電導体3の温度が一定になるように上記コールドヘッド2の温度を35K一定に制御して試験した。
【0032】
そして,本例においては,超電導体3に最大パルス磁場を最初に3回印加した後に,複数回のパルス磁場を印加した。また,その複数回のパルス磁場は,その直前のパルス磁場と同等又はそれより小さいパルス磁場とした。
以下に,上記の超電導磁石装置を本発明の着磁方法により着磁した場合の結果を図2を用いて説明する。
【0033】
図2は,本発明の着磁方法を示す説明図であり,横軸に印加したパルス磁場の大きさ,縦軸にそのパルス磁場印加後に超電導体3が捕捉した捕捉磁場の大きさをとった。
そして,本例におけるパルス磁場の印加履歴を,符号E1から始まりE2に続く△印(E)により示した。また,比較のために,パルス磁場を1回だけ印加した従来技術の場合を▲印(C)により示した。
【0034】
図2に示すごとく,本例の着磁方法では,初めに,超電導体3の最大捕捉可能磁場よりも大きな印加磁場となる7.1Tの最大パルス磁場E1を3回印加した。その後,徐々に小さなパルス磁場を複数回印加することを繰り返して最後に2.8Tのパルス磁場E2を印加して着磁した。このときの各パルス着磁後の超電導体3の中心表面上の捕捉磁場を図2に示してある。
【0035】
同図より知られるごとく,本例の着磁方法に従って着磁した場合の超電導体3の中心部分の捕捉磁場は,初めに7.1Tの最大パルス磁場を印加した直後においては1.04Tであるが,順次小さなパルス磁場を印加していき,最後に2.8Tのパルス磁場を印加したあと最終的には2.08Tとなり,初めの2倍に増えていることがわかる。
【0036】
一方,図2に示したように,同じ超電導体3を用いた超電導磁石装置において,超電導体が着磁されていない状態から1回だけパルス磁場を印加して着磁した従来法の場合には,超電導体2の中心部の捕捉磁場は,印加磁場が6Tのときでも最大1.36Tである。これは,本例の着磁方法で着磁した場合の3分の2である。
【0037】
このように,本例の着磁方法によれば,低温で特性の高い超電導体を超電導磁石装置として用いる場合でも,簡便な装置で十分に着磁することが可能となる。
【0038】
【発明の効果】
上述のごとく,本発明によれば,特に低温において特性の高い超電導体をパルス着磁する場合に,超電導体を十分に着磁できる方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,超電導磁石装置の基本的な構成を示すブロック図。
【図2】実施形態例1の超電導体の着磁方法による効果を示す説明図。
【符号の簡単な説明】
1...断熱容器,
2...コールドヘッド,
3...超電導体,
4...着磁コイル,
5...パルス電源,
20...冷凍機,
21...冷凍機用コンプレッサ,
30...銅部材,
[0001]
【Technical field】
The present invention relates to a method for magnetizing a superconductor, and more particularly to a method for magnetizing a bulk high-temperature superconductor to capture a high magnetic field.
[0002]
[Prior art]
For example, some high-temperature superconductors such as the YBaCuO system can obtain a large magnetic field exceeding 1 T (Tesla), which is impossible with a permanent magnet even at a liquid nitrogen temperature, due to its structure control. These high-temperature superconductors can be expected to have further improved characteristics due to material development, and it is known that a larger magnetic field can be captured when cooled to a temperature lower than the liquid nitrogen temperature (77 K). Therefore, it has been considered to magnetize these bulk high-temperature superconductors and use them as magnets that generate a strong magnetic field that has not been easily obtained.
[0003]
The bulk superconductor functions as a magnet because the magnetic flux lines are pinned inside the superconductor which is cooled to the superconducting transition temperature or lower and becomes superconductive. Therefore, a method for realizing a state in which the magnetic flux lines are pinned inside the cooled superconductor, that is, a magnetization method becomes a problem.
[0004]
A magnetizing method often used experimentally is a magnetic flux line pinned by removing the external magnetic field after cooling it to a superconducting state in a large external magnetic field with sufficient flux lines inside the superconductor. This is a method called cooling in a magnetic field (FC) in which the material remains magnetized in the superconductor. However, this method has practical problems such as the necessity of applying a high magnetic field to the superconductor for a long time, and the fact that it is difficult to move to a place where the superconductor is to be used while maintaining the temperature of the superconductor after magnetization. Many.
[0005]
Therefore, as a method for magnetizing a bulk superconductor by simple means, a method called pulse magnetization, in which a pulse magnetic field is applied to the superconductor and magnetized (Japanese Patent Application Laid-Open No. 6-468823, Japanese Patent Application No. 8- No. 180058) is proposed. In this method, it is possible to magnetize a superconductor incorporated in the inside of a device or the like, and there are many practical advantages.
[0006]
[Problems to be solved]
However, the conventional pulse magnetization has the following problems.
In other words, a superconductor with good characteristics (a large magnetic field that can be captured) shields the magnetic field strongly, so if the applied magnetic field is small, the magnetic field does not sufficiently penetrate the superconductor, so that a large applied magnetic field is required for magnetization. .
[0007]
However, when a large applied magnetic field is applied, the amount of magnetic flux lines that penetrate the superconductor during magnetization increases, and heat generation due to the movement of magnetic flux lines inside the superconductor during the pulse magnetization process increases. For example, in the YBaCuO-based superconductor, when the applied magnetic field becomes larger than a certain level even at a temperature of 77K, a phenomenon that the trapped magnetic field decreases due to the temperature rise due to the heat generation is known. Such a phenomenon appears particularly prominently as the temperature of the superconductor is lowered and the specific heat decreases and the temperature rises.
[0008]
As a result, when a superconductor with high characteristics at low temperatures is pulsed and magnetized, if a large magnetic field is applied and a sufficient magnetic field penetrates into the superconductor, the trapped magnetic field is reduced due to the heat generated at that time. . After all, when pulse magnetizing at low temperature, no matter what applied magnetic field is applied, it is magnetized by cooling in a static magnetic field (that is, when a magnetic field that can be captured by a superconductor can be magnetized). In comparison, there was a problem that the magnetic field that could be captured by the superconductor was reduced.
[0009]
The present invention has been made in view of such conventional problems, and it is an object of the present invention to provide a method capable of sufficiently magnetizing a superconductor, particularly when pulsed with a superconductor having high characteristics at low temperatures. .
[0010]
[Means for solving problems]
The invention of claim 1 is a method of magnetizing a superconductor by cooling it to a superconducting transition temperature or less and applying a pulsed magnetic field to the superconductor.
A step of applying at least one maximum pulse magnetic field at the beginning or in the course of applying a plurality of pulse magnetic fields to the superconductor, and then applying a pulse magnetic field smaller than the maximum pulse magnetic field. There is a method of magnetizing a superconductor.
[0011]
What is most remarkable in the present invention is that the pulse magnetic field is applied to the superconductor a plurality of times.
The pulse magnetic field refers to a magnetic field that suddenly rises to a maximum value and then disappears rapidly. This pulse magnetic field can be generated, for example, by applying a pulse current to a magnetizing coil disposed in the vicinity of the superconductor.
[0012]
Next, the operation of the present invention will be described.
In the present invention, as described above, a pulse magnetic field is applied a plurality of times to the superconductor. Therefore, the trapped magnetic field after magnetization can be increased compared to the case where the pulse magnetic field is applied only once.
[0013]
The reason is considered as follows.
First, in general, the magnetic field that can be captured by the superconductor (capable magnetic field) increases as the temperature decreases, and decreases as the temperature increases. On the other hand, in pulse magnetization, the temperature of the superconductor rises due to heat generated when the magnetic field enters the superconductor during the magnetization process. The rate of temperature rise increases as the magnetic field penetrating the superconductor increases.
Therefore, when a large pulse magnetic field is applied only once, the temperature of the superconductor rises due to the magnetic field penetrating the superconductor, the trappable magnetic field itself becomes small, and the actually trapped magnetic field is limited.
[0014]
In addition, the trapped magnetic field distribution inside the superconductor after applying the pulse magnetic field is influenced not only by the magnitude and waveform of the applied pulse magnetic field, but also by the magnetic field distribution before magnetization inside the superconductor.
That is, even when the same pulsed magnetic field is applied, the amount of magnetic flux lines that enter the superconductor during magnetization is greater when the magnetic field is already trapped inside the superconductor than when no magnetic field is trapped. Decreases by the amount of magnetic field already captured.
[0015]
For this reason, heat generation during pulse magnetization is reduced by the reduction of the intruding magnetic flux lines, so that the temperature rise of the superconductor is reduced. Therefore, when a magnetic field is already trapped inside the superconductor, more magnetic field can be trapped in the superconductor than when no magnetic field is trapped.
Therefore, when a pulsed magnetic field is applied multiple times, it is magnetized in a state where the magnetic field has already been captured inside the superconductor except for the first one, so it is magnetized only once. Compared to the case, the trapped magnetic field after magnetization can be increased.
[0016]
Next, as in the invention of claim 2, the application of each pulse magnetic field is preferably performed after the superconductor is cooled to a predetermined temperature or lower. The predetermined temperature refers to a temperature at which the superconductor can maintain a magnetized state in which a magnetic field of a desired magnitude is captured, and is, for example, the use temperature of the superconductor or a temperature slightly higher than the use temperature.
In this case, the superconductor before applying each pulse magnetic field can always be maintained in a state having a trappable magnetic field of a certain level or more, and the trapped magnetic field can be reliably increased.
[0017]
In the present invention, at least one maximum pulse magnetic field is applied to the superconductor at the beginning or during the process of applying a plurality of pulse magnetic fields, and then a pulse magnetic field smaller than the maximum pulse magnetic field is applied .
[0018]
In this case, the following effects can be obtained.
That is, as described above, in pulse magnetization, the temperature of the superconductor rises due to heat generated when the magnetic field enters the superconductor during the magnetization process. This temperature rise increases as the amount of magnetic flux lines penetrating the superconductor increases. In addition, if a pulsed magnetic field equal to or smaller than a superconductor having a certain magnetic field distribution with a maximum pulse magnetic field of a certain magnitude already applied, the amount of magnetic flux lines entering the superconductor is already The number of magnetic flux lines penetrating is reduced by a certain amount and the applied magnetic field is reduced. As a result, the temperature rise in the superconductor is reduced compared to the previous magnetization, and the intruding magnetic flux lines are effectively captured, so that the captured magnetic field after magnetization can be increased.
[0019]
Further, as in the invention of claim 3 , the maximum pulse magnetic field is a pulse magnetic field in which a magnetic field larger than the maximum trappable magnetic field of the superconductor at a temperature before magnetization penetrates the entire interior of the superconductor. Preferably there is. Here, the magnetic field that can be captured by the superconductor refers to the magnitude of the magnetic field that can be captured by the superconductor. The maximum trappable magnetic field is the maximum value in the distribution of trappable magnetic fields inside the superconductor.
[0020]
In this case, the following effects can be obtained.
That is, when a large maximum pulse magnetic field as described above is applied to the superconductor, a sufficient magnetic field penetrates into the portion where the maximum trappable magnetic field inside the superconductor is obtained in the process of increasing the pulse magnetic field.
On the other hand, due to the heat generated in the magnetization process, the temperature of the superconductor increases and the pinning force of the magnetic flux lines of the superconductor decreases. For this reason, the trapped magnetic field of the superconductor after application of the maximum pulse magnetic field is smaller than the maximum trappable magnetic field that can be captured by the superconductor at the temperature before magnetization.
[0021]
However, when the maximum pulse magnetic field is applied, the magnetic flux lines have a relatively strong pinning force within the superconductor, that is, even when the temperature is relatively high, A large amount is held in the working area. With such a high applied magnetic field, the final trapped magnetic field decreases with a single magnetization, but once this is applied, there is a magnetic field in the region where the pinning force of the maximum trapped magnetic field portion of the superconductor is strong. Can be sufficiently captured.
[0022]
Therefore, after applying the maximum pulse magnetic field, by applying a pulse magnetic field multiple times equal to or smaller than that, it is possible to capture the surrounding area while maintaining the magnetic field already captured in the maximum captured magnetic field portion. The magnetic field can be increased, and the trapped magnetic field of the entire superconductor can be significantly increased.
[0023]
Further, as in the invention of claim 4 , each pulse magnetic field to be applied after applying the maximum pulse magnetic field to the superconductor at least once should be a pulse magnetic field that is equal to or smaller than the pulse magnetic field immediately before it. preferable. That is, after applying the maximum pulse magnetic field, it is preferable to gradually reduce the applied pulse magnetic field.
[0024]
In this case, the following operation is obtained.
That is, when each pulse magnetic field after the application of the maximum pulse magnetic field is smaller than the pulse magnetic field immediately before it, the amount of magnetic flux lines that enter the superconductor in the process of increasing the magnetic field of the pulse magnetic field is Less. Even when a pulse magnetic field of the same magnitude as the pulse magnetic field just before is applied, the flux lines trapped inside the superconductor before application are increased, so that the flux lines to be penetrated are already captured. Since the repulsive force received from the existing magnetic flux lines increases compared to the previous magnetization, the amount of magnetic flux lines penetrated is reduced.
[0025]
Therefore, in each case where each pulse magnetic field is equal to or smaller than the immediately preceding pulse magnetic field, the amount of magnetic flux lines moving inside the superconductor is smaller than that in the immediately preceding magnetization. The calorific value is reduced. Eventually, the temperature rise is less than in the previous magnetization, and the trapped magnetic field increases.
[0026]
Therefore, if the application of a small magnetic field gradually is repeated in this way, the trapped magnetic field of the superconductor increases. Therefore, it is possible to cause the superconductor having high characteristics at a low temperature to capture a magnetic field close to the maximum magnetic field that can be captured at the temperature before magnetization.
[0027]
Further, as in the invention of claim 5, the pulse magnetic fields are preferably applied to the superconductor at a constant temperature. In this case, the effect of applying the plurality of pulse magnetic fields can be more reliably exhibited. Here, in order to set the superconductor to a constant temperature, for example, as shown in a first embodiment described later, the temperature of the cold head for cooling the superconductor can be controlled to be constant.
[0028]
Further, as in the sixth aspect of the invention, after applying the pulse magnetic field a plurality of times to the superconductor, a pulse magnetic field larger than the last pulse magnetic field can be applied. In this case, after a sufficiently strong magnetic field is once captured by the superconductor, a pulse magnetic field larger than the last pulse magnetic field is further applied so that the superconductor capture magnetic field has a desired magnitude. Can be adjusted.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A superconductor magnetization method according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows one of the superconducting magnet devices used in this example. The superconducting magnet device used in this example has a cold head 2 disposed in a heat insulating container 1 cooled by a refrigerator 20 and a contact between the cold head 2 in the heat insulating container 1 via a copper member 30. And a superconductor 3 which is disposed and is cooled to a superconducting transition temperature or lower by heat conduction.
[0030]
In addition, a magnetizing coil 4 for applying a magnetic field to the superconductor 3 is disposed outside the heat insulating container 1, and the magnetizing coil 4 is energized with pulse currents of various magnitudes. A pulse power source 5 that can arbitrarily control the magnetic field applied to the superconductor 3 is connected. Reference numeral 21 denotes a compressor for the refrigerator.
[0031]
In this example, a YBaCuO-based superconductor having a diameter of 36 mm and a thickness of 15 mm was used for the superconducting magnet device.
Further, in this example, the test was conducted by controlling the temperature of the cold head 2 to be constant at 35 K so that the temperature of the superconductor 3 is constant.
[0032]
In this example, the maximum pulse magnetic field is first applied to the superconductor 3 three times, and then a plurality of pulse magnetic fields are applied. Further, the pulse magnetic field of the plurality of times was set to be equal to or smaller than the pulse magnetic field immediately before that.
Hereinafter, the results when the superconducting magnet device is magnetized by the magnetization method of the present invention will be described with reference to FIG.
[0033]
FIG. 2 is an explanatory view showing the magnetization method of the present invention, wherein the horizontal axis represents the magnitude of the pulsed magnetic field, and the vertical axis represents the magnitude of the trapped magnetic field captured by the superconductor 3 after the pulse magnetic field is applied. .
The application history of the pulsed magnetic field in this example is indicated by Δ (E) starting from the symbol E1 and continuing to E2. For comparison, the case of the prior art in which the pulse magnetic field is applied only once is indicated by a mark (C).
[0034]
As shown in FIG. 2, in the magnetization method of this example, first, a maximum pulse magnetic field E1 of 7.1 T, which is an applied magnetic field larger than the maximum trappable magnetic field of the superconductor 3, was applied three times. Thereafter, gradually applying a small pulse magnetic field a plurality of times was repeated, and finally a pulse magnetic field E2 of 2.8 T was applied and magnetized. FIG. 2 shows the trapped magnetic field on the center surface of the superconductor 3 after each pulse magnetization.
[0035]
As is known from the figure, the trapped magnetic field in the central portion of the superconductor 3 when magnetized according to the magnetizing method of this example is 1.04 T immediately after the maximum pulse magnetic field of 7.1 T is first applied. However, it can be seen that a small pulse magnetic field is applied sequentially, and finally, after applying a pulse magnetic field of 2.8 T, it finally becomes 2.08 T, which is twice the initial value.
[0036]
On the other hand, as shown in FIG. 2, in the superconducting magnet apparatus using the same superconductor 3, in the case of the conventional method in which the pulsed magnetic field is applied only once from the state where the superconductor is not magnetized, The trapped magnetic field at the center of the superconductor 2 is 1.36 T at the maximum even when the applied magnetic field is 6 T. This is two-thirds of the case of magnetization by the magnetization method of this example.
[0037]
Thus, according to the magnetization method of this example, even when a superconductor having high characteristics at a low temperature is used as a superconducting magnet device, it can be sufficiently magnetized with a simple device.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method capable of sufficiently magnetizing a superconductor, particularly when pulsed magnetizing a superconductor having high characteristics at a low temperature.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a basic configuration of a superconducting magnet device in Embodiment 1;
FIG. 2 is an explanatory view showing the effect of the superconductor magnetization method of Embodiment 1;
[Brief description of symbols]
1. . . Insulated container,
2. . . Cold head,
3. . . Superconductor,
4). . . Magnetized coil,
5. . . Pulse power supply,
20. . . refrigerator,
21. . . Compressor for refrigerator,
30. . . Copper parts,

Claims (6)

超電導体を超伝導遷移温度以下に冷却し,該超電導体にパルス磁場を印加して着磁する方法において,
上記超電導体に複数回のパルス磁場を印加する過程の最初又は途中で少なくとも1回の最大パルス磁場を印加し,その後,該最大パルス磁場よりも小さいパルス磁場を印加する工程を有することを特徴とする超電導体の着磁方法。
In a method of cooling a superconductor below the superconducting transition temperature and applying a pulsed magnetic field to the superconductor to magnetize it,
A step of applying at least one maximum pulse magnetic field at the beginning or in the middle of applying a plurality of pulse magnetic fields to the superconductor, and then applying a pulse magnetic field smaller than the maximum pulse magnetic field. How to magnetize superconductors.
請求項1において,上記各パルス磁場の印加は,上記超電導体を所定温度以下に冷却した後に行うことを特徴とする超電導体の着磁方法。  2. The method of magnetizing a superconductor according to claim 1, wherein the application of each pulse magnetic field is performed after the superconductor is cooled to a predetermined temperature or lower. 請求項1又は2において,上記最大パルス磁場は,着磁前の温度における上記超電導体の最大捕捉可能磁場よりも大きな磁場が上記超電導体の内部全体に侵入するようなパルス磁場であることを特徴とする超電導体の着磁方法。 3. The maximum pulse magnetic field according to claim 1, wherein the maximum pulse magnetic field is a pulse magnetic field in which a magnetic field larger than the maximum trappable magnetic field of the superconductor at a temperature before magnetization enters the entire inside of the superconductor. A method of magnetizing a superconductor. 請求項1〜3のいずれか1項において,上記超電導体に上記最大パルス磁場を少なくとも1回印加した後に印加する各パルス磁場は,その直前のパルス磁場と同等又はそれより小さいパルス磁場であることを特徴とする超電導体の着磁方法。The pulse magnetic field applied after applying the maximum pulse magnetic field to the superconductor at least once in any one of claims 1 to 3 is equal to or smaller than the pulse magnetic field immediately before the pulse magnetic field. A method of magnetizing a superconductor characterized by the above. 請求項1〜4のいずれか1項において,上記各パルス磁場は,上記超電導体に対して一定の温度において印加することを特徴とする超電導体の着磁方法。In any one of claims 1 to 4, each pulse magnetic field, magnetizing method of the superconductor, which comprises applying at a constant temperature with respect to the superconductor. 請求項1〜5のいずれか1項において,上記超電導体に上記複数回のパルス磁場を印加した後,さらに,最後のパルス磁場よりも大きいパルス磁場を印加することを特徴とする超電導体の着磁方法。The superconductor attachment according to any one of claims 1 to 5 , wherein a pulse magnetic field larger than the last pulse magnetic field is further applied after the pulse magnetic field is applied a plurality of times to the superconductor. Magnetic method.
JP32789996A 1996-06-19 1996-11-21 Magnetization method of superconductor Expired - Fee Related JP3635828B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32789996A JP3635828B2 (en) 1996-11-21 1996-11-21 Magnetization method of superconductor
US08/879,040 US6111490A (en) 1996-06-19 1997-06-19 Superconducting magnet apparatus and method for magnetizing superconductor
US09/586,956 US6441710B1 (en) 1996-06-19 2000-06-05 Superconducting magnet apparatus and method for magnetizing superconductor
US10/066,680 US7026901B2 (en) 1996-06-19 2002-02-06 Superconducting magnet apparatus and method for magnetizing superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32789996A JP3635828B2 (en) 1996-11-21 1996-11-21 Magnetization method of superconductor

Publications (2)

Publication Number Publication Date
JPH10154620A JPH10154620A (en) 1998-06-09
JP3635828B2 true JP3635828B2 (en) 2005-04-06

Family

ID=18204245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32789996A Expired - Fee Related JP3635828B2 (en) 1996-06-19 1996-11-21 Magnetization method of superconductor

Country Status (1)

Country Link
JP (1) JP3635828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750524B2 (en) 2003-01-09 2010-07-06 University Of Fukui Superconductor magnetizing device and superconducting synchronization device
JP4793801B2 (en) * 2004-08-30 2011-10-12 国立大学法人東京海洋大学 Optimized magnetizing method for superconductors
JP2006332499A (en) * 2005-05-30 2006-12-07 Iwate Univ Method for pulse magnetizing bulk superconductor and super conducting magnet device

Also Published As

Publication number Publication date
JPH10154620A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
Wipf Review of stability in high temperature superconductors with emphasis on flux jumping
Mizutani et al. Pulsed-field magnetization applied to high-Tc superconductors
JP2009522815A (en) Superconducting high-speed switch
Müller et al. A model for the hysteretic critical current density in polycrystalline high-temperature superconductors
CN106098291B (en) The quick demagnetizing method of the big energy storage superconducting coil of cyclotron
JP3635828B2 (en) Magnetization method of superconductor
JP3172611B2 (en) Superconductor magnetizer
KR101888503B1 (en) Power supply for conduction cooled superconducting equipment
Fujishiro et al. Temperature rise in an Sm-based bulk superconductor after applying iterative pulse fields
JP3646427B2 (en) Magnetization method of superconductor and superconducting magnet device
JPWO2006095614A1 (en) Superconducting magnet excitation method and superconducting magnet apparatus
JP3727122B2 (en) Superconducting bulk magnet
JP3540969B2 (en) Magnetization method of superconductor
Espenhahn et al. Simulation of force generation above magnetic tracks for superconducting levitation systems
US3646363A (en) Superconductive apparatus
Kamijo et al. Repeated pulsed-field magnetization with temperature control in a high-T/sub c/bulk superconductor
JPH1074621A (en) Magnetizing method for superconductor and superconducting magnetic device
Meerovich et al. Quenching in a high-Tc superconducting ring
Lee et al. Investigation of thermal quench characteristic in the HTS Bi-2223 racetrack coil
Habbal et al. Correlation between changes in pinning strength and flux flow noise due to annealing in a Type II superconductor
Shiraishi et al. Macroscopic magnetic flux motion in Y-Ba-Cu-O bulk superconductor during pulsed field magnetization
JP2000133849A (en) Magnetizing method of superconductor
JPH08203726A (en) Superconducting coil device
JP3025104B2 (en) Magnetization method of superconducting bulk magnet
Pukhov et al. Acceleration of normal zone propagation in superconductors with changing current

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees