JPH06273958A - Electrophotographic sensitive body and its production - Google Patents

Electrophotographic sensitive body and its production

Info

Publication number
JPH06273958A
JPH06273958A JP8687593A JP8687593A JPH06273958A JP H06273958 A JPH06273958 A JP H06273958A JP 8687593 A JP8687593 A JP 8687593A JP 8687593 A JP8687593 A JP 8687593A JP H06273958 A JPH06273958 A JP H06273958A
Authority
JP
Japan
Prior art keywords
photoconductive layer
layer
stress
charge injection
injection blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8687593A
Other languages
Japanese (ja)
Inventor
Masaya Kawada
将也 河田
Toshiyuki Ebara
俊幸 江原
Shigenori Ueda
重教 植田
Koji Yamazaki
晃司 山崎
Hiroaki Niino
博明 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8687593A priority Critical patent/JPH06273958A/en
Publication of JPH06273958A publication Critical patent/JPH06273958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide the electrophotographic sensitive body of amorphous silicon having a small local level density with which peeling of photosensitive body films is prevented, optical memories are well removed and images having overall high quality free from image defects are obtd. and the process for production thereof. CONSTITUTION:The stress ratio in the thickness direction of the microparts of the charge implantation blocking layer 202 and photoconductive layer 203 of the photosensitive body of the amorphous silicon having the region where the local level density n per volume attains >=1X10<15>cm<-3> at <=10% of the film thickness of the photoconductive layer 203 and <=2mum is controlled and particularly the stress ratio in the boundary part of the charge implantation blocking layer 202 and photoconductive layer 203 is controlled by the process for production of continuously changing an electric discharge power and/or continuously elevating a substrate temp., etc., at the time of forming the charge implantation blocking layer 202 and the photoconductive layer 203, by which the good optical memory characteristic is obtd. and the peeling of the films and image defects, such as drop-out, are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像欠陥の低減を目的
とした、電子写真用感光体及びその製造法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoconductor and a method for producing the same for the purpose of reducing image defects.

【0002】[0002]

【従来の技術】アモルファスシリコン系感光体(以下a
−Si感光体と称する。)は高耐久、高光感度等の特性
により、特に高速複写機やレーザービームプリンターな
どの電子写真用感光体として賞用されている。
2. Description of the Related Art Amorphous silicon type photoconductors (hereinafter a)
-Si photosensitive member. ) Is highly prized as an electrophotographic photoreceptor for high-speed copying machines, laser beam printers, etc. due to its characteristics such as high durability and high photosensitivity.

【0003】図2(A)、(B)は代表的なa−Si感
光体の構造を示す模式的な断面図である。この図におい
て、(A)は光導電層が機能分離されていない、いわゆ
る単層型の感光体であり、(B)は光導電層が電荷発生
領域と電荷輸送領域とに分離された機能分離型感光体で
ある。
2A and 2B are schematic cross-sectional views showing the structure of a typical a-Si photosensitive member. In this figure, (A) is a so-called single-layer type photoreceptor in which the photoconductive layer is not functionally separated, and (B) is a functional separation in which the photoconductive layer is separated into a charge generation region and a charge transport region. Type photoconductor.

【0004】図2(A)にしめすa−Si感光体は、ア
ルミニウム(Al)等からなる導電性支持体201上に
順次堆積された電荷注入阻止層202と光導電層203
と表面層204とからなる。ここで、電荷注入阻止層2
02は導電性支持体201から光導電層203への電荷
の注入を抑制するためのものである。
The a-Si photoconductor shown in FIG. 2A has a charge injection blocking layer 202 and a photoconductive layer 203 which are sequentially deposited on a conductive support 201 made of aluminum (Al) or the like.
And a surface layer 204. Here, the charge injection blocking layer 2
02 is for suppressing the injection of charges from the conductive support 201 to the photoconductive layer 203.

【0005】また、光導電層203は少なくとも硅素原
子を含む非晶質材料で構成され、光導電性を示すもので
ある。さらに、表面層204は硅素原子と炭素原子(さ
らに必要に応じて水素原子かつ/またはハロゲン原子)
を含み、表面からの電荷の注入を抑制したり、電子写真
における画像を安定化させる能力等を有するものであ
る。
The photoconductive layer 203 is made of an amorphous material containing at least silicon atoms and exhibits photoconductivity. Further, the surface layer 204 is made of silicon atoms and carbon atoms (and hydrogen atoms and / or halogen atoms as required).
It has the ability to suppress the injection of charges from the surface and stabilize the image in electrophotography.

【0006】図2(B)に示すa−Si感光体は、光導
電層203が、少なくとも硅素原子を含む非晶質材料で
構成された電荷輸送領域206と、少なくとも硅素原子
を含む非晶質材料で構成された電荷発生領域205が順
次積層された構成の機能分離型とされたものである。こ
の感光体に光照射すると主として電荷発生領域205で
生成されたキャリアが電荷輸送領域206を通って導電
性支持体201に至る。
In the a-Si photoconductor shown in FIG. 2B, the photoconductive layer 203 has a charge transport region 206 composed of an amorphous material containing at least silicon atoms, and an amorphous material containing at least silicon atoms. This is a function-separated type in which charge generation regions 205 made of a material are sequentially stacked. When this photosensitive member is irradiated with light, carriers mainly generated in the charge generation region 205 pass through the charge transport region 206 and reach the conductive support 201.

【0007】該感光体は、プラズマCVD法(以下、P
−CVD法)により作成した。
The photosensitive member is formed by a plasma CVD method (hereinafter referred to as P
-CVD method).

【0008】次に、P−CVD法によって堆積膜を形成
するための装置及び形成方法について詳述する。
Next, an apparatus and a forming method for forming a deposited film by the P-CVD method will be described in detail.

【0009】図3は、P−CVD法による電子写真用感
光体の製造装置の一例である。
FIG. 3 shows an example of an apparatus for manufacturing an electrophotographic photoreceptor by the P-CVD method.

【0010】P−CVD法による堆積膜の製造装置は、
堆積装置3100と、原料ガス供給装置3200と、堆
積装置3100中の反応容器3111を減圧するための
排気装置(不図示)と、放電パワーを出力する電源(不
図示)と、マッチングボックス3115とから構成され
ている。
An apparatus for producing a deposited film by the P-CVD method is
From the deposition device 3100, the source gas supply device 3200, the exhaust device (not shown) for reducing the pressure of the reaction vessel 3111 in the deposition device 3100, the power supply (not shown) that outputs discharge power, and the matching box 3115. It is configured.

【0011】ここで、反応容器3111内には円筒状支
持体3112と、支持体加熱ヒーター3113と、原料
ガス導入感3114とが設置されている。原料ガス供給
装置3200は、SiH4,2,CH4,NH3,SiF4
どの原料ガスの各ボンベ3221〜3226と、各バル
ブ3231〜3236と、各流入バルブ3241〜32
46各流出バルブ3251〜3256と各マスフローコ
ントローラー3211〜3216とから構成され、各原
料ガスのガスボンベ3221〜3226は補助バルブ3
260を介して反応容器3111内のガス導入管311
4に接続されている。
Here, a cylindrical support 3112, a support heater 3113, and a source gas introduction sensation 3114 are installed in the reaction vessel 3111. The raw material gas supply device 3200 includes cylinders 3221 to 326 of raw material gases such as SiH 4, H 2, CH 4, NH 3, and SiF 4 , valves 3231 to 236, and inflow valves 3241 to 322.
46 Each of the outflow valves 3251 to 2566 and each of the mass flow controllers 3211 to 3216, and the gas cylinders 3221 to 3226 of each source gas are the auxiliary valves 3
Gas introduction pipe 311 in reaction vessel 3111 via 260
4 is connected.

【0012】この製造装置により、以下のように感光体
を作成する。
With this manufacturing apparatus, a photoreceptor is prepared as follows.

【0013】円筒状支持体3112が所定の温度になっ
たところで、各流出バルブ3251〜3256のうち必
要なものと補助バルブ3260とを開き反応容器311
1に導入した後、反応容器3111内の圧力が1Tor
r以下の所定の圧力になるように真空計3119を見な
がらメインバルブ3118を調整し、内圧が安定した後
に電源を所望の電力にセットし、マッチングボックス3
115を通じて反応容器3111中に放電パワーを導入
し、グロー放電を生起させる。この放電により、反応容
器3111中の各原料ガスが分解され、円筒状支持体3
112上に所定の非晶質硅素を主成分とする堆積膜が形
成される。所望の膜厚の形成が行われた後、放電パワー
の供給を停止し、堆積膜の形成を終える。
When the cylindrical support 3112 reaches a predetermined temperature, the necessary one of the outflow valves 3251 to 256 and the auxiliary valve 3260 are opened, and the reaction vessel 311 is opened.
1, the pressure inside the reaction vessel 3111 is 1 Tor.
The main valve 3118 is adjusted while observing the vacuum gauge 3119 so that the predetermined pressure is equal to or lower than r, and after the internal pressure is stabilized, the power supply is set to a desired power, and the matching box 3
Discharge power is introduced into the reaction vessel 3111 through 115 to cause glow discharge. By this discharge, each raw material gas in the reaction vessel 3111 is decomposed, and the cylindrical support 3
A deposited film containing a predetermined amorphous silicon as a main component is formed on 112. After the desired film thickness is formed, the supply of the discharge power is stopped and the formation of the deposited film is completed.

【0014】同様の操作を複数回繰り返すことにより、
所望の多層構造の感光体が形成される。
By repeating the same operation a plurality of times,
A photoreceptor having a desired multi-layer structure is formed.

【0015】また、成膜中、支持体3112を駆動装置
(不図示)によって所定の速度で回転させても良い。
During the film formation, the support 3112 may be rotated at a predetermined speed by a driving device (not shown).

【0016】図4は、a−Si感光体を用いて電子写真
装置の一例の要部を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a main part of an example of an electrophotographic apparatus using an a-Si photosensitive member.

【0017】この電子写真装置では、a−Si感光体4
01の周囲に、感光体401を一様に帯電させる主帯電
器402と、静電潜像を形成するために画像情報に応じ
た像露光光403を発する画像情報付与手段(不図示)
と、感光体401上の画像情報の無い、即ち転写材と転
写材の間に相当する部分を除電するブランク露光407
と、前記静電潜像を現像して顕像化するための現像器4
04と、前記顕像を転写材に転写させるための転写帯電
器(不図示)と、前記転写材をa−Si感光体401か
ら分離するための分離手段(不図示)と、クリーニング
装置405と、主除電光406とが、感光体401の周
方向に所定の間隔を持って、順に設けられている。
In this electrophotographic apparatus, the a-Si photosensitive member 4
A main charger 402 that uniformly charges the photoconductor 401 around 01 and image information giving means (not shown) that emits image exposure light 403 according to image information to form an electrostatic latent image.
And a blank exposure 407 that eliminates static electricity on a portion of the photoconductor 401 where there is no image information, that is, between the transfer material and the transfer material.
And a developing device 4 for developing the electrostatic latent image to make it visible.
04, a transfer charger (not shown) for transferring the visible image onto a transfer material, a separating means (not shown) for separating the transfer material from the a-Si photoconductor 401, and a cleaning device 405. The main charge eliminating light 406 is provided in order at a predetermined interval in the circumferential direction of the photoconductor 401.

【0018】上記のような電子写真装置で、感光体40
1を所定の回転速度で回転させ、主帯電器402、像露
光光403、現像器404、クリーニング装置405、
主除電光406ブランク露光407等により、帯電、現
像、除電を繰り返すと感光体の一周ないしは複数周前の
露光が画像上に影響を及ぼし、光メモリーが発生する。
In the electrophotographic apparatus as described above, the photoconductor 40
1 is rotated at a predetermined rotation speed, and the main charger 402, the image exposure light 403, the developing device 404, the cleaning device 405,
When charging, development, and static elimination are repeated by the main static elimination light 406 blank exposure 407 and the like, the exposure of one round or a plurality of rounds before the photosensitive body affects the image, and an optical memory is generated.

【0019】一般に、光メモリーの除去のため、上記の
様な、多層構造のa−Si感光体で、価電子帯側の移動
度端から0.55〜0.95eVに於ける、該光導電層
の体積あたりの局在準位密度nが電子写真装置の光メモ
リーに関与している事が知られている。感光体の、前周
での光の履歴に起因する表面の電位差を、光メモリー電
位というが、該nを1×1015cm-3以下に制御する事
により、光メモリー電位が10V以下となり、光メモリ
ーの除去された高画質な画像が得られる。
In general, in order to remove an optical memory, the photoconductive property of the a-Si photoconductor having a multilayer structure as described above is measured at 0.55 to 0.95 eV from the mobility end on the valence band side. It is known that the localized level density n per layer volume is involved in the optical memory of an electrophotographic apparatus. The potential difference on the surface of the photoconductor due to the history of light in the front circumference is called an optical memory potential. By controlling the n to be 1 × 10 15 cm −3 or less, the optical memory potential becomes 10 V or less, A high quality image without the optical memory can be obtained.

【0020】[0020]

【発明が解決しようとする課題】しかしながら、前記の
ような手法で該光導電層のnが1×1015cm-3以下で
ある感光体の成膜を行うと、感光体の膜の剥がれ、或い
はそれと同じ原因に起因すると考えられる、画像の白抜
け等の、画像欠陥が生じるという問題点がある。
However, when a photoconductor having a photoconductive layer having an n of 1 × 10 15 cm -3 or less is formed by the above-mentioned method, the film of the photoconductor peels off. Alternatively, there is a problem that an image defect such as white spots in an image is considered, which is considered to be caused by the same cause.

【0021】従来は、剥がれに対処するため、基板温度
を下げる、且つ/または放電パワーを下げる、且つ/ま
たはほう素(B)含有量を増加させるなど、膜全体の応
力を低減する方法が取られてきた。
Conventionally, in order to cope with the peeling, a method of reducing the stress of the whole film is taken, such as lowering the substrate temperature and / or lowering the discharge power and / or increasing the boron (B) content. Has been.

【0022】膜の応力自体を低減する手法は、概して体
積あたりの局在準位密度nが増加する傾向を有し、前述
の局在準位密度低減の方向と矛盾するものであった。こ
れらの手法は、電子写真特性に影響を及ぼし、良好な画
質の画像が得られなくなるという問題がある。
The method of reducing the stress of the film itself has a tendency that the localized level density n per volume generally increases, which is inconsistent with the above-mentioned direction of reducing the localized level density. These methods have a problem that they affect the electrophotographic characteristics and make it impossible to obtain an image of good quality.

【0023】[発明の目的]本発明の目的は、上記問題
を解決するためのものであり、光メモリーを良好な状態
で応力による膜はがれを除去し、且つ画像欠陥の無い高
品質な電子写真用感光体を提供することにある。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems, and removes film peeling due to stress in a good state of an optical memory, and is a high-quality electrophotography without image defects. To provide a photoreceptor for use.

【0024】[0024]

【課題を解決するための手段】本発明の主旨は、感光体
及び該感光体の成膜法に於いて、光導電層の該局在準位
密度nを制御し、膜の剥がれに起因する画像欠陥のな
い、a−Si感光体を用いた電子写真用感光体を提供す
ることにあり、電荷注入阻止層から、光導電層に於け
る、厚さ方向に隣接する位置の応力比を1.5以下にす
ることにより達成できる。
The gist of the present invention is due to the peeling of the film by controlling the localized level density n of the photoconductive layer in the photoconductor and the film forming method of the photoconductor. An object of the present invention is to provide an electrophotographic photosensitive member using an a-Si photosensitive member having no image defect. The stress ratio between the charge injection blocking layer and the photoconductive layer adjacent to each other in the thickness direction is set to 1 It can be achieved by setting the ratio to 5 or less.

【0025】該感光体、特に光導電層中の光キャリアの
走行性を上昇させ、高画質な画像を得るために、局在準
位の密度を制御することが有効であることがわかった。
It has been found that it is effective to control the density of localized levels in order to increase the traveling property of photocarriers in the photoconductor, especially in the photoconductive layer, and obtain a high quality image.

【0026】従来通りの手法で、光導電層のnを低減し
ようと試みると、感光体膜の剥がれが生じ、且つ/また
は白抜け等の画像欠陥が生じる。
If an attempt is made to reduce n in the photoconductive layer by the conventional method, peeling of the photoconductor film occurs and / or image defects such as white spots occur.

【0027】本発明者らは、この剥がれが電荷注入阻止
層と、光導電層の界面部分で発生することを発見し、電
荷注入阻止層に比較して光導電層の応力が大きく、その
変化が急激な為と考えた。この点に鑑み、鋭意研究検討
を重ねた結果、応力が膜厚上方向に無変化、または単調
増加する感光体に於いて、電荷注入阻止層から光導電層
の、厚さ方向の応力を、該位置下側に隣接する位置の応
力の、1.5倍以下とすることにより、剥がれが無く、
高画質な画像を得る事ができる感光体の成膜を行える事
を発見した。
The present inventors have discovered that this peeling occurs at the interface between the charge injection blocking layer and the photoconductive layer, and the stress in the photoconductive layer is larger than that in the charge injection blocking layer. I thought it was because of a sudden. In view of this point, as a result of extensive research and study, in the photoreceptor in which the stress does not change or increases monotonically in the thickness direction, the stress in the thickness direction from the charge injection blocking layer to the photoconductive layer, By making the stress at a position adjacent to the lower side of the position 1.5 times or less, there is no peeling,
It was discovered that it is possible to form a photoconductor film that can obtain high-quality images.

【0028】また、電荷注入阻止層から光導電層の成膜
時に、放電パワーを連続的に変化させることにより、剥
がれが無く、高画質な画像を得ることができる感光体の
成膜を行えることを発見した。
Further, when the photoconductive layer is formed from the charge injection blocking layer, the discharge power is continuously changed so that the photoconductor can be formed without peeling and a high quality image can be obtained. I have found

【0029】また、光導電層の成膜の初期に、基板温度
を連続的に変化させることにより、剥がれが無く、高画
質な画像を得ることができる感光体の成膜を行えること
を発見した。
Further, it was discovered that by continuously changing the substrate temperature in the initial stage of film formation of the photoconductive layer, it is possible to form a film of a photoreceptor capable of obtaining a high-quality image without peeling. .

【0030】[0030]

【作用】本発明のa−Si感光体を用いた電子写真用感
光体および該感光体成膜法は、該感光体の電荷注入阻止
層と、光導電層における該層間の応力を、基板温度、且
つ/または放電パワーを制御することにより制御し、こ
れにより良好なレベルに光メモリーを除去し、かつ帯電
能低下、及び電位シフト等の電気的な特性の低下を最小
限に抑えたままで、画像欠陥及び膜の剥がれを無くし、
高画質な画像を得ることができる。
The electrophotographic photoconductor using the a-Si photoconductor of the present invention and the method for forming the photoconductor for the electrophotographic photoconductor have the following characteristics: the charge injection blocking layer of the photoconductor and the stress between the layers in the photoconductive layer. , And / or control by controlling the discharge power, thereby removing the optical memory to a good level, and keeping the deterioration of the charging characteristics and the deterioration of electrical characteristics such as potential shift, to a minimum, Eliminates image defects and film peeling,
A high quality image can be obtained.

【0031】[実験例]以下、図面を参照しながら本発
明の作用について、実験例に基づいて詳細に説明する。
[Experimental Example] The operation of the present invention will be described below in detail with reference to the accompanying drawings.

【0032】以下に示す実験例、実施例において、該感
光体及びサンプルの作成は、以下のように行った。
In the following experimental examples and examples, the photoconductor and the sample were prepared as follows.

【0033】該感光体及びサンプルの作成に際し、感光
体の支持体である円筒状Al基板(以下Alシリンダー
と称す)、及びサンプル用のAl薄板を脱脂、洗浄し、
表面を鏡面に仕上げた。また、絶縁性のガラス基板を脱
脂、洗浄した。
In preparing the photoconductor and the sample, a cylindrical Al substrate (hereinafter referred to as an Al cylinder) which is a support of the photoconductor and an Al thin plate for the sample are degreased and washed,
The surface is mirror finished. Further, the insulating glass substrate was degreased and washed.

【0034】該感光体、サンプルとも、プラズマCVD
法(以下、P−CVD法と称す)により作成した。
Both the photoconductor and the sample were plasma-enhanced by CVD.
It was created by a method (hereinafter referred to as a P-CVD method).

【0035】次に、P−CVD法によって堆積膜を形成
するための装置、及び形成方法について詳述する。
Next, the apparatus and method for forming the deposited film by the P-CVD method will be described in detail.

【0036】図3は、P−CVD法による電子写真用感
光体の製造装置の一例である。
FIG. 3 shows an example of an apparatus for manufacturing an electrophotographic photoreceptor by the P-CVD method.

【0037】P−CVD法による堆積膜の製造装置は、
堆積装置3100と、原料ガス供給装置3200と、堆
積装置3100中の反応容器3111を減圧するための
排気装置(不図示)と、放電パワーを出力する電源(不
図示)と、マッチングボックス3115とから構成され
ている。
An apparatus for producing a deposited film by the P-CVD method is
From the deposition device 3100, the source gas supply device 3200, the exhaust device (not shown) for reducing the pressure of the reaction vessel 3111 in the deposition device 3100, the power supply (not shown) that outputs discharge power, and the matching box 3115. It is configured.

【0038】ここで、反応容器3111内には円筒状支
持体3112と、支持体加熱ヒーター3113と、原料
ガス導入感3114とが設置されている。原料ガス供給
装置3200は、SiH4,2,CH4,NH3,SiF4
どの原料ガスの各ボンベ3221〜3226と、各バル
ブ3231〜3236と、各流入バルブ3241〜32
46各流出バルブ3251〜3256と各マスフローコ
ントローラー3211〜3216とから構成され、各原
料ガスのガスボンベ3221〜3226は補助バルブ3
260を介して反応容器3111内のガス導入管311
4に接続されている。
Here, a cylindrical support 3112, a support heater 3113, and a source gas introduction sensation 3114 are installed in the reaction vessel 3111. The raw material gas supply device 3200 includes cylinders 3221 to 326 of raw material gases such as SiH 4, H 2, CH 4, NH 3, and SiF 4 , valves 3231 to 236, and inflow valves 3241 to 322.
46 Each of the outflow valves 3251 to 2566 and each of the mass flow controllers 3211 to 3216, and the gas cylinders 3221 to 3226 of each source gas are the auxiliary valves 3
Gas introduction pipe 311 in reaction vessel 3111 via 260
4 is connected.

【0039】この製造装置により以下のように感光体を
作成する。
A photoconductor is produced by the manufacturing apparatus as follows.

【0040】円筒状支持体3112が所定の温度になっ
たところで、各流出バルブ3251〜3256のうち必
要なものと補助バルブ3260とを開き反応容器311
1に導入した後、反応容器3111内の圧力が1Tor
r以下の所定の圧力になるように真空計3119を見な
がらメインバルブ3118を調整し、内圧が安定した後
に電源を所望の電力にセットし、マッチングボックス3
115を通じて反応容器3111中に電力を導入し、グ
ロー放電を生起させる。この放電により、反応容器31
11中の各原料ガスが分解され、円筒状支持体3112
上に所定の非晶質硅素を主成分とする堆積膜が形成され
る。所望の膜厚の形成が行われた後、放電パワーの供給
を停止し、堆積膜の形成を終える。
When the cylindrical support 3112 reaches a predetermined temperature, the necessary one of the outflow valves 3251 to 256 and the auxiliary valve 3260 are opened, and the reaction vessel 311 is opened.
1, the pressure inside the reaction vessel 3111 is 1 Tor.
The main valve 3118 is adjusted while observing the vacuum gauge 3119 so that the predetermined pressure is equal to or lower than r, and after the internal pressure is stabilized, the power supply is set to a desired power, and the matching box 3
Electric power is introduced into the reaction vessel 3111 through 115 to cause glow discharge. By this discharge, the reaction container 31
Each raw material gas in 11 is decomposed, and the cylindrical support 3112
A deposited film containing a predetermined amorphous silicon as a main component is formed thereon. After the desired film thickness is formed, the supply of the discharge power is stopped and the formation of the deposited film is completed.

【0041】同様の操作を複数回繰り返すことにより、
所望の多層構造の感光体が形成される。
By repeating the same operation a plurality of times,
A photoreceptor having a desired multi-layer structure is formed.

【0042】また、成膜中、支持体3112を駆動装置
(不図示)によって所定の速度で回転させても良い。
During the film formation, the support 3112 may be rotated at a predetermined speed by a driving device (not shown).

【0043】サンプルの作成に際しては、円筒状支持体
3112の替わりに、同サイズの基板ホルダーを用い、
基板を該ホルダーに固定し上記の感光体と同様に作成し
た。
When preparing a sample, a substrate holder of the same size was used instead of the cylindrical support 3112,
The substrate was fixed to the holder and prepared in the same manner as the above photoconductor.

【0044】〔実験例1〕(応力測定/Pw変化) 応力測定用のサンプルとして、Al薄板上のサンプル
(以下アルミサンプルと称する)を作成した。
Experimental Example 1 (Stress Measurement / Pw Change) As a sample for stress measurement, a sample on an Al thin plate (hereinafter referred to as an aluminum sample) was prepared.

【0045】ここで作成する感光体の総厚は、特にこと
わりのない限り、29μm(うち、光導電層25.5μ
m)とし、アルミニウム薄板上のサンプル、ガラス基板
上のサンプルは電荷注入阻止層から光導電層の一部を成
膜したものである。
Unless otherwise specified, the total thickness of the photoconductor formed here is 29 μm (of which, the photoconductive layer 25.5 μm).
m), the sample on the aluminum thin plate and the sample on the glass substrate are obtained by forming a part of the photoconductive layer from the charge injection blocking layer.

【0046】アルミサンプルは電荷注入阻止層から光導
電層の一部を成膜したもので、その基準作成条件は以下
のようにした。
The aluminum sample was formed by forming a part of the photoconductive layer from the charge injection blocking layer, and the standard preparation conditions were as follows.

【0047】電荷注入阻止層の成膜条件は、NO/Si
4 =0.33、H2 /SiH4 =4.0、B2 6
SiH4 =1500ppmとなるようにNO、H2 、B
2 6 、SiH4 を混合した。炉の内圧は0.45To
rr、基板温度は315℃、高周波のパワーを100W
とした。
The conditions for forming the charge injection blocking layer are NO / Si.
H 4 = 0.33, H 2 / SiH 4 = 4.0, B 2 H 6 /
NO, H 2 , B so that SiH 4 = 1500 ppm
2 H 6 and SiH 4 were mixed. The internal pressure of the furnace is 0.45To
rr, substrate temperature 315 ° C., high frequency power 100 W
And

【0048】光導電層の成膜条件はH2 /SiH4
1.7、B2 6 /SiH4 =0.55ppmとなるよ
うにH2 、B2 6 、SiH4 を混合した。炉の内圧は
0.57Torr、基板温度は315℃、高周波のパワ
ーを600Wとした。
The film forming conditions for the photoconductive layer are H 2 / SiH 4 =
1.7, B 2 H 6 / SiH 4 = 0.55 ppm H 2 , B 2 H 6 and SiH 4 were mixed. The internal pressure of the furnace was 0.57 Torr, the substrate temperature was 315 ° C., and the high frequency power was 600 W.

【0049】本発明の実験に当たり、基準作成条件に対
し作成条件を変化させた。具体的には、電荷注入阻止層
成膜後、光導電層の成膜開始の際、放電パワーの供給を
停止せず、即座に図3の各バルブを調整、反応ガスを光
導電層用に調整しなおし、放電パワーを所定の速度で、
600Wまで連続的に増加させた感光体を成膜する場合
を想定し、その各部に相当するサンプルを作成した。作
成時のガス流量、内圧、基板温度など、放電パワー以外
の条件は、基準作成条件と同じとした。
In the experiments of the present invention, the preparation conditions were changed with respect to the standard preparation conditions. Specifically, after the charge injection blocking layer is formed, when the film formation of the photoconductive layer is started, the supply of the discharge power is not stopped, and the valves in FIG. 3 are adjusted immediately so that the reaction gas is used for the photoconductive layer. Readjust, discharge power at a predetermined rate,
Assuming the case of forming a film of a photoconductor continuously increased up to 600 W, samples corresponding to the respective parts were prepared. The conditions other than the discharge power, such as the gas flow rate, the internal pressure, and the substrate temperature, were the same as the standard preparation conditions.

【0050】また、電荷注入阻止層を成膜後、一旦放電
パワーの供給を停止し、図3の各バルブを調整、反応ガ
スを光導電層用に調整しなおした後に放電パワーの供給
を600Wで再開し、成膜を開始した、いわゆる基準作
成条件どおりの感光体の一部に相当するサンプルを作成
した。
After forming the charge injection blocking layer, the discharge power supply is once stopped, the valves in FIG. 3 are adjusted, the reaction gas is adjusted again for the photoconductive layer, and then the discharge power supply is 600 W. Then, a sample corresponding to a part of the photoconductor under the so-called standard preparation conditions, in which the film formation was started again, was prepared.

【0051】[応力比の測定]作成したアルミサンプル
について、応力に対応する値として、Al基板の曲率半
径の逆数を測定した。さらに、これらのサンプルを様々
な組み合わせで連続成膜し、応力比Rに対する剥がれ発
生の状況を測定した。ただし、上側の膜の方が応力が大
とした。
[Measurement of Stress Ratio] The reciprocal of the radius of curvature of the Al substrate was measured as the value corresponding to the stress of the prepared aluminum sample. Further, these samples were continuously formed into films in various combinations, and the state of peeling with respect to the stress ratio R was measured. However, the stress was higher in the upper film.

【0052】また、剥がれの発生率は、剥がれたサンプ
ル数と、応力比が同じ条件のサンプルの総数の比とし
た。
The rate of peeling was defined as the ratio of the number of peeled samples to the total number of samples under the same stress ratio.

【0053】応力比Rの測定は以下に示す方法で測定し
た。
The stress ratio R was measured by the following method.

【0054】図5は、本発明で用いた応力比Rの測定手
法を示す概略図である。
FIG. 5 is a schematic view showing a method of measuring the stress ratio R used in the present invention.

【0055】本装置は、Al基板等の被測定サンプル5
00、及びAl基板サンプル500を固定するためのホ
ルダー501と、Al基板500の歪みを計測するため
の触針式の計測部分502からなる。
This apparatus is provided with a sample to be measured 5 such as an Al substrate.
00 and a holder 501 for fixing the Al substrate sample 500, and a stylus type measurement portion 502 for measuring the strain of the Al substrate 500.

【0056】上層サンプルを成膜する前の状態でAl基
板500をホルダー501に固定し、そのときの基板の
歪を測定し曲率半径の逆数r0 を算出する。
The Al substrate 500 is fixed to the holder 501 before the upper layer sample is formed, and the strain of the substrate at that time is measured to calculate the reciprocal r 0 of the radius of curvature.

【0057】次に、Al基板500上に電荷注入阻止層
から光導電層の領域内の一部(k)を成膜後に、同様に
測定を行う。この時の曲率半径の逆数r1 とAl基板だ
けの時の曲率半径r0 との差をrk とする。
Next, after forming a part (k) in the region of the photoconductive layer from the charge injection blocking layer on the Al substrate 500, the same measurement is performed. The difference between the reciprocal of the radius of curvature r 1 at this time and the radius of curvature r 0 when only the Al substrate is r k .

【0058】次に、厚さ方向でkの上部に隣接する層
(k+1)を、kと同じ厚さだけ更に成膜し、kと同様
に測定を行い、Al基板だけの時との曲率半径との差を
k+1とする。
Next, a layer (k + 1) adjacent to the upper part of k in the thickness direction is further formed by the same thickness as k, and measurement is performed in the same manner as k. The difference between and is r k + 1 .

【0059】これらのrk 、rk+1 よりなる、rk /r
k+1 を応力比Rとした。
R k / r consisting of these r k and r k + 1
The stress ratio R was k + 1 .

【0060】剥がれに関しては、サンプルの表面を顕微
鏡で調べた。
For peeling, the surface of the sample was examined under a microscope.

【0061】結果を図1(A)に示す。The results are shown in FIG. 1 (A).

【0062】また、電子写真用感光体を、放電パワーの
変化プロファイルを変化させて、電荷注入阻止層、光導
電層を成膜し、さらに表面層を成膜する事により作成し
た。表面層の処方は固定である。
An electrophotographic photosensitive member was prepared by changing the discharge power change profile to form a charge injection blocking layer, a photoconductive layer, and then a surface layer. The surface layer formulation is fixed.

【0063】白抜け等の画像欠陥に関して、作成した電
子写真用感光体の画像評価は、キヤノン製NP6060
を改造し、キヤノン社テストシートFY9−9042−
020を用いて行った。
With respect to image defects such as white spots, image evaluation of the electrophotographic photoconductor thus prepared was carried out by Canon NP6060.
By modifying Canon test sheet FY9-9042-
020 was used.

【0064】また、画像欠陥発生率は、黒色原稿を複写
し、画像上で直径1mm以上の欠陥の総数が10個以
上、または画像欠陥の面積が8.0mm2 以上あった感
光体数と、同処方により作成された感光体総数の比とし
た。
Further, the image defect occurrence rate is obtained by copying a black original and determining the total number of defects having a diameter of 1 mm or more on the image of 10 or more, or the number of photoconductors having an image defect area of 8.0 mm 2 or more, It was defined as the ratio of the total number of photoreceptors prepared by the same formulation.

【0065】図1(B)に、作成した感光体の応力比の
最大値Rmaxと画像欠陥発生率を示す。
FIG. 1B shows the maximum value Rmax of the stress ratio and the image defect occurrence rate of the photoconductor thus prepared.

【0066】結果、応力比Rが1.5以下の範囲に入る
サンプルでは、剥がれが無く、上記の範囲を逸脱する
と、剥がれが見られた。
As a result, in the sample in which the stress ratio R falls within the range of 1.5 or less, there is no peeling, and when it deviates from the above range, peeling was observed.

【0067】また、応力比Rの最大値Rmaxが1.5
以下の感光体では、画像欠陥が認められず、前記の範囲
を逸脱している部分を含む感光体は、画像欠陥が認めら
れた。
The maximum value Rmax of the stress ratio R is 1.5.
No image defects were observed in the following photoconductors, and image defects were found in the photoconductors including a portion deviating from the above range.

【0068】〔実験例2〕(応力測定/Ts変化) 基板温度を変化させ、応力測定用のアルミサンプルを作
成した。
[Experimental Example 2] (Stress measurement / Ts change) The substrate temperature was changed to prepare an aluminum sample for stress measurement.

【0069】実験例1同様、アルミサンプルは電荷注入
阻止層から光導電層の一部である。
Similar to Experimental Example 1, the aluminum sample is part of the photoconductive layer from the charge injection blocking layer.

【0070】本発明の実験に当たり、基準作成条件に対
し、作成条件を変化させた。具体的には、基板温度を成
膜初期から315℃に保持したサンプル、また電荷注入
阻止層の成膜時には、基板温度を基準作成条件より低い
値、本実験例に於いては、290℃で保持し、光導電層
の成膜時に、所定の速度で基板温度を連続的に上昇さ
せ、基板温度が315℃となるようにした感光体の各部
に相当するサンプルを作成した。作成時のガス流量、内
圧など、温度以外の条件は、基準作成条件と同じとし
た。
In the experiment of the present invention, the preparation conditions were changed with respect to the standard preparation conditions. Specifically, a sample in which the substrate temperature was kept at 315 ° C. from the initial stage of film formation, and when the charge injection blocking layer was formed, the substrate temperature was lower than the standard preparation condition, and in this experimental example, at 290 ° C. A sample corresponding to each part of the photoconductor was prepared in which the substrate temperature was kept at 315 ° C. by holding the substrate temperature continuously at a predetermined rate during film formation of the photoconductive layer. Conditions other than temperature, such as gas flow rate and internal pressure, were the same as the standard preparation conditions.

【0071】作成した各アルミサンプルについて、応力
を測定した。
The stress was measured for each aluminum sample prepared.

【0072】応力比R、および剥がれの状況の測定は、
実験例1で示したのと同様の方法で測定した。
The stress ratio R and the peeling condition were measured by
It measured by the method similar to what was shown in Experimental example 1.

【0073】また、電子写真用感光体を、実験例1のよ
うに、基板の温度変化プロファイルを変化させて、電荷
注入阻止層、光導電層を成膜し、さらに表面層を成膜す
る事により作成した。表面層の処方は固定である。
In the electrophotographic photoreceptor, the charge injection blocking layer and the photoconductive layer are formed by changing the temperature change profile of the substrate as in Experimental Example 1, and the surface layer is further formed. Created by. The surface layer formulation is fixed.

【0074】白抜け等の画像欠陥に関して、作成した電
子写真感光体の画像評価は、キヤノン製NP6060を
改造し、キヤノン社テストシートFY9−9042−0
20を用いて行った。
With respect to image defects such as white spots, the image evaluation of the electrophotographic photosensitive member thus prepared was carried out by modifying Canon NP6060, and using Canon test sheet FY9-9042-0.
20 was used.

【0075】また、画像欠陥発生率は、実験例1と同様
に測定した。
The image defect occurrence rate was measured in the same manner as in Experimental Example 1.

【0076】図1(A)に応力比Rと剥がれ発生率、図
1(B)に作成した感光体の剥がれの状況、及び応力比
の最大値Rmaxを示す。
FIG. 1 (A) shows the stress ratio R and the peeling occurrence rate, FIG. 1 (B) shows the peeling condition of the photoconductor prepared, and the maximum value Rmax of the stress ratio.

【0077】結果、基板温度の連続上昇は応力比Rに影
響を及ぼし、応力比Rが1.5以下の範囲内のサンプル
は剥がれが無く、上記の範囲を逸脱したサンプルでは剥
がれが見られた。
As a result, the continuous rise of the substrate temperature affects the stress ratio R, and the samples with the stress ratio R within the range of 1.5 or less did not peel, and the samples deviating from the above range showed the peeling. .

【0078】また、応力比の最大値Rmaxが1.5以
下の感光体では画像欠陥がなく、1.5以上のものは画
像欠陥がみられた。
Further, there was no image defect in the photosensitive member having the maximum stress ratio Rmax of 1.5 or less, and the image defect was observed in the photosensitive member having the maximum stress ratio Rmax of 1.5 or more.

【0079】基板温度を成膜初期から315℃に保持し
たサンプルは、光導電層の成膜開始後、基板温度を上昇
させたサンプルに比べ、Rmaxが大きくなっており、
画像欠陥がみられた。剥がれが確認されたサンプルも見
られた。
The sample in which the substrate temperature was kept at 315 ° C. from the initial stage of film formation had a larger Rmax than the sample in which the substrate temperature was raised after the start of film formation of the photoconductive layer.
Image defects were seen. Some samples were confirmed to be peeled off.

【0080】 〔実験例3〕(局在準位密度測定/Pw変化) ガラス基板上のサンプル(以下ガラスサンプルと称す
る)は光学測定用、及び電気的測定用のものを作成し
た。
Experimental Example 3 (Localized Level Density Measurement / Pw Change) Samples on the glass substrate (hereinafter referred to as glass samples) were prepared for optical measurement and electrical measurement.

【0081】ガラスサンプルの膜厚は1.0μmで、光
導電層厚さ方向の、各部位に相当するサンプルを成膜し
た。
The film thickness of the glass sample was 1.0 μm, and samples corresponding to the respective parts in the thickness direction of the photoconductive layer were formed.

【0082】ガラスサンプルの基準作成条件として、H
2 /SiH4 =1.7、B2 6 /SiH4 =0.55
ppmとなるようにH2 、B2 6 、SiH4 を混合し
た。炉の内圧は0.57Torr、基板温度は315
℃、パワーを600Wとした。
As a standard preparation condition for glass samples, H
2 / SiH 4 = 1.7, B 2 H 6 / SiH 4 = 0.55
As a ppm were mixed H 2, B 2 H 6, SiH 4. Furnace internal pressure 0.57 Torr, substrate temperature 315
C. and power was 600 W.

【0083】本発明の実験に当たり、作成条件を変化さ
せた。具体的には、放電パワーを成膜初期から600W
に保持したサンプル、また成膜開始時の放電パワーを1
00Wとし、所定の速度で放電パワーを連続的に上昇さ
せ600Wとなるようにした感光体の一部に相当するサ
ンプルを、光導電層の各部位について作成した。また、
作成時、放電パワー以外の条件は、基準作成条件と同じ
とした。
In the experiments of the present invention, the preparation conditions were changed. Specifically, the discharge power is 600 W from the beginning of film formation.
The sample held at 1 and the discharge power at the start of film formation was set to 1
A sample corresponding to a part of the photoconductor was set to 00 W, and the discharge power was continuously increased at a predetermined rate to 600 W, and a sample was prepared for each part of the photoconductive layer. Also,
At the time of preparation, the conditions other than the discharge power were the same as the standard preparation conditions.

【0084】作成したガラスサンプルについて、一定光
電流法(CPM)により、局在準位密度nを測定した。
The localized level density n of the prepared glass sample was measured by the constant photocurrent method (CPM).

【0085】CPMは、サンプルに単波長光を照射し、
各波長に於ける光電流を一定とする光量を測定する方法
で、この方法により、価電子帯側のやや深い準位(価電
子帯側の移動度端から0.55〜0.95eV)に於け
る、体積あたりの局在準位密度nが得られる。
The CPM irradiates the sample with single wavelength light,
A method of measuring the amount of light that keeps the photocurrent at each wavelength constant. By this method, a slightly deeper level on the valence band side (0.55 to 0.95 eV from the mobility end on the valence band side) is obtained. In this, the localized level density n per volume is obtained.

【0086】CPM測定用サンプルは、成膜後にクロム
(Cr)の櫛形電極を1000A蒸着し、測定を行っ
た。
For the sample for CPM measurement, a comb-shaped electrode of chromium (Cr) was vapor-deposited at 1000 A after the film formation, and the measurement was performed.

【0087】また、全部位でガラスサンプルと同じ条件
の光導電層を有する電子写真用感光体を作成した。電荷
注入阻止層、表面層の成膜条件は固定である。
Further, an electrophotographic photoreceptor having a photoconductive layer under the same conditions as the glass sample was prepared in all parts. The conditions for forming the charge injection blocking layer and the surface layer are fixed.

【0088】さらに光導電層の膜厚が25.5μm以上
の感光体も作成した。
Further, a photosensitive member having a photoconductive layer having a film thickness of 25.5 μm or more was prepared.

【0089】光メモリーに関して、キヤノン製NP60
60を改造し、感光体表面の光メモリー電位を測定し
た。また、キヤノン社テストシートFY9−9042−
020および同FY9−9040−000を用いて、上
記の感光体の画像判定を行った。
Regarding optical memory, Canon NP60
No. 60 was modified and the optical memory potential on the surface of the photoconductor was measured. In addition, Canon test sheet FY9-9042-
020 and FY9-9040-000 were used to perform image determination on the above-described photoconductor.

【0090】同判定は、画像上で光メモリーと、そうで
ない部分との画像濃度を濃度計で測定し、(光メモリー
部分の画像濃度)/(光メモリーでない部分の画像濃
度)により、濃度比を求める事により行った。
In the same judgment, the image densities of the optical memory and the other areas on the image are measured with a densitometer, and the density ratio is calculated by (image density of the optical memory area) / (image density of the non-optical memory area) It was done by asking for.

【0091】図6(A)に光導電層の厚さに対する、該
局在準位密度nが、1×1015cm-3以上の領域の比
と、光メモリー電位を、図6(B)に該局在準位密度n
が、1×1015cm-3以上の領域の厚さと光メモリー電
位を、また、図6(C)に光メモリー電位と画像上での
濃度比を、それぞれ示す。
FIG. 6A shows the ratio of the region where the localized level density n is 1 × 10 15 cm −3 or more to the thickness of the photoconductive layer and the optical memory potential. And the localized level density n
Shows the thickness and the optical memory potential in the region of 1 × 10 15 cm −3 or more, and FIG. 6C shows the optical memory potential and the density ratio on the image.

【0092】結果、光導電層の厚さに対する、該局在準
位密度nが、1×1015cm-3以上の領域の膜厚が2μ
m以下であっても、その比が10%以上の感光体では光
メモリー電位が10V以上となった。
As a result, the thickness of the region where the localized level density n is 1 × 10 15 cm −3 or more with respect to the thickness of the photoconductive layer is 2 μm.
Even when the ratio was m or less, the optical memory potential was 10 V or more in the photoconductor having the ratio of 10% or more.

【0093】光メモリー電位が10V以下の時は、画像
濃度比がほぼ1で、光メモリーはないと判断された。一
方、光メモリー電位が10V以上となると、画像濃度比
が1から小さくなり、光メモリーが確認された。
When the optical memory potential was 10 V or less, the image density ratio was almost 1, and it was judged that there was no optical memory. On the other hand, when the optical memory potential was 10 V or more, the image density ratio decreased from 1 and an optical memory was confirmed.

【0094】また、該局在準位密度nが、1×1015
-3以上の領域の厚さが2μm以上の感光体は、その比
が10%以下であっても、光メモリー電位が10V以上
となり、光メモリーが見られた。
The localized level density n is 1 × 10 15 c
The photoconductor having a thickness of 2 μm or more in the region of m −3 or more had an optical memory potential of 10 V or more and an optical memory was observed even if the ratio was 10% or less.

【0095】以上より、放電パワーの変化速度が、光導
電層の膜厚の10%かつ2μm以下、好ましくは5%か
つ1μm以下の領域で局在準位密度nが1×1015cm
-3以下となる様な速度のとき、光メモリーの除去に適し
ている。
From the above, the localized level density n is 1 × 10 15 cm in the region where the rate of change of the discharge power is 10% and 2 μm or less, preferably 5% and 1 μm or less of the film thickness of the photoconductive layer.
-It is suitable for removing optical memory when the speed is below -3 .

【0096】また、基板温度についても同様に、光導電
層の厚さに対する、局在準位密度nが、1×1015cm
-3以上の領域の比が10%以下、かつ該領域の厚さが2
μm以下の感光体は、光メモリー電位が10V以下とな
り、光メモリーが除去された高画質な画像が得られた。
Similarly, with respect to the substrate temperature, the localized level density n with respect to the thickness of the photoconductive layer is 1 × 10 15 cm.
-The ratio of the area of 3 or more is 10% or less, and the thickness of the area is 2
The photoconductor having a thickness of μm or less had an optical memory potential of 10 V or less, and a high quality image without the optical memory was obtained.

【0097】放電パワー、基板温度等を制御し、応力を
変化させる領域を光導電層の下部1000A以下とする
と、光メモリー、画像欠陥ともに、更に良い結果が得ら
れた。
By controlling the discharge power, the substrate temperature, etc. and changing the stress to a region below 1000 A of the photoconductive layer, better results were obtained for both optical memory and image defects.

【0098】上記の実験例1〜実験例3より、次のこと
がわかった。
From the above Experimental Examples 1 to 3, the following was found.

【0099】膜の応力の比Rを1.5以下の範囲に制御
することにより、応力自体を低減させる必要性が減少
し、光メモリーを良好な状態に除去したまま、画像欠陥
や剥がれを防止し、高画質な画像を得られる高品質の感
光体膜が得られる。
By controlling the stress ratio R of the film within the range of 1.5 or less, the necessity of reducing the stress itself is reduced, and image defects and peeling are prevented while the optical memory is removed in a good state. As a result, a high quality photoconductor film capable of obtaining a high quality image can be obtained.

【0100】局在準位密度nが1×1015cm-3以上の
領域を、光導電層の膜厚の10%かつ2μm以下とする
と高画質な画像を得られ、好ましく5%かつ1μm以下
とすると、さらに良好な画像を得られる。
When the region where the localized level density n is 1 × 10 15 cm −3 or more is 10% of the film thickness of the photoconductive layer and 2 μm or less, a high quality image can be obtained, and preferably 5% and 1 μm or less. Then, a better image can be obtained.

【0101】また、放電パワーの変化、基板温度の変化
を同時に行っても良いし、他の方法でも応力比を変化さ
せて良い。
The discharge power and the substrate temperature may be changed at the same time, or the stress ratio may be changed by another method.

【0102】なお、本発明に用いた導電性基板は、レー
ザー光などの可干渉光を用いる電子写真用感光体の場合
には、可視画像に於いて現れる、いわゆる干渉縞模様に
よる画像不良を解消するために、表面に凹凸を設けても
良い。
The electroconductive substrate used in the present invention eliminates an image defect due to a so-called interference fringe pattern that appears in a visible image in the case of an electrophotographic photosensitive member using coherent light such as laser light. In order to achieve this, unevenness may be provided on the surface.

【0103】[0103]

【実施例】以下、表、図面を参照しながら本発明の実施
例について詳細に説明するが、本発明は以下に示す実施
例に限定されることはなく、本発明の目的が達成され得
るものであれば良い。
EXAMPLES Examples of the present invention will now be described in detail with reference to the tables and drawings, but the present invention is not limited to the examples shown below, and the objects of the present invention can be achieved. If it is good.

【0104】また、特にことわりのない限り、感光体成
膜条件は実験例で既述した基準作成条件と同じとし、光
導電層の厚さは25.5μmである。
Unless otherwise specified, the photoconductor film formation conditions are the same as the reference preparation conditions described in the experimental examples, and the photoconductive layer thickness is 25.5 μm.

【0105】また、表面層の成膜の処方は固定である。The formulation for forming the surface layer is fixed.

【0106】〔実施例1〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.10μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が1.0μm成
膜される間に基板温度を315℃まで上昇させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
Example 1 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.10 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0107】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0108】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0109】結果を表1に示す。The results are shown in Table 1.

【0110】〔実施例2〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が1.0μm成膜さ
れる間に、連続的に600Wまで変化させ、さらに光導
電層の成膜開始と同期して、光導電層が1.0μm成膜
される間に基板温度を315℃まで上昇させ、光導電層
203を成膜した。光導電層成膜終了後、放電パワーの
供給を停止し、図3のバルブを調整、表面層204を成
膜する方法によりa−Si感光体を作成した。
Example 2 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 1.0 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0111】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0112】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0113】結果を表1に示す。The results are shown in Table 1.

【0114】〔実施例3〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が2.0μm成膜さ
れる間に、連続的に600Wまで変化させ、さらに光導
電層の成膜開始と同期して、光導電層が1.0μm成膜
される間に基板温度を315℃まで上昇させ、光導電層
203を成膜した。光導電層成膜終了後、放電パワーの
供給を停止し、図3のバルブを調整、表面層204を成
膜する方法によりa−Si感光体を作成した。
Example 3 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 2.0 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0115】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0116】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0117】結果を表1に示す。The results are shown in Table 1.

【0118】〔実施例4〕光導電層の膜厚を30μmと
し、基板温度を290℃に保持した後、実験例に示した
図3の装置で100Wの放電パワーで電荷注入阻止層2
02を成膜した後、即座に図3の各バルブを用い、反応
ガスを光導電層用に調整し、放電パワーの供給を停止せ
ず、光導電層が2.0μm成膜される間に、連続的に6
00Wまで変化させ、さらに光導電層の成膜開始と同期
して、光導電層が1.0μm成膜される間に基板温度を
315℃まで上昇させ、光導電層203を成膜した。光
導電層成膜終了後、放電パワーの供給を停止し、図3の
バルブを調整、表面層204を成膜する方法によりa−
Si感光体を作成した。
Example 4 After the thickness of the photoconductive layer was set to 30 μm and the substrate temperature was kept at 290 ° C., the charge injection blocking layer 2 was discharged with a discharge power of 100 W by the device shown in FIG.
Immediately after forming 02, the reaction gas was adjusted for the photoconductive layer by using each valve of FIG. 3, the supply of the discharge power was not stopped, and the photoconductive layer was formed to a thickness of 2.0 μm. , Continuously 6
The temperature was changed to 00 W, and in synchronization with the start of film formation of the photoconductive layer, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the photoconductive layer is formed, the supply of the discharge power is stopped, the valve of FIG. 3 is adjusted, and the surface layer 204 is formed by a-
A Si photoconductor was created.

【0119】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0120】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0121】結果を表1に示す。The results are shown in Table 1.

【0122】〔実施例5〕光導電層の膜厚を10μmと
し、基板温度を290℃に保持した後、実験例に示した
図3の装置で100Wの放電パワーで電荷注入阻止層2
02を成膜した後、即座に図3の各バルブを用い、反応
ガスを光導電層用に調整し、放電パワーの供給を停止せ
ず、光導電層が1.0μm成膜される間に、連続的に6
00Wまで変化させ、さらに光導電層の成膜開始と同期
して、光導電層が1.0μm成膜される間に基板温度を
315℃まで上昇させ、光導電層203を成膜した。光
導電層成膜終了後、放電パワーの供給を停止し、図3の
バルブを調整、表面層204を成膜する方法によりa−
Si感光体を作成した。
[Embodiment 5] After the film thickness of the photoconductive layer was set to 10 μm and the substrate temperature was kept at 290 ° C., the charge injection blocking layer 2 was discharged with a discharge power of 100 W using the apparatus shown in FIG.
Immediately after forming 02, the reaction gas was adjusted for the photoconductive layer by using each valve in FIG. 3, the discharge power supply was not stopped, and the photoconductive layer was formed in a thickness of 1.0 μm. , Continuously 6
The temperature was changed to 00 W, and in synchronization with the start of film formation of the photoconductive layer, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the photoconductive layer is formed, the supply of the discharge power is stopped, the valve of FIG. 3 is adjusted, and the surface layer 204 is formed by a-
A Si photoconductor was created.

【0123】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is Canon NP6060.
Was remodeled and image evaluation was performed.

【0124】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0125】結果を表1に示す。The results are shown in Table 1.

【0126】〔実施例6〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.05μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が1.5μm成
膜される間に基板温度を315℃まで上昇させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
Example 6 After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer by using a valve, the discharge power was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.05 μm. In synchronism with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to a thickness of 1.5 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0127】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0128】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image free from peeling and image defects while removing the optical memory at a very good level.

【0129】結果を表1に示す。The results are shown in Table 1.

【0130】〔実施例7〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.05μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が0.10μm
成膜される間に基板温度を315℃まで上昇させ、光導
電層203を成膜した。光導電層成膜終了後、放電パワ
ーの供給を停止し、図3のバルブを調整、表面層204
を成膜する方法によりa−Si感光体を作成した。
Example 7 After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer by using a valve, the discharge power was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.05 μm. The photoconductive layer is 0.10 μm in synchronization with the start of film formation
The substrate temperature was raised to 315 ° C. during the film formation to form the photoconductive layer 203. After the photoconductive layer is formed, the supply of the discharge power is stopped and the valve of FIG.
An a-Si photosensitive member was prepared by the method of forming a film.

【0131】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is Canon NP6060.
Was remodeled and image evaluation was performed.

【0132】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0133】結果を表1に示す。The results are shown in Table 1.

【0134】〔実施例8〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.05μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が2.0μm成
膜される間に基板温度を315℃まで上昇させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
[Embodiment 8] After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer by using a valve, the discharge power was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.05 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to a thickness of 2.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0135】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0136】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0137】結果を表1に示す。The results are shown in Table 1.

【0138】〔実施例9〕光導電層の膜厚を30μmと
し、基板温度を290℃に保持した後、実験例に示した
図3の装置で100Wの放電パワーで電荷注入阻止層2
02を成膜した後、即座に図3の各バルブを用い、反応
ガスを光導電層用に調整し、放電パワーの供給を停止せ
ず、光導電層が0.05μm成膜される間に、連続的に
600Wまで変化させ、さらに光導電層の成膜開始と同
期して、光導電層が2.0μm成膜される間に基板温度
を315℃まで上昇させ、光導電層203を成膜した。
光導電層成膜終了後、放電パワーの供給を停止し、図3
のバルブを調整、表面層204を成膜する方法によりa
−Si感光体を作成した。
[Embodiment 9] The film thickness of the photoconductive layer was 30 μm, the substrate temperature was kept at 290 ° C., and then the charge injection blocking layer 2 was discharged with a discharge power of 100 W by the device shown in FIG.
Immediately after forming 02, the reaction gas was adjusted for the photoconductive layer by using each valve of FIG. 3, the supply of the discharge power was not stopped, and the photoconductive layer was formed in a thickness of 0.05 μm. The temperature is continuously changed to 600 W, and in synchronization with the start of film formation of the photoconductive layer, the substrate temperature is raised to 315 ° C. while the photoconductive layer is formed to a thickness of 2.0 μm, and the photoconductive layer 203 is formed. Filmed
After the photoconductive layer is formed, the supply of discharge power is stopped and
By adjusting the valve and forming the surface layer 204
-Si photoconductor was prepared.

【0139】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0140】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0141】結果を表1に示す。The results are shown in Table 1.

【0142】〔実施例10〕光導電層の膜厚を10μm
とし、基板温度を290℃に保持した後、実験例に示し
た図3の装置で100Wの放電パワーで電荷注入阻止層
202を成膜した後、即座に図3の各バルブを用い、反
応ガスを光導電層用に調整し、放電パワーの供給を停止
せず、光導電層が0.05μm成膜される間に、連続的
に600Wまで変化させ、さらに光導電層の成膜開始と
同期して、光導電層が1.0μm成膜される間に基板温
度を315℃まで上昇させ、光導電層203を成膜し
た。光導電層成膜終了後、放電パワーの供給を停止し、
図3のバルブを調整、表面層204を成膜する方法によ
りa−Si感光体を作成した。
[Embodiment 10] The film thickness of the photoconductive layer is 10 μm.
Then, after holding the substrate temperature at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus of FIG. 3 shown in the experimental example, and immediately after using the valves of FIG. Is adjusted for the photoconductive layer, the discharge power is not stopped, and while the photoconductive layer is being formed to a thickness of 0.05 μm, it is continuously changed to 600 W and is synchronized with the start of the formation of the photoconductive layer. Then, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to a thickness of 1.0 μm, and the photoconductive layer 203 was formed. After the photoconductive layer is formed, the supply of discharge power is stopped,
An a-Si photoconductor was prepared by the method of adjusting the valve of FIG. 3 and forming the surface layer 204.

【0143】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0144】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0145】結果を表1に示す。The results are shown in Table 1.

【0146】〔実施例11〕基板温度を315℃に保持
した後、実験例に示した図3の装置で100Wの放電パ
ワーで電荷注入阻止層202を成膜した後、即座に図3
の各バルブを用い、反応ガスを光導電層用に調整し、放
電パワーの供給を停止せず、光導電層が0.05μm成
膜される間に、連続的に600Wまで変化させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
[Embodiment 11] After the substrate temperature was maintained at 315 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG.
The reaction gas was adjusted for the photoconductive layer by using each valve of No. 1 and the discharge power was not stopped and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.05 μm. The layer 203 was deposited. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0147】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0148】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0149】結果を表1に示す。The results are shown in Table 1.

【0150】〔実施例12〕基板温度を290℃に保持
した後、実験例に示した図3の装置で100Wの放電パ
ワーで電荷注入阻止層202を成膜した後、放電パワー
の供給を一旦停止し、即座に図3の各バルブを用い、反
応ガスを光導電層用に調整し、600Wで放電パワー供
給を再開、さらに光導電層の成膜開始と同期して、光導
電層が1.0μm成膜される間に基板温度315℃まで
上昇させ、光導電層203を成膜した。光導電層成膜終
了後、放電パワーの供給を停止し、図3のバルブを調
整、表面層204を成膜する方法によりa−Si感光体
を作成した。
[Embodiment 12] After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus of FIG. 3 shown in the experimental example, and then the discharge power was once supplied. Immediately after stopping, the reaction gas was adjusted for the photoconductive layer by using each valve in FIG. 3, the discharge power supply was restarted at 600 W, and the photoconductive layer was turned on in synchronization with the start of the film formation of the photoconductive layer. The substrate temperature was raised to 315 ° C. during the film formation of 0.0 μm to form the photoconductive layer 203. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0151】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0152】結果、光メモリーを非常に良好なレベルで
除去しながら、剥がれや画像欠陥がない、非常に高画質
な画像が得られた。
As a result, it was possible to obtain a very high quality image without peeling or image defects while removing the optical memory at a very good level.

【0153】結果を表1に示す。The results are shown in Table 1.

【0154】〔比較例1〕基板温度を315℃に保持し
た後、実験例に示した図3の装置で電荷注入阻止層20
2を成膜した後、放電パワーの供給を停止し、図3の各
バルブを用い、反応ガスを光導電層用に調整し、放電パ
ワーの供給を、600Wで再開して光導電層203を成
膜した。光導電層成膜終了後、放電パワーの供給を停止
し、図3のバルブを調整、表面層204を成膜する方法
によりa−Si感光体を作成した。
Comparative Example 1 After the substrate temperature was kept at 315 ° C., the charge injection blocking layer 20 was formed using the device shown in FIG.
2 is formed, the supply of the discharge power is stopped, the reaction gas is adjusted for the photoconductive layer by using each valve in FIG. 3, and the supply of the discharge power is restarted at 600 W to form the photoconductive layer 203. A film was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0155】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0156】結果、感光体の膜に剥がれが生じ、また剥
がれに至らない部分でも、画像上で白点が点在するな
ど、画像欠陥がみられた。
As a result, peeling occurred on the film of the photoreceptor, and image defects such as white spots scattered on the image were observed even in the portion where peeling did not occur.

【0157】結果を表1に示す。The results are shown in Table 1.

【0158】〔比較例2〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で電荷注入阻止層20
2を成膜した後、放電パワーの供給を停止し、図3の各
バルブを用い、反応ガスを光導電層用に調整し、放電パ
ワーの供給を、500Wで再開して光導電層203を成
膜した。光導電層成膜終了後、放電パワーの供給を停止
し、図3のバルブを調整、表面層204を成膜する方法
によりa−Si感光体を作成した。
Comparative Example 2 After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 20 was formed using the device of FIG. 3 shown in the experimental example.
2 is formed, the supply of the discharge power is stopped, the reaction gas is adjusted for the photoconductive layer using each valve of FIG. 3, and the supply of the discharge power is restarted at 500 W to form the photoconductive layer 203. A film was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0159】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is Canon NP6060.
Was remodeled and image evaluation was performed.

【0160】結果、剥がれや画像欠陥は認められなかっ
たが、光メモリーが認められた。
As a result, neither peeling nor image defects were found, but optical memory was found.

【0161】結果を表1に示す。The results are shown in Table 1.

【0162】〔比較例3〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が3.0μm成膜さ
れる間に、連続的に600Wまで変化させ、さらに光導
電層の成膜開始と同期して、光導電層が1.0μm成膜
される間に基板温度を315℃まで上昇させ、光導電層
203を成膜した。光導電層成膜終了後、放電パワーの
供給を停止し、図3のバルブを調整、表面層204を成
膜する方法によりa−Si感光体を作成した。
Comparative Example 3 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer by using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W during the film formation of 3.0 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0163】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoconductor is Canon NP6060.
Was remodeled and image evaluation was performed.

【0164】結果、剥がれや画像欠陥がないものの、光
メモリーがみられた。
As a result, there was no peeling or image defect, but an optical memory was observed.

【0165】結果を表1に示す。The results are shown in Table 1.

【0166】〔比較例4〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が10.0μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が1.0μm成
膜される間に基板温度を315℃まで上昇させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
Comparative Example 4 After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W during the film formation of 10.0 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0167】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoconductor is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0168】結果、剥がれや画像欠陥がないものの、光
メモリーがみられた。
As a result, there was no peeling or image defect, but an optical memory was observed.

【0169】結果を表1に示す。The results are shown in Table 1.

【0170】〔比較例5〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が10.0μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層全層が成膜され
る間に基板温度を315℃まで上昇させ、光導電層20
3を成膜した。光導電層成膜終了後、放電パワーの供給
を停止し、図3のバルブを調整、表面層204を成膜す
る方法によりa−Si感光体を作成した。
Comparative Example 5 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W during the film formation of 10.0 μm. In synchronism with the start of film formation, the substrate temperature is raised to 315 ° C. while the entire photoconductive layer is formed, and the photoconductive layer 20
3 was deposited. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0171】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is Canon NP6060.
Was remodeled and image evaluation was performed.

【0172】結果、剥がれや画像欠陥がないものの、光
メモリーがみられた。
As a result, although there was no peeling or image defect, an optical memory was observed.

【0173】結果を表1に示す。The results are shown in Table 1.

【0174】〔比較例6〕光導電層の膜厚を30μmと
し、基板温度を290℃に保持した後、実験例に示した
図3の装置で100Wの放電パワーで電荷注入阻止層2
02を成膜した後、即座に図3の各バルブを用い、反応
ガスを光導電層用に調整し、放電パワーの供給を停止せ
ず、光導電層が3.0μm成膜される間に、連続的に6
00Wまで変化させ、さらに光導電層の成膜開始と同期
して、光導電層が1.0μm成膜される間に基板温度を
315℃まで上昇させ、光導電層203を成膜した。光
導電層成膜終了後、放電パワーの供給を停止し、図3の
バルブを調整、表面層204を成膜する方法によりa−
Si感光体を作成した。
[Comparative Example 6] The film thickness of the photoconductive layer was set to 30 μm, the substrate temperature was kept at 290 ° C., and then the charge injection blocking layer 2 was discharged with a discharge power of 100 W using the apparatus shown in FIG.
Immediately after forming 02, the reaction gas was adjusted for the photoconductive layer by using each valve in FIG. 3, and the supply of discharge power was not stopped, while the photoconductive layer was formed to a thickness of 3.0 μm. , Continuously 6
The temperature was changed to 00 W, and in synchronization with the start of film formation of the photoconductive layer, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the photoconductive layer is formed, the supply of the discharge power is stopped, the valve of FIG. 3 is adjusted, and the surface layer 204 is formed by a-
A Si photoconductor was created.

【0175】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoconductor thus prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0176】結果、剥がれや画像欠陥がないものの、光
メモリーがみられるものもあった。結果を表1に示す。
As a result, although there was no peeling or image defect, there were some in which an optical memory was observed. The results are shown in Table 1.

【0177】〔比較例7〕光導電層の膜厚を10μmと
し、基板温度を290℃に保持した後、実験例に示した
図3の装置で100Wの放電パワーで電荷注入阻止層2
02を成膜した後、即座に図3の各バルブを用い、反応
ガスを光導電層用に調整し、放電パワーの供給を停止せ
ず、光導電層が2.0μm成膜される間に、連続的に6
00Wまで変化させ、さらに光導電層の成膜開始と同期
して、光導電層が1.0μm成膜される間に基板温度を
315℃まで上昇させ、光導電層203を成膜した。光
導電層成膜終了後、放電パワーの供給を停止し、図3の
バルブを調整、表面層204を成膜する方法によりa−
Si感光体を作成した。
Comparative Example 7 The thickness of the photoconductive layer was set to 10 μm, the substrate temperature was kept at 290 ° C., and then the charge injection blocking layer 2 was discharged with a discharge power of 100 W using the device shown in FIG.
Immediately after forming 02, the reaction gas was adjusted for the photoconductive layer by using each valve of FIG. 3, the supply of the discharge power was not stopped, and the photoconductive layer was formed to a thickness of 2.0 μm. , Continuously 6
The temperature was changed to 00 W, and in synchronization with the start of film formation of the photoconductive layer, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to 1.0 μm, and the photoconductive layer 203 was formed. After the photoconductive layer is formed, the supply of the discharge power is stopped, the valve of FIG. 3 is adjusted, and the surface layer 204 is formed by a-
A Si photoconductor was created.

【0178】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0179】結果、剥がれや画像欠陥がないものの、光
メモリーがみられるものもあった。
As a result, although there was no peeling or image defect, there were some in which an optical memory was observed.

【0180】結果を表1に示す。The results are shown in Table 1.

【0181】〔比較例8〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.1μm成膜さ
れる間に、連続的に600Wまで変化させ、さらに光導
電層の成膜開始と同期して、光導電層が3.0μm成膜
される間に基板温度を315℃まで上昇させ、光導電層
203を成膜した。光導電層成膜終了後、放電パワーの
供給を停止し、図3のバルブを調整、表面層204を成
膜する方法によりa−Si感光体を作成した。
Comparative Example 8 After the substrate temperature was maintained at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.1 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was being formed to 3.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0182】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0183】結果、剥がれや画像欠陥がないものの、光
メモリーがやや見られた。
As a result, although there was no peeling or image defect, the optical memory was slightly observed.

【0184】結果を表1に示す。The results are shown in Table 1.

【0185】〔比較例9〕基板温度を290℃に保持し
た後、実験例に示した図3の装置で100Wの放電パワ
ーで電荷注入阻止層202を成膜した後、即座に図3の
各バルブを用い、反応ガスを光導電層用に調整し、放電
パワーの供給を停止せず、光導電層が0.1μm成膜さ
れる間に、連続的に600Wまで変化させ、さらに光導
電層の成膜開始と同期して、光導電層が10.0μm成
膜される間に基板温度を315℃まで上昇させ、光導電
層203を成膜した。光導電層成膜終了後、放電パワー
の供給を停止し、図3のバルブを調整、表面層204を
成膜する方法によりa−Si感光体を作成した。
Comparative Example 9 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with the discharge power of 100 W by the apparatus shown in FIG. The reaction gas was adjusted for the photoconductive layer using a valve, the discharge power supply was not stopped, and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.1 μm. In synchronization with the start of film formation, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to a thickness of 10.0 μm, and the photoconductive layer 203 was formed. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0186】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0187】結果、剥がれや画像欠陥がなく、光メモリ
ーがやや見られた。
As a result, there was no peeling or image defect, and the optical memory was slightly seen.

【0188】結果を表1に示す。The results are shown in Table 1.

【0189】〔比較例10〕基板温度を290℃に保持
した後、実験例に示した図3の装置で100Wの放電パ
ワーで電荷注入阻止層202を成膜した後、即座に図3
の各バルブを用い、反応ガスを光導電層用に調整し、放
電パワーの供給を停止せず、光導電層が0.1μm成膜
される間に、連続的に600Wまで変化させ、さらに光
導電層の成膜開始と同期して、光導電層が全層成膜され
る間に基板温度を315℃まで上昇させ、光導電層20
3を成膜した。光導電層成膜終了後、放電パワーの供給
を停止し、図3のバルブを調整、表面層204を成膜す
る方法によりa−Si感光体を作成した。
Comparative Example 10 After the substrate temperature was kept at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus shown in FIG.
The reaction gas was adjusted for the photoconductive layer by using each of the bulbs, and the discharge power was not stopped and the photoconductive layer was continuously changed to 600 W while the photoconductive layer was formed to a thickness of 0.1 μm. In synchronization with the start of film formation of the conductive layer, the substrate temperature is raised to 315 ° C. while all layers of the photoconductive layer are formed.
3 was deposited. After the film formation of the photoconductive layer was completed, the supply of the discharge power was stopped, the valve of FIG. 3 was adjusted, and the surface layer 204 was formed into a film.

【0190】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The produced photoreceptor is NP6060 manufactured by Canon.
Was remodeled and image evaluation was performed.

【0191】結果、剥がれや画像欠陥がなく、光メモリ
ーが見られた。
As a result, there was no peeling or image defect, and an optical memory was found.

【0192】結果を表1に示す。The results are shown in Table 1.

【0193】〔比較例11〕光導電層の膜厚を30μm
とし、基板温度を290℃に保持した後、実験例に示し
た図3の装置で100Wの放電パワーで電荷注入阻止層
202を成膜した後、即座に図3の各バルブを用い、反
応ガスを光導電層用に調整し、放電パワーの供給を停止
せず、光導電層が0.1μm成膜される間に、連続的に
600Wまで変化させ、さらに光導電層の成膜開始と同
期して、光導電層が3.0μm成膜される間に基板温度
を315℃まで上昇させ、光導電層203を成膜した。
光導電層成膜終了後、放電パワーの供給を停止し、図3
のバルブを調整、表面層204を成膜する方法によりa
−Si感光体を作成した。
[Comparative Example 11] The film thickness of the photoconductive layer was 30 μm.
After holding the substrate temperature at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus of FIG. 3 shown in the experimental example, and immediately after that, each valve of FIG. Is adjusted for the photoconductive layer, the discharge power supply is not stopped, the photoconductive layer is continuously changed to 600 W while the photoconductive layer is formed by 0.1 μm, and the photoconductive layer is started in synchronization with the film formation. Then, the substrate temperature was raised to 315 ° C. while the photoconductive layer was deposited to 3.0 μm, and the photoconductive layer 203 was deposited.
After the photoconductive layer is formed, the supply of discharge power is stopped and
By adjusting the valve and forming the surface layer 204
-Si photoconductor was prepared.

【0194】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is Canon NP6060.
Was remodeled and image evaluation was performed.

【0195】結果、剥がれや画像欠陥がなく、光メモリ
ーがやや見られた。
As a result, there was no peeling or image defect, and the optical memory was slightly seen.

【0196】結果を表1に示す。The results are shown in Table 1.

【0197】〔比較例12〕光導電層の膜厚を10μm
とし、基板温度を290℃に保持した後、実験例に示し
た図3の装置で100Wの放電パワーで電荷注入阻止層
202を成膜した後、即座に図3の各バルブを用い、反
応ガスを光導電層用に調整し、放電パワーの供給を停止
せず、光導電層が0.1μm成膜される間に、連続的に
600Wまで変化させ、さらに光導電層の成膜開始と同
期して、光導電層が2.0μm成膜される間に基板温度
を315℃まで上昇させ、光導電層203を成膜した。
光導電層成膜終了後、放電パワーの供給を停止し、図3
のバルブを調整、表面層204を成膜する方法によりa
−Si感光体を作成した。
[Comparative Example 12] The film thickness of the photoconductive layer was 10 μm.
After holding the substrate temperature at 290 ° C., the charge injection blocking layer 202 was formed with a discharge power of 100 W by the apparatus of FIG. 3 shown in the experimental example, and immediately after that, each valve of FIG. Is adjusted for the photoconductive layer, the discharge power supply is not stopped, the photoconductive layer is continuously changed to 600 W while the photoconductive layer is formed by 0.1 μm, and the photoconductive layer is started in synchronization with the film formation. Then, the substrate temperature was raised to 315 ° C. while the photoconductive layer was formed to a thickness of 2.0 μm, and the photoconductive layer 203 was formed.
After the photoconductive layer is formed, the supply of discharge power is stopped and
By adjusting the valve and forming the surface layer 204
-Si photoconductor was prepared.

【0198】作成した感光体はキヤノン製NP6060
を改造して画像評価を行った。
The photoreceptor prepared is Canon NP6060.
Was remodeled and image evaluation was performed.

【0199】結果、剥がれや画像欠陥がなく、光メモリ
ーがやや見られた。
As a result, there was no peeling or image defect, and the optical memory was slightly seen.

【0200】結果を表1に示す。The results are shown in Table 1.

【0201】実施例、比較例中では、光導電層界面部に
於ける応力比を制御するため、高周波パワー及び基板温
度を変化させたが、他の手段によっても制御し得る。
In Examples and Comparative Examples, the high frequency power and the substrate temperature were changed in order to control the stress ratio at the photoconductive layer interface, but it can be controlled by other means.

【0202】なお、本発明に用いた導電性支持体は、レ
ーザー光などの可干渉光を用いる電子写真用感光体の場
合には、可視画像に於いて現れるいわゆる干渉縞模様に
よる画像不良を解消するために、表面に凹凸を設けても
良い。
In the case of the electrophotographic photosensitive member using the coherent light such as laser light, the conductive support used in the present invention eliminates image defects due to so-called interference fringe pattern appearing in a visible image. In order to achieve this, unevenness may be provided on the surface.

【0203】また、本発明の感光体及び該感光体の製法
は、正もしくは負といった帯電の極性、或いは単層構成
もしくは機能分離型といった電子写真用感光体の層構成
に関わらず使用可能である。
The photoconductor of the present invention and the process for producing the photoconductor can be used regardless of the polarity of charging such as positive or negative, or the layer structure of the electrophotographic photoconductor such as a single layer structure or a function separation type. .

【0204】[0204]

【表1】 記号:☆・・・非常によい ◎・・・たいへんよい ○ ・・・良い △ ・・・従来程度 * ・・・光導電層の膜厚30μm **・・・光導電層の膜厚10μm 注)表中、( )はその値に保持したことを示す。[Table 1] Symbol: ☆ ・ ・ ・ Very good ◎ ・ ・ ・ Excellent ○ ・ ・ ・ Good △ ・ ・ ・ Conventional level * ・ ・ ・ Photoconductive layer thickness 30 μm ** ・ ・ ・ Photoconductive layer thickness 10 μm Note ) In the table, () indicates that the value was retained.

【0205】[0205]

【発明の効果】以上説明したように、本発明は次に示す
効果がある。
As described above, the present invention has the following effects.

【0206】本発明のa−Si感光体を用いた電子写真
用感光体および該感光体成膜法は、該感光体の電荷注入
阻止層と光導電層の界面部分における該層間の応力を、
基板温度且つ/または放電パワーを連続的に変化させて
制御することにより、良好なレベルに光メモリーを除去
し、かつ帯電能低下、及び電位シフトを最小限に抑えた
ままで、画像欠陥及び膜の剥がれを無くし、高画質な画
像を得ることができる。
The electrophotographic photoconductor using the a-Si photoconductor of the present invention and the method for forming the photoconductor for the electrophotographic photoconductor include the stress between the layers at the interface between the charge injection blocking layer and the photoconductive layer of the photoconductor.
By continuously changing and controlling the substrate temperature and / or the discharge power, the optical memory can be removed to a good level, and the deterioration of the chargeability and the potential shift can be kept to a minimum while the image defects and the film are removed. It is possible to obtain a high quality image without peeling.

【0207】また、サンプルによる検討が可能なため、
従来のように感光体そのものを作成、或いは実機に投入
し、繰り返し検討を行う必要がなく、理想的な感光体の
作成条件が得られる。
Further, since it is possible to examine the sample,
It is not necessary to prepare the photoconductor itself or put it in an actual machine and repeatedly examine it as in the conventional case, and an ideal photoconductor preparation condition can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子写真感光体の応力比と各性能の関係を示す
図であり、(A)は応力比と剥がれ発生率、(B)は応
力比の最大値と画像欠陥発生率を示す図である。
FIG. 1 is a diagram showing a relationship between a stress ratio of an electrophotographic photosensitive member and respective performances, (A) showing a stress ratio and a peeling occurrence rate, and (B) showing a maximum stress ratio value and an image defect occurrence rate. Is.

【図2】本発明に関わる感光体の層構成を示す図であ
り、(A)は光導電層が一層からなる、いわゆる単層型
感光体で、(B)は光導電層が、電荷発生領域と電荷輸
送領域からなる、機能分離型感光体で ある。
FIG. 2 is a diagram showing a layer structure of a photoconductor according to the present invention, where (A) is a so-called single-layer type photoconductor having a single photoconductive layer, and (B) is a photoconductive layer in which charge generation is performed. It is a function-separated type photoreceptor comprising a region and a charge transport region.

【図3】図1に示した感光体及びサンプルの作成に用い
た成膜装置の概略図である。
FIG. 3 is a schematic view of a film forming apparatus used for forming the photoconductor and the sample shown in FIG.

【図4】図1に示した感光体を用いた電子写真装置の一
例を示す図である。
FIG. 4 is a diagram showing an example of an electrophotographic apparatus using the photoconductor shown in FIG.

【図5】アルミニウム基板上に作成したサンプル(アル
ミサンプル)の応力測定装置の概略図である。
FIG. 5 is a schematic view of a stress measuring device for a sample (aluminum sample) formed on an aluminum substrate.

【図6】本発明の電子写真感光体の性能を示す図であ
り、(A)は、局在準位密度が1×1015cm-3以上と
なる領域の、光導電層厚に対する比と光メモリー電位を
示す図、(B)は、局在準位密度が1×1015cm-3
上となる領域の厚さと光メモリー電位を示す図、(C)
は、光メモリー電位と、(光メモリー部分の濃度)/
(光メモリー以外の部分の濃度)の比を示す図である。
FIG. 6 is a graph showing the performance of the electrophotographic photosensitive member of the present invention, in which (A) shows the ratio of the region having a localized level density of 1 × 10 15 cm −3 or more to the photoconductive layer thickness. The figure which shows optical memory potential, (B) is a figure which shows the thickness and the optical memory potential of the area | region where a localized level density becomes 1 * 10 < 15 > cm < -3 > or more.
Is the optical memory potential and (density of optical memory part) /
It is a figure which shows the ratio of (density of the part other than optical memory).

【符号の説明】[Explanation of symbols]

500 被測定基板 501 ホルダー 502 計測部 500 substrate to be measured 501 holder 502 measuring unit

フロントページの続き (72)発明者 山崎 晃司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 新納 博明 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front page continuation (72) Inventor Koji Yamazaki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Hiroaki Shinna 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に、少なくとも非晶質の
電荷注入阻止層、光導電層を順次積層してなるアモルフ
ァスシリコン電子写真感光体において、 前記電荷注入阻止層および前記光導電層の微小部分の厚
さ方向の応力分布が、該微小部分の下層に隣接する微小
部分の応力に対して、実質的に1.5倍以下であること
を特徴とする電子写真感光体。
1. An amorphous silicon electrophotographic photosensitive member comprising a conductive support and at least an amorphous charge injection blocking layer and a photoconductive layer sequentially laminated on the conductive support, wherein the charge injection blocking layer and the photoconductive layer are formed. An electrophotographic photosensitive member, wherein the stress distribution in the thickness direction of the minute portion is substantially 1.5 times or less the stress of the minute portion adjacent to the lower layer of the minute portion.
【請求項2】 導電性支持体上に、少なくとも非晶質の
電荷注入阻止層、光導電層を順次積層してなり、 前記光導電層が少なくとも硅素及び水素かつ/またはハ
ロゲン原子を含み、 前記電荷注入阻止層及び前記光導電層中において、応力
が上方向に無変化、または単調増加し、 前記光導電層の価電子帯側の移動度端から0.55〜
0.95eVに於ける局存準位密度nが、1×1015
-3以上となる領域が、該光導電層の膜厚の10%、か
つ2μm以下である感光体であって、 前記電荷注入阻止層から該光導電層に於ける部分の厚さ
方向の応力が、該部分より下側に隣接する層の応力に対
して実質的に1.5倍以下であることを特徴とする電子
写真用感光体。
2. A conductive support, on which at least an amorphous charge injection blocking layer and a photoconductive layer are sequentially stacked, the photoconductive layer containing at least silicon and hydrogen and / or a halogen atom, In the charge injection blocking layer and the photoconductive layer, the stress does not change upward or monotonically increases, and the stress is 0.55 to 0.55 from the mobility end on the valence band side of the photoconductive layer.
The local level density n at 0.95 eV is 1 × 10 15 c
A region where m −3 or more is 10% of the film thickness of the photoconductive layer and 2 μm or less, and the region in the thickness direction of the portion from the charge injection blocking layer to the photoconductive layer is A photoreceptor for electrophotography, wherein the stress is substantially 1.5 times or less the stress of a layer adjacent to the portion below the portion.
【請求項3】前記導電性支持体上に前記電荷注入素子層
と前記光導電層の一部を厚みkだけ成膜し、その時の基
板全体の曲率半径の逆数r1 から、前記導電性支持体の
みの曲率半径の逆数r0 を引いた値を応力rk とし、 前記光導電層上に、更に前記kと同じ厚さの層を成膜し
た時の基板全体の曲率半径の逆数r2 から、前記導電性
支持体のみの曲率半径の逆数r0 を引いた値を応力r
k+1 とした時、 応力比R=(rk /rk+1 )≦1.5であることを特徴
とする請求項1に記載の電子写真感光体。
3. The conductive support is formed by forming a part of the charge injection element layer and a part of the photoconductive layer on the conductive support by a thickness k, and calculating the reciprocal number r 1 of the radius of curvature of the entire substrate at that time. A value obtained by subtracting the reciprocal number r 0 of the radius of curvature of only the body is defined as a stress r k, and the reciprocal number r 2 of the radius of curvature of the entire substrate when a layer having the same thickness as k is further formed on the photoconductive layer. The stress r is obtained by subtracting the reciprocal r 0 of the radius of curvature of only the conductive support from
The electrophotographic photosensitive member according to claim 1, wherein the stress ratio R = (r k / r k + 1 ) ≦ 1.5 when k + 1 .
【請求項4】 前記電荷注入阻止層から前記光導電層の
下部1000A以下までの部分で、前記応力が変化して
いることを特徴とする請求項1記載の電子写真感光体。
4. The electrophotographic photosensitive member according to claim 1, wherein the stress is changed in a portion from the charge injection blocking layer to a lower portion 1000 A or less of the photoconductive layer.
【請求項5】 導電性支持体上に、少なくとも非晶質の
電荷注入阻止層、光導電層を順次積層してなり、 前記光導電層が少なくとも硅素及び水素かつ/またはハ
ロゲン原子を含み、 前記電荷注入阻止層、および該光導電層中で応力が上方
向に無変化、または単調増加し、 前記光導電層の価電子帯側の移動度端から0.55〜
0.95eVに於ける、局在準位密度nが1×1015
-3以上となる領域が、前記光導電層の膜厚の10%、
かつ2μm以下である電子写真感光体を成膜する際に、 前記電荷注入阻止層から前記光導電層に於ける部分の厚
さ方向の応力が、該部分下側に隣接する部分の応力に対
して、実質的に1.5倍以下となるように、前記電荷注
入阻止層および前記光導電層の成膜時に、原料ガスを分
解するパワー及び/又は基板温度を連続的に変化させて
成膜することを特徴とする電子写真感光体の製造方法。
5. An electrically conductive support, on which at least an amorphous charge injection blocking layer and a photoconductive layer are sequentially laminated, the photoconductive layer containing at least silicon and hydrogen and / or a halogen atom, In the charge injection blocking layer and the photoconductive layer, the stress does not change upward or monotonically increases, and the stress is 0.55 to 0.55 from the mobility end on the valence band side of the photoconductive layer.
The localized level density n at 0.95 eV is 1 × 10 15 c
The region of m −3 or more is 10% of the film thickness of the photoconductive layer,
When the electrophotographic photosensitive member having a thickness of 2 μm or less is formed, the stress in the thickness direction of the portion from the charge injection blocking layer to the photoconductive layer is smaller than the stress in the portion adjacent to the lower side of the portion. Then, during the film formation of the charge injection blocking layer and the photoconductive layer, the power for decomposing the source gas and / or the substrate temperature is continuously changed so that the film thickness is substantially 1.5 times or less. A method of manufacturing an electrophotographic photosensitive member, comprising:
JP8687593A 1993-03-23 1993-03-23 Electrophotographic sensitive body and its production Pending JPH06273958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8687593A JPH06273958A (en) 1993-03-23 1993-03-23 Electrophotographic sensitive body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8687593A JPH06273958A (en) 1993-03-23 1993-03-23 Electrophotographic sensitive body and its production

Publications (1)

Publication Number Publication Date
JPH06273958A true JPH06273958A (en) 1994-09-30

Family

ID=13899009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8687593A Pending JPH06273958A (en) 1993-03-23 1993-03-23 Electrophotographic sensitive body and its production

Country Status (1)

Country Link
JP (1) JPH06273958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618759B2 (en) 2006-03-30 2009-11-17 Kyocera Corporation Electrophotographic photosensitive member, and image forming apparatus using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618759B2 (en) 2006-03-30 2009-11-17 Kyocera Corporation Electrophotographic photosensitive member, and image forming apparatus using same

Similar Documents

Publication Publication Date Title
US5849446A (en) Light receiving member having a surface protective layer with a specific outermost surface and process for the production thereof
JPH11193470A (en) Deposited film forming device and formation of deposited film
KR100340650B1 (en) Light-receiving member, image forming apparatus having the member, and image forming method utilizing the member
JPH1083091A (en) Electrophotographic photoreceptor and its production
JP3696983B2 (en) Plasma processing method and plasma processing apparatus
JPH06266138A (en) Electrophotographic device
JP2005062846A (en) Electrophotographic photoreceptor
US6280895B1 (en) Light-receiving member with outer layer made by alternatively forming and etching
JPH06273958A (en) Electrophotographic sensitive body and its production
KR100289479B1 (en) Photosensitive Member, Process for Its Production, Lmage Forming Apparatus Having the Photosensitive Member, and Image Forming Process
US6753123B2 (en) Process and apparatus for manufacturing electrophotographic photosensitive member
JP2001281896A (en) Electrophotographic photoreceptor and device using the same
JP2007139951A (en) Method for manufacturing electrophotographic photoreceptor
JP3428865B2 (en) Apparatus and method for forming deposited film
JP2002091040A (en) Electrophotographic photoreceptor and electrophotographic device
JP2001337474A (en) Method for manufacturing light-accepting member, light- accepting member and electrophotographic device
JP2001330978A (en) Electrophotographic photoreceptor and electrophotographic device
JP2006163219A (en) Electrophotographic photoreceptor
JP2002082463A (en) Electrophotographic photoreceptor and electrophotographic device
JP3857160B2 (en) Photoconductor and image forming apparatus
JPH10301310A (en) Electrophotographic photoreceptor and its production
JP2002287391A (en) Electrophotographic device
JPH0720649A (en) Electrophotographic sensitive body and its production
JPH09279347A (en) Deposited film forming device and deposited film formation
JPH11184121A (en) Electrophotographic photoreceptor and its production