JPH06275522A - Manufacturing method of semiconductor substrate - Google Patents

Manufacturing method of semiconductor substrate

Info

Publication number
JPH06275522A
JPH06275522A JP5830793A JP5830793A JPH06275522A JP H06275522 A JPH06275522 A JP H06275522A JP 5830793 A JP5830793 A JP 5830793A JP 5830793 A JP5830793 A JP 5830793A JP H06275522 A JPH06275522 A JP H06275522A
Authority
JP
Japan
Prior art keywords
substrate
silicon
silicon substrate
oxide film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5830793A
Other languages
Japanese (ja)
Other versions
JP3327977B2 (en
Inventor
Tsuyoshi Asao
強 朝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP05830793A priority Critical patent/JP3327977B2/en
Publication of JPH06275522A publication Critical patent/JPH06275522A/en
Application granted granted Critical
Publication of JP3327977B2 publication Critical patent/JP3327977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a hardly warped dielectric separating substrate even if the single crystalline silicon substrate is heat-treated at low temperature by a method wherein a silicon germanium alloy containing germanium in specific concentration is melted down and crushed to be coated and set on the silicon substrate. CONSTITUTION:Firstly, a single crystal silicon substrate 51 is oxidized to form the first oxide film 52 on the surface of the substrate 51. Next, aperture parts are partly formed in the first oxide film 52 and the substrate 51 is anisotropically etched away to form V-type trenches 53. Next, after removing the first oxide film 52, the single crystalline silicon substrate 51 is oxidized again to form the second oxide film 54 on the substrate surface including the V-type trenches 53. Next, a silicon germanium alloy layer 55 is formed by melting down and crushing the germanium alloy to be coated and set on the second oxide film 54 on the substrate 51. Through these procedures, the warping of the silicon substrate 51 can be suppressed by specifying the germanium concentration in the silicon germanium alloy to be 4.5-5.0at.% thereby cancelling the thermal stress with the volume expansion stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体集積装置、特
に高耐圧用半導体素子の製造に用いられる半導体基板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated device, and more particularly to a method for manufacturing a semiconductor substrate used for manufacturing a high breakdown voltage semiconductor element.

【0002】[0002]

【従来技術】従来の半導体集積装置においては、共通の
基板上にトランジスタ等多くの半導体素子を形成する
が、この際、これらの半導体素子間で電気的な影響を及
ぼし合わないように、半導体素子間が電気的に絶縁分離
された構成の半導体基板が必要となる。
2. Description of the Related Art In a conventional semiconductor integrated device, many semiconductor elements such as transistors are formed on a common substrate. At this time, semiconductor elements are formed so as not to affect each other electrically. A semiconductor substrate having a structure in which the spaces are electrically insulated and separated is required.

【0003】上記半導体基板の製造方法としては、過去
多くのものが提案されている。これらの製造方法の中に
は、厚い多結晶シリコン層の形成工程が、必要とするも
のがある。
Many methods of manufacturing the semiconductor substrate have been proposed in the past. Some of these manufacturing methods require the step of forming a thick polycrystalline silicon layer.

【0004】この厚い多結晶シリコン層の形成工程を有
する製造方法により形成された半導体基板として、例え
ば、図6に示すような、誘電体分離基板や、図7に示す
ような、SOI(Silicon On Insulator)基板があり、
これらは、能動領域となる単結晶シリコン島11や単結
晶シリコン層21を機械的に支持する支持体層12、2
2として多結晶シリコン層を用いる場合、絶縁膜13、
23と共に、この厚い多結晶シリコン層の形成が必要と
なる。
As a semiconductor substrate formed by the manufacturing method having the step of forming the thick polycrystalline silicon layer, for example, a dielectric isolation substrate as shown in FIG. 6 or an SOI (Silicon On) as shown in FIG. Insulator) board,
These are support layers 12 and 2 which mechanically support the single crystal silicon islands 11 and the single crystal silicon layers 21 which are active regions.
When a polycrystalline silicon layer is used as 2, insulating film 13,
23, it is necessary to form this thick polycrystalline silicon layer.

【0005】また、その他、図8に示すような、IOP
(Isolation by Oxide andPolysilicon)基板等のよう
に、電気的絶縁分離のための溝31内に多結晶シリコン
32を絶縁膜33を介して埋め込む際にも、この厚い多
結晶シリコン層の形成が必要となる。
In addition, the IOP as shown in FIG.
(Isolation by Oxide and Polysilicon) It is necessary to form this thick polycrystalline silicon layer also when burying the polycrystalline silicon 32 in the groove 31 for electrical insulation separation through the insulating film 33 as in a substrate or the like. Become.

【0006】以下、図4(a)〜(c)に従い、従来の
この種の半導体基板の製造方法を図6に示した誘電体分
離基板を例にとり説明する。
A conventional method for manufacturing a semiconductor substrate of this type will be described below with reference to FIGS. 4A to 4C, taking the dielectric isolation substrate shown in FIG. 6 as an example.

【0007】先ず、図4(a)に示すように、単結晶シ
リコン基板41を異方性エッチングし、V字溝42を形
成し、全面に多結晶シリコン基板と同じ導電型の不純物
を拡散し、埋め込み層46を形成する。
First, as shown in FIG. 4A, a single crystal silicon substrate 41 is anisotropically etched to form a V-shaped groove 42, and an impurity of the same conductivity type as that of the polycrystalline silicon substrate is diffused over the entire surface. , The buried layer 46 is formed.

【0008】次に、図4(b)に示すように、単結晶シ
リコン基板41を酸化し、V字溝42を含む基板表面
に、電気的絶縁分離のための酸化膜43を形成後、酸化
膜43上に支持体層となる多結晶シリコン44を所望の
厚さに堆積する。この堆積方法としては、シリコンの融
点にあたる1440℃程度に加熱し、これによって溶融
したシリコンをスプレ−状にして、基板の温度が、13
75℃程度に保たれたシリコン基板41上にこの溶融し
たシリコン堆積し、固化することにより、シリコン基板
41上に多結晶シリコン44を被着する。
Next, as shown in FIG. 4B, the single crystal silicon substrate 41 is oxidized to form an oxide film 43 for electrical insulation separation on the surface of the substrate including the V-shaped groove 42, and then oxidized. Polycrystalline silicon 44, which will be a support layer, is deposited on the film 43 to a desired thickness. This deposition method is performed by heating to about 1440 ° C., which corresponds to the melting point of silicon, and thereby melting the melted silicon into a spray shape so that the substrate temperature is 13
The melted silicon is deposited on the silicon substrate 41 kept at about 75 ° C. and solidified to deposit the polycrystalline silicon 44 on the silicon substrate 41.

【0009】その後、多結晶シリコン44の表面を平坦
な加工基準面45まで研削し、この後に、単結晶シリコ
ン基板41の裏面側を、V字溝42の先端が露出するま
で研削研磨することにより、図4(c)に示す単結晶シ
リコン島47を有する誘電体分離基板が得られる。
After that, the surface of the polycrystalline silicon 44 is ground to a flat processing reference surface 45, and then the back surface of the single crystal silicon substrate 41 is ground and polished until the tip of the V-shaped groove 42 is exposed. A dielectric isolation substrate having the single crystal silicon island 47 shown in FIG. 4C is obtained.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述の
従来の製造方法では、支持体層となる厚い多結晶シリコ
ンを堆積する工程において、堆積された溶融シリコンと
単結晶シリコン基板との温度差により生じる熱応力によ
り単結晶シリコン基板に反りが生じる。
However, in the above-mentioned conventional manufacturing method, in the step of depositing the thick polycrystalline silicon to be the support layer, it is caused by the temperature difference between the deposited molten silicon and the single crystal silicon substrate. Warpage occurs in the single crystal silicon substrate due to thermal stress.

【0011】この単結晶シリコン基板の反りは、その後
の研削研磨の工程において、単結晶シリコン基板の厚さ
バラツキ及び、単結晶シリコン島の厚さバラツキの原因
となるため、少ないほうが望ましい。
This warpage of the single crystal silicon substrate causes variations in the thickness of the single crystal silicon substrate and variations in the thickness of the single crystal silicon islands in the subsequent grinding and polishing step, and therefore it is desirable that the warpage is small.

【0012】文献:アイエスピ−エスディ−(ISPSD
(Proceedings of 1990International Symposium on Po
wer Semicondutor Devices IC's,April 4-6,1990,pp.17
4-179 )には、図5に示されるような、単結晶シリコン
基板の温度と、この基板の反りの関係が示されており、
この関係から単結晶シリコン基板の温度を下げると、基
板の反りが多くなることが分かる。後の工程で問題とな
らないようにするため、単結晶シリコン基板の反りは2
00μm以下に抑えたい、この単結晶シリコン基板の反
りを200μm以下にするためには、図5より、単結晶
シリコン基板の温度を1350℃以上とする必要がある
ことが分かる。
Literature: ISSP (ISPSD
(Proceedings of 1990International Symposium on Po
wer Semicondutor Devices IC's, April 4-6,1990, pp.17
4-179) shows the relationship between the temperature of the single crystal silicon substrate and the warp of this substrate as shown in FIG.
From this relationship, it is found that when the temperature of the single crystal silicon substrate is lowered, the warp of the substrate increases. The warp of the single crystal silicon substrate is 2 in order to avoid a problem in the subsequent process.
In order to suppress the warp of the single crystal silicon substrate to 200 μm or less, which is desired to be suppressed to 00 μm or less, it can be seen from FIG. 5 that the temperature of the single crystal silicon substrate needs to be 1350 ° C. or higher.

【0013】上記の単結晶シリコン基板の反りを200
μm以下にするため、単結晶シリコン基板の温度を13
50℃以上に設定すると、埋め込み層の再拡散量が大き
くなり、単結晶シリコン島内に必要な能動領域を確保す
るため、単結晶シリコン島を大きくしなければならなか
った。
The warp of the above single crystal silicon substrate is 200
The temperature of the single crystal silicon substrate should be 13
If the temperature is set to 50 ° C. or higher, the amount of re-diffusion of the buried layer becomes large, and the single crystal silicon island must be made large in order to secure a necessary active region in the single crystal silicon island.

【0014】従って、このように半導体素子面積が増大
する結果、全体としてチップサイズが増大するという問
題があった。
Therefore, as a result of such an increase in the semiconductor element area, there is a problem that the chip size as a whole increases.

【0015】この発明は上述した反りの少ない誘電体分
離基板を得るために高温処理が必要となることに基づく
問題を除去するために、単結晶シリコン基板の温度を低
温で処理しても単結晶シリコン基板の反りの少ない誘電
体分離基板を得ることのできる優れた半導体基板の製造
方法を提供することを目的とする。
In order to eliminate the above-mentioned problem that a high temperature treatment is required to obtain a dielectric isolation substrate having a small warp, the present invention does not require a single crystal silicon substrate to be processed at a low temperature. An object of the present invention is to provide an excellent method for manufacturing a semiconductor substrate, which can obtain a dielectric isolation substrate with less warpage of a silicon substrate.

【0016】[0016]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明の半導体基板の製造方法は、4.5〜
5.0at.%の濃度のゲルマニウムを含有するシリコ
ン−ゲルマニウム合金を溶融し、この溶融したシリコン
−ゲルマニウム合金を粉砕し、シリコン基板上に粉砕さ
れた溶融シリコン−ゲルマニウム合金を被着し、溶融シ
リコン−ゲルマニウム合金を固化するようにした。
In order to achieve the above object, the method of manufacturing a semiconductor substrate according to the present invention has a method of
5.0 at. % -Melting silicon-germanium alloy containing germanium concentration, crushing this molten silicon-germanium alloy, depositing the crushed molten silicon-germanium alloy on the silicon substrate, molten silicon-germanium alloy I tried to solidify.

【0017】[0017]

【作用】上述した本発明の半導体基板の製造方法では、
溶融シリコン−ゲルマニウム合金とシリコン基板との温
度差により生じる熱応力と、溶融シリコン−ゲルマニウ
ム合金の固化時の体膨張による応力とが相殺し合うた
め、シリコン基板の反りが抑えられる。
In the method of manufacturing a semiconductor substrate of the present invention described above,
Since the thermal stress caused by the temperature difference between the molten silicon-germanium alloy and the silicon substrate and the stress due to the body expansion during the solidification of the molten silicon-germanium alloy cancel each other, the warpage of the silicon substrate can be suppressed.

【0018】[0018]

【実施例】以下、図1(a)〜(d)に従い、この発明
の一実施例について誘電体分離基板を例にとり説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below by taking a dielectric isolation substrate as an example, with reference to FIGS.

【0019】先ず、図1(a)に示すように、単結晶シ
リコン基板51を酸化し、その表面に膜厚1μm程度の
第1の酸化膜52を形成する。
First, as shown in FIG. 1A, the single crystal silicon substrate 51 is oxidized to form a first oxide film 52 having a film thickness of about 1 μm on the surface thereof.

【0020】次に、図1(b)に示すように、ホトリソ
・エッチングにより第1の酸化膜52を部分的に開孔
し、残りの第1の酸化膜52を保護マスクとして単結晶
シリコン基板51を異方性エッチングすることにより、
深さ50μm程度のV字溝53を形成する。 次に、図
1(c)に示すように、第1の酸化膜52を除去後、再
び単結晶シリコン基板51を酸化し、V字溝53を含む
基板表面に膜厚2μm程度の絶縁分離のための第2の酸
化膜54を形成する。
Next, as shown in FIG. 1B, the first oxide film 52 is partially opened by photolithography etching, and the remaining first oxide film 52 is used as a protective mask to form a single crystal silicon substrate. By anisotropically etching 51,
A V-shaped groove 53 having a depth of about 50 μm is formed. Next, as shown in FIG. 1C, after removing the first oxide film 52, the single crystal silicon substrate 51 is oxidized again, and an insulating separation film having a thickness of about 2 μm is formed on the substrate surface including the V-shaped groove 53. A second oxide film 54 for forming is formed.

【0021】次に、単結晶シリコン基板51を図2に概
略を示すスプレ−装置のステ−ジ61上に載置し、ヒ−
タ−62により加熱し、1200℃程度の温度に保つ、
その後、スプレ−装置の石英管63内でシリコン−ゲル
マニウム合金64をヒ−タ−65により1400℃程度
まで加熱して溶融し、Ar(アルゴン)ガス噴出口66
より噴出させたArガスにより粉砕してスプレ−状に
し、回転している単結晶シリコン基板51上の第2の酸
化膜54上に被着固化させることにより、膜厚500〜
600μm程度のシリコン−ゲルマニウム合金層55を
形成する。
Next, the single crystal silicon substrate 51 is placed on a stage 61 of a spraying apparatus schematically shown in FIG.
And heat it to about 1200 ℃,
After that, the silicon-germanium alloy 64 is heated to about 1400 ° C. by a heater 65 and melted in the quartz tube 63 of the spray device, and the Ar (argon) gas ejection port 66 is used.
By spraying Ar gas, the powder is pulverized to form a spray, and is deposited and solidified on the second oxide film 54 on the rotating single-crystal silicon substrate 51, to obtain a film thickness of 500 to 500.
A silicon-germanium alloy layer 55 having a thickness of about 600 μm is formed.

【0022】上記シリコン−ゲルマニウム合金64のゲ
ルマニウム濃度と誘電体分離基板の反りの関係として図
3に実験結果を示す。
Experimental results are shown in FIG. 3 as a relationship between the germanium concentration of the silicon-germanium alloy 64 and the warpage of the dielectric isolation substrate.

【0023】この実験結果より、単結晶シリコン基板の
温度を1200℃とする時、ゲルマニウム濃度を4.5
〜5.0at.%とすることにより、シリコン基板の反
りは低減することがわかった。
From the results of this experiment, when the temperature of the single crystal silicon substrate is 1200 ° C., the germanium concentration is 4.5.
~ 5.0 at. It has been found that the warpage of the silicon substrate is reduced by setting the ratio to%.

【0024】これは、溶融シリコン−ゲルマニウム合金
とシリコン基板との温度差により生じる熱応力と、溶融
シリコン−ゲルマニウム合金の固化時の体膨張による応
力とが相殺し合うため、シリコン基板の反りが抑えら
れ、このようなゲルマニウム濃度の依存性が生じるもの
と考えられる。
This is because the thermal stress caused by the temperature difference between the molten silicon-germanium alloy and the silicon substrate and the stress due to the body expansion during the solidification of the molten silicon-germanium alloy cancel each other, so that the warpage of the silicon substrate is suppressed. It is considered that such dependence of germanium concentration occurs.

【0025】ここでは、例えば、ゲルマニウム濃度を
4.3at.%のシリコン−ゲルマニウム合金を用いる
ことにより、基板の反り量約100μmとなるようにす
る。
Here, for example, the germanium concentration is 4.3 at. % Silicon-germanium alloy is used so that the warp amount of the substrate is about 100 μm.

【0026】上記工程の後、図1(d)に示すように、
シリコン−ゲルマニウム合金層55の表面を平坦な加工
基準面56まで研削し、単結晶シリコン基板51の裏面
側をV字溝53の先端が露出するまで研削研磨により除
去することにより、単結晶シリコン島57が絶縁分離の
ための第2の酸化膜54及び支持体層であるシリコン−
ゲルマニウム合金層55を介して、互いに電気的に分離
された誘電体分離基板が得られる。
After the above steps, as shown in FIG.
The surface of the silicon-germanium alloy layer 55 is ground to a flat processing reference surface 56, and the back surface side of the single crystal silicon substrate 51 is removed by grinding and polishing until the tip of the V-shaped groove 53 is exposed. 57 is a second oxide film 54 for insulation separation and silicon which is a support layer.
Through the germanium alloy layer 55, dielectric isolation substrates electrically isolated from each other are obtained.

【0027】上記実施例では、誘電体分離基板を取り上
げたが、図1(b)に示したV字溝53を形成せず、図
1(d)に示した単結晶シリコン基板51の裏面側の研
削研磨による除去を数μmの単結晶シリコン層が残存す
る所まで行いSOI基板を得る場合や、図1(b)に示
すように単結晶シリコン基板51にV字溝53やU字溝
を形成後、第2の酸化膜54を形成し、図1(c)に示
したシリコン母材の合金層55を溝が埋まる程度の厚さ
だけ形成し、シリコン母材の合金層55を単結晶シリコ
ン基板51の表面に形成された第2の酸化膜54が露出
するまで除去することにより、溝内をシリコン母材の合
金層55で埋め込む場合にも、この発明を適用できる。
Although the dielectric isolation substrate is taken up in the above embodiment, the V-shaped groove 53 shown in FIG. 1B is not formed and the rear surface side of the single crystal silicon substrate 51 shown in FIG. In the case where an SOI substrate is obtained by removing the single crystal silicon layer of several μm by grinding and polishing, a V-shaped groove 53 or a U-shaped groove is formed in the single crystal silicon substrate 51 as shown in FIG. 1B. After the formation, the second oxide film 54 is formed, the alloy layer 55 of the silicon base material shown in FIG. 1C is formed to a thickness enough to fill the groove, and the alloy layer 55 of the silicon base material is formed into a single crystal. By removing the second oxide film 54 formed on the surface of the silicon substrate 51 until it is exposed, the present invention can be applied to the case where the groove is filled with the alloy layer 55 of the silicon base material.

【0028】また、上記実施例は、所定の濃度のシリコ
ン−ゲルマニウムを予め用意したが、シリコンとゲルマ
ニウムを別々に用意して石英管63内でこれらを溶融混
合し、所定濃度のシリコン−ゲルマニウムとする場合に
も、この発明は適用できる。
In the above embodiment, silicon-germanium having a predetermined concentration was prepared in advance. However, silicon and germanium were separately prepared and melted and mixed in the quartz tube 63 to obtain a silicon-germanium having a predetermined concentration. The present invention can be applied to the case.

【0029】[0029]

【発明の効果】上述したように、この発明の半導体基板
の製造方法によれば、4.5〜5.0at.%の濃度の
ゲルマニウムを含有するシリコン−ゲルマニウム合金を
溶融し、この溶融したシリコン−ゲルマニウム合金を粉
砕し、シリコン基板上に粉砕された溶融シリコン−ゲル
マニウム合金を被着し、溶融シリコン−ゲルマニウム合
金を固化するようにしたので、溶融シリコン−ゲルマニ
ウム合金をシリコン基板上に被着する際に、基板温度を
埋め込み層の再拡散量の少ない1200℃程度、つまり
シリコン基板の温度を低温で処理しても、シリコン基板
の反りの少なくできる。
As described above, according to the method of manufacturing a semiconductor substrate of the present invention, 4.5 to 5.0 at. A silicon-germanium alloy containing germanium in a concentration of 10%, the molten silicon-germanium alloy is crushed, and the crushed molten silicon-germanium alloy is deposited on a silicon substrate to form a molten silicon-germanium alloy. Since it is made to solidify, when the molten silicon-germanium alloy is deposited on the silicon substrate, the substrate temperature is set to about 1200 ° C. where the re-diffusion amount of the buried layer is small, that is, even if the temperature of the silicon substrate is processed at a low temperature. The warp of the silicon substrate can be reduced.

【0030】従って、この発明の方法により製造した半
導体基板を用いた半導体集積装置では、埋め込み層の再
拡散量が小さくチップ面積の縮小が期待できる。
Therefore, in the semiconductor integrated device using the semiconductor substrate manufactured by the method of the present invention, the re-diffusion amount of the buried layer is small and the chip area can be expected to be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体基板の製造工程を説明するた
めの図。
FIG. 1 is a diagram for explaining a manufacturing process of a semiconductor substrate of the present invention.

【図2】この発明に使用するスプレ−装置を説明するた
めの図。
FIG. 2 is a view for explaining a spray device used in the present invention.

【図3】ゲルマニウム濃度に対する基板の反りの依存性
を示すためのグラフ。
FIG. 3 is a graph showing the dependence of substrate warpage on germanium concentration.

【図4】従来の誘電体分離基板の製造工程を説明するた
めの図。
FIG. 4 is a diagram for explaining a manufacturing process of a conventional dielectric isolation substrate.

【図5】単結晶シリコン基板温度に対する基板の反りの
依存性を示すためのグラフ。
FIG. 5 is a graph showing the dependence of substrate warpage on single crystal silicon substrate temperature.

【図6】誘電体分離基板の断面図。FIG. 6 is a cross-sectional view of a dielectric isolation substrate.

【図7】SOI基板の断面図。FIG. 7 is a cross-sectional view of an SOI substrate.

【図8】IOP基板の断面図。FIG. 8 is a sectional view of an IOP substrate.

【符号の説明】[Explanation of symbols]

51・・・単結晶シリコン基板 52・・・第1の酸化膜 53・・・V字溝 54・・・第2の酸化膜 55・・・シリコン−ゲルマニウム合金層 56・・・加工基準面 57・・・単結晶シリコン島 58・・・埋め込み層 51 ... Single crystal silicon substrate 52 ... First oxide film 53 ... V-shaped groove 54 ... Second oxide film 55 ... Silicon-germanium alloy layer 56 ... Processing reference plane 57・ ・ ・ Single crystal silicon island 58 ・ ・ ・ Embedded layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 4.5〜5.0at.%の濃度のゲルマ
ニウムを含有する溶融シリコン−ゲルマニウム合金を粉
砕する工程と、 上記工程後、シリコン基板上に粉砕された前記溶融シリ
コン−ゲルマニウム合金を被着する工程と、 上記工程後、前記溶融シリコン−ゲルマニウム合金を固
化する工程とを有することを特徴とする半導体基板の製
造方法。
1. 4.5 to 5.0 at. % Crushing a molten silicon-germanium alloy containing germanium in a concentration of, and, after the above step, depositing the crushed molten silicon-germanium alloy on a silicon substrate, and after the step, the molten silicon -A step of solidifying a germanium alloy, and a method of manufacturing a semiconductor substrate.
JP05830793A 1993-03-18 1993-03-18 Semiconductor substrate manufacturing method Expired - Fee Related JP3327977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05830793A JP3327977B2 (en) 1993-03-18 1993-03-18 Semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05830793A JP3327977B2 (en) 1993-03-18 1993-03-18 Semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH06275522A true JPH06275522A (en) 1994-09-30
JP3327977B2 JP3327977B2 (en) 2002-09-24

Family

ID=13080587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05830793A Expired - Fee Related JP3327977B2 (en) 1993-03-18 1993-03-18 Semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3327977B2 (en)

Also Published As

Publication number Publication date
JP3327977B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US20010016399A1 (en) Method for forming a bonded substrate containing a planar intrinsic gettering zone and substrate formed by said method
JP2002280531A (en) Semiconductor substrate and its manufacturing method
WO2003092041B1 (en) Method for fabricating a soi substrate a high resistivity support substrate
EP2012346B1 (en) Method for producing soi wafer
JPH0562451B2 (en)
JPH0312775B2 (en)
US3911559A (en) Method of dielectric isolation to provide backside collector contact and scribing yield
US5374582A (en) Laminated substrate for semiconductor device and manufacturing method thereof
JP2699359B2 (en) Semiconductor substrate manufacturing method
JPH06275522A (en) Manufacturing method of semiconductor substrate
JPS60111421A (en) Manufacture of semiconductor device
JPH0468770B2 (en)
JP2517182B2 (en) Semiconductor substrate and manufacturing method thereof
JPS59121823A (en) Fabrication of single crystal silicon film
JPS62203364A (en) Manufacture of semiconductor device
JP3157595B2 (en) Dielectric separation substrate
JPS60115265A (en) Semiconductor device and manufacture thereof
RU2109371C1 (en) Integrated circuit manufacturing process
JP2789965B2 (en) Laminated substrate for semiconductor device and method of manufacturing the same
JPH0476951A (en) Semiconductor device and manufacture thereof
JPH02268443A (en) Semiconductor device
JP2793241B2 (en) SOI formation method
JPH02126650A (en) Manufacture of dielectric isolation semiconductor device
JP2003309253A (en) Soi wafer and manufacturing method of soi wafer
JPS59165435A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees