JPH06275394A - X-ray radioscopy device - Google Patents

X-ray radioscopy device

Info

Publication number
JPH06275394A
JPH06275394A JP8913893A JP8913893A JPH06275394A JP H06275394 A JPH06275394 A JP H06275394A JP 8913893 A JP8913893 A JP 8913893A JP 8913893 A JP8913893 A JP 8913893A JP H06275394 A JPH06275394 A JP H06275394A
Authority
JP
Japan
Prior art keywords
ray
image
light
tube
shade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8913893A
Other languages
Japanese (ja)
Inventor
Wataru Yamamoto
渡 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP8913893A priority Critical patent/JPH06275394A/en
Publication of JPH06275394A publication Critical patent/JPH06275394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optimum radioscopic image even knowledge and skill for an X-ray are lacked by shading-correcting a radioscopic image, then detecting the frequency characteristic of the correction data and the mean value of a light and shade difference, and thereby controlling the voltage and current of an X-ray tube. CONSTITUTION:An X-ray radioscopic image is detected by a CCD camera 1, and the shading of the image is corrected by a shading correction part 2. Corrected data are inputted into a frequency analysis part 3 and a light and shade difference peak detection part 4 to detect the shape of an image from the frequency characteristic of image data by using a FET at the analysis part 3 and the mean value of the light and shade difference of the image data at the detection part 4. A light and shade characteristic is judged from the frequency characteristic of the image data and the mean value of the light and shade difference by a judgment part 5, and the tube voltage and tube current of an X-ray tube 15 are controlled by an X-ray control part 6 by utilizing the light and shade characteristic to generate an optimum X-ray.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線装置に係り、特に
周波数分析装置を組み込んだコンピュータシステムによ
り、X線透視画像の濃淡特性を向上させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray apparatus, and more particularly, to improving the gradation characteristic of an X-ray fluoroscopic image by a computer system incorporating a frequency analyzer.

【0002】[0002]

【従来の技術】近年は、X線の発生方法も多様化し応用
面も各分野に拡がり、マクロ化の進む各工業分野で必須
の検査または解析の手段として、X線源を用いて微小部
分の拡大透視画像を得るような非接触センシングが一般
に用いられるようになった。しかし、微細な焦点のX線
源が一般に製品化されて、まだ歴史が浅く、これを利用
した検査または解析システムの改善に対する要求は多
い。一方、これに対して、X線の透視画像を撮像する方
法として図3に示すようにイメージインテンシファイア
(X線蛍光増倍管)とCCDカメラを用いた方式が着目
されている。同図において、1はCCDカメラ、7はモ
ニタ、10はイメージインテンシファイア、11はX線
源、12は被観測物、13はレンズ、14はミラーであ
る。この方式は、必要な画像の質(解像度、動静止画の
別など)に応じ6〜12インチのイメージインテンシフ
ァイア10と適当なCCDカメラ1で構成され、取り扱
いが便利な上、高解像度の透視画像を得ることができ、
透視画像の濃淡差で欠陥などの観測を行える。ここで、
この濃淡差とは、X線の被観測物に対する透過量の差で
あり、被観測物の材質とその状態及び透過するX線の波
長、線質により決定される。そこで濃淡差を得る為、被
観測物に対しX線が吸収されやすい(又は吸収され難
い)ようX線ターゲットの材質を変えたり、X線管の管
電圧、管電流値を変化させることで、X線の波長や強
度、線質を最適な状態に設定し、明瞭な濃淡差を得てい
る。
2. Description of the Related Art In recent years, X-ray generation methods have been diversified and their applications have spread to various fields, and as a means of inspection or analysis indispensable in each industrial field where macro conversion is progressing, an X-ray source is used to detect minute parts. Non-contact sensing for obtaining magnified perspective images has become popular. However, a fine focus X-ray source is generally commercialized and has a short history, and there is a great demand for improvement of an inspection or analysis system using the X-ray source. On the other hand, as a method for capturing a fluoroscopic image of X-rays, a method using an image intensifier (X-ray fluorescence multiplier) and a CCD camera has been attracting attention as shown in FIG. In the figure, 1 is a CCD camera, 7 is a monitor, 10 is an image intensifier, 11 is an X-ray source, 12 is an object to be observed, 13 is a lens, and 14 is a mirror. This system is composed of an image intensifier 10 of 6 to 12 inches and an appropriate CCD camera 1 according to the required image quality (resolution, distinction between moving and still images, etc.), and is easy to handle and has a high resolution. You can get a perspective image,
Defects can be observed based on the difference in gray level of the fluoroscopic image. here,
The gray level difference is the difference in the amount of X-rays transmitted to the object to be observed, and is determined by the material and state of the object to be observed, the wavelength of X-rays that pass therethrough, and the quality of the X-rays. Therefore, in order to obtain the grayscale difference, by changing the material of the X-ray target so that X-rays are easily absorbed (or difficult to be absorbed) by the observed object, or by changing the tube voltage and tube current value of the X-ray tube, The wavelength, intensity, and quality of X-rays are set to optimum conditions to obtain a clear contrast.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
X線装置で最適な濃淡特性を得るには、X線発生装置ご
とに異なる微妙な特性と、ターゲット材、被観測物の材
質を変える度に最適な管電圧、管電流値を実験的に探し
出す必要がある。このような場合、作業者には、ある程
度の物理学的知識と熟練性を要する。本発明は、このよ
うな事情に鑑みてなされたもので、作業者に対し前記要
素を持たない人にも最適な濃淡特性の透視画像を得るX
線装置を提供することを目的とする。
However, in order to obtain the optimum grayscale characteristics in the conventional X-ray apparatus, it is necessary to change the delicate characteristics different for each X-ray generator and the target material and the material of the object to be observed. It is necessary to experimentally find the optimum tube voltage and tube current value. In such a case, the operator needs some physical knowledge and skill. The present invention has been made in view of the above circumstances, and obtains a perspective image having a grayscale characteristic that is optimal even for a person who does not have the above-mentioned elements for an operator X
An object is to provide a line device.

【0004】[0004]

【課題を解決するための手段】本発明は、前記目的を達
成する為に、撮像手段より入力した透視画像をシェーデ
ィング補正手段を介して周波数分析手段に於いて、周波
数分析を行い、これと同時に濃淡差の平均値検出手段に
於いて濃淡差を検出、さらに判定手段でX線透視画像の
特性を判別、記憶し、X線コントロール手段でX線管の
管電圧、管電流を変化させ、最適な管電圧、管電流値を
コンピュータコントロールにより探し出し、最適なX線
を放射することを特徴とする。
In order to achieve the above object, the present invention performs frequency analysis on a fluoroscopic image input from an image pickup means through shading correction means in frequency analysis means, and at the same time, performs frequency analysis. Optimum by detecting the difference in gray level by means of detecting the average value of gray level difference, and further determining and storing the characteristics of the X-ray fluoroscopic image by the determining means and changing the tube voltage and tube current of the X-ray tube by the X-ray control means. It is characterized in that various tube voltages and tube current values are searched for by computer control and optimum X-rays are emitted.

【0005】[0005]

【作用】本発明によれば、撮像手段で得らえた透視画像
をシェーディング補正手段でイメージインテンシファイ
アの歪によるシェーディングを補正したのち、周波数分
析手段と濃淡差の平均検出手段により、この補正データ
の周波数特性と濃淡差の値を検出することで、X線透視
画像の濃淡特性を調べることができる。これを利用して
X線の強度及び線質を順次変化させた時の濃淡特性を検
出、記憶し最適な管電圧、管電流値を探し出し最適な透
視画像を得る。
According to the present invention, the perspective image obtained by the image pickup means is corrected by the shading correction means due to the shading due to the distortion of the image intensifier, and then the corrected data is obtained by the frequency analysis means and the mean difference detection unit. By detecting the frequency characteristic and the value of the grayscale difference, the grayscale characteristic of the X-ray fluoroscopic image can be examined. Utilizing this, the grayscale characteristics when the intensity and the quality of X-rays are sequentially changed are detected and stored, the optimum tube voltage and tube current values are searched for, and the optimum fluoroscopic image is obtained.

【0006】[0006]

【実施例】以下添付図面に従って本発明に係るX線装置
の好ましい実施例を詳説する。図1には本発明に係るX
線装置の実施例が示され図3に示した一般的なX線透視
画像撮像方法と同一又は類似の手段材については、同一
の符号を付して説明する。尚、ここでは図3に示したイ
メージインテンシファイアの作用を省略し、またCCD
カメラ、モニタ、レンズ、ミラーの各作用についても省
略する。図1に於て、X線透視画像は、CCDカメラ1
によって検出され、シェーディング補正部2で画像のシ
ェーディングを補正する。補正されたデータは、周波数
分析部3と濃淡差の平均検出部4に入力され、ここで前
者、周波数分析部3に於ては、FFT(高速フーリエ変
換)を用い補正された画像データの周波数特性からその
画像の形状を検出、後者、濃淡差の平均検出部4に於て
は、補正済み画像データの濃淡差の平均値を検出する。
ここで、この画像データの形状8aすなわち、時間表現
の透視画像データとその周波数特性8bすなわち、周波
数表現の透視画像データの関係を図2に示す。これによ
って検出された画像データの周波数特性と濃淡差の平均
値を判断部5に於て加味し濃淡特性を判断する。次にこ
れを記憶、このデータを元にX線コントロール部6に於
てX線管15の管電圧、管電流値を順次変化させ同様の
判定を繰り返す。これにより一定の判定を行った後、判
定部5により最適な濃淡特性が得られた時の管電圧、管
電流値を探し出し、これに設定し、最適なX線を発生さ
せる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the X-ray apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an X according to the present invention.
The same or similar means as those of the general X-ray fluoroscopic image capturing method shown in FIG. The operation of the image intensifier shown in FIG. 3 is omitted here, and the CCD
The functions of the camera, monitor, lens, and mirror are also omitted. In FIG. 1, the X-ray fluoroscopic image is a CCD camera 1.
The shading correction unit 2 corrects the shading of the image. The corrected data is input to the frequency analysis unit 3 and the grayscale difference average detection unit 4, and in the former, the frequency analysis unit 3, the frequency of the image data corrected using FFT (Fast Fourier Transform). The shape of the image is detected from the characteristics, and in the latter, the grayscale difference average detection unit 4 detects the average grayscale difference value of the corrected image data.
Here, FIG. 2 shows the relationship between the shape 8a of the image data, that is, the perspective image data expressed in time, and its frequency characteristic 8b, that is, the perspective image data expressed in frequency. The frequency characteristic of the image data thus detected and the average value of the gray level difference are taken into consideration in the determination section 5 to determine the gray level characteristic. Next, this is stored, and the tube voltage and tube current value of the X-ray tube 15 are sequentially changed in the X-ray controller 6 based on this data, and the same determination is repeated. After making a certain determination by this, the determination unit 5 finds the tube voltage and the tube current value when the optimum light and shade characteristics are obtained, and sets them to generate the optimum X-ray.

【0007】[0007]

【発明の効果】以上説明したように本発明に係るX線画
像の透視装置によれば、作業者はX線の物理学的知識と
熟練性を持たなくても又、物性の分からない未知の被観
測物に対し俊敏かつ明瞭なX線透視画像を得ることがで
きる。
As described above, according to the X-ray image fluoroscope according to the present invention, an operator does not have the physical knowledge and skill of X-rays, and the unknown physical properties are unknown. It is possible to obtain an agile and clear X-ray fluoroscopic image of the object to be observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るX線画像処理システムの実施例を
示すブロック図。
FIG. 1 is a block diagram showing an embodiment of an X-ray image processing system according to the present invention.

【図2】透視画像の時間表現と周波数表現の説明図。FIG. 2 is an explanatory diagram of time expression and frequency expression of a perspective image.

【図3】一般的なX線透視装置のシステム図。FIG. 3 is a system diagram of a general fluoroscope.

【符号の説明】[Explanation of symbols]

1 CCDカメラ 2 シェーディング補正部 3 周波数分析部 4 濃淡差の平均検出部 5 判断部 6 X線管コントロール部 7 モニタ 10 イメージインテンシファイア 11 X線源 12 被観測物 13 レンズ 14 ミラー 15 X線管 1 CCD camera 2 Shading correction unit 3 Frequency analysis unit 4 Average difference detection unit 5 Judgment unit 6 X-ray tube control unit 7 Monitor 10 Image intensifier 11 X-ray source 12 Observed object 13 Lens 14 Mirror 15 X-ray tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線透過画像を撮像手段で撮像し、シェ
ーディング補正を行った後、このデータを周波数分析す
ることで透過画像の特性と透視画像全体の濃淡差の平均
値を検出し、該濃淡差の平均値と前記透過画像の特性お
よびX線の線質及び強度との関係からX線管の管電圧、
管電流値を制御することを特徴とするX線透視装置。
1. An X-ray transmission image is picked up by an image pickup means, shading correction is performed, and then this data is subjected to frequency analysis to detect the average value of the characteristics of the transmission image and the grayscale difference of the entire fluoroscopic image. The tube voltage of the X-ray tube from the relationship between the average value of the density difference and the characteristics of the transmission image and the quality and intensity of the X-ray,
An X-ray fluoroscopic device characterized by controlling a tube current value.
JP8913893A 1993-03-24 1993-03-24 X-ray radioscopy device Pending JPH06275394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8913893A JPH06275394A (en) 1993-03-24 1993-03-24 X-ray radioscopy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8913893A JPH06275394A (en) 1993-03-24 1993-03-24 X-ray radioscopy device

Publications (1)

Publication Number Publication Date
JPH06275394A true JPH06275394A (en) 1994-09-30

Family

ID=13962523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8913893A Pending JPH06275394A (en) 1993-03-24 1993-03-24 X-ray radioscopy device

Country Status (1)

Country Link
JP (1) JPH06275394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436930B2 (en) * 2005-04-15 2008-10-14 Siemens Aktiengesellschaft Method for controlling the dose or the dose rate when recording x-ray images
JP2019012011A (en) * 2017-06-30 2019-01-24 アンリツインフィビス株式会社 Article inspection device and method for calibrating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436930B2 (en) * 2005-04-15 2008-10-14 Siemens Aktiengesellschaft Method for controlling the dose or the dose rate when recording x-ray images
JP2019012011A (en) * 2017-06-30 2019-01-24 アンリツインフィビス株式会社 Article inspection device and method for calibrating the same

Similar Documents

Publication Publication Date Title
CN109856164A (en) A kind of machine vision acquires the optimization device and its detection method of a wide range of image
US11714071B2 (en) Method and system for inspecting growth quality of graphene
JP2000266701A (en) Fluorescent x-ray analyzer
JPH0689687A (en) Automatic focusing device for scanning electron microscope
JPH06275394A (en) X-ray radioscopy device
JP2000249670A (en) Displacement-measuring device at hot temperature
JP2023058641A (en) Light transmission measurement device
JP2008311216A (en) Autofocus method of scanning charged-particle beam device
JP2005000369A (en) X-ray irradiating condition controller
JP4497619B2 (en) X-ray diagnostic imaging equipment
JP3329018B2 (en) Infrared microscope
KR102602005B1 (en) charged particle beam device
JP3302863B2 (en) Inspection method and inspection device for perforated plate
JPH01265145A (en) X-ray inspection device
JP2011220828A (en) Focus deviation detection device, focus deviation detection method and program thereof
JPH09257422A (en) Edge detection system
JPH0735514A (en) Film thickness measuring device
JP3790629B2 (en) Scanning charged particle beam apparatus and method of operating scanning charged particle beam apparatus
JP2005321728A (en) Method for determining measurement parameter of scanning type microscope
JP2003028633A (en) Shape inspection device
JP2853854B2 (en) Inspection device
JP3318845B2 (en) Inspection auxiliary equipment
JPH0735703A (en) Image processing method
CN117092141B (en) X-ray nondestructive flaw detection equipment and method for power transmission line
JPH09325011A (en) Edge detection method