JPH06273692A - Image forming element - Google Patents
Image forming elementInfo
- Publication number
- JPH06273692A JPH06273692A JP13213193A JP13213193A JPH06273692A JP H06273692 A JPH06273692 A JP H06273692A JP 13213193 A JP13213193 A JP 13213193A JP 13213193 A JP13213193 A JP 13213193A JP H06273692 A JPH06273692 A JP H06273692A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- imaging element
- image
- lens
- convex lenses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ファクシミリや電子複
写機、LEDプリンタ等に使われる結像素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming element used in facsimiles, electronic copying machines, LED printers and the like.
【0002】[0002]
【従来の技術】ファクシミリや電子複写機、LEDプリ
ンタ等には、ライン上の被写体を等倍率でセンサや感光
ドラム上に投影するライン状の結像素子が使われてい
る。このような結像素子としては、中心から半径方向
に屈折率が連続的に変化する円柱状の透明体をアレイに
した、いわゆるロッドレンズアレイ、球面レンズのア
レイを形成した板を多層(三層にすることが多い)に重
ね合わせたもの(例えば特公昭49−8893号公報、
特開昭57−104923号公報、特開昭57−664
14号公報参照)、ダハプリズムとレンズの組み合わ
せによる正立等倍光学系をアレイ状に配列したもの(例
えば特開昭61−210319号公報、特開昭56−1
17201号公報、特開昭56−126801号公報、
特開昭56−140301号公報、特開昭56−149
002号公報、特開昭60−254018号公報、特開
昭60−254019号公報、特開昭60−25402
0号公報、特開昭61−233714号公報、特開昭6
2−91902号公報、特開昭62−201417号公
報参照)がある。2. Description of the Related Art In facsimiles, electronic copying machines, LED printers and the like, line-shaped image-forming elements are used to project an object on a line onto a sensor or a photosensitive drum at an equal magnification. An example of such an imaging element is a so-called rod lens array, which is an array of cylindrical transparent bodies whose refractive index continuously changes in the radial direction from the center, and a plate on which an array of spherical lenses is formed (three layers). (For example, Japanese Patent Publication No. Sho 49-8893,
JP-A-57-104923, JP-A-57-664
14), an erecting equal-magnification optical system formed by combining a roof prism and a lens is arranged in an array (for example, JP-A-61-210319 and JP-A-56-1).
17201, JP-A-56-126801,
JP-A-56-140301, JP-A-56-149
002, JP 60-254018, JP 60-254019, and JP 60-25402.
No. 0, JP 61-233714 A, JP 6
2-91902 and JP-A-62-201417).
【0003】[0003]
【発明が解決しようとする課題】これらの従来の技術に
は、それぞれ次のような問題点がある。上記した結像素
子の方式においては、円柱状の透明体に屈折率の分布
を形成すること、また、これを精密に制御することが必
要であるが、これには特殊なノウハウが必要であり、容
易に実現できる技術ではない。また、径の大きなロッド
レンズを作ることは特に困難であるため、レンズと被写
体との距離を大きくとりたいときには、F値が低下して
暗い光学系になってしまうという問題がある。Each of these conventional techniques has the following problems. In the above-mentioned imaging element method, it is necessary to form a refractive index distribution in a cylindrical transparent body and to control it precisely, but this requires special know-how. , It is not an easily realizable technology. Further, since it is particularly difficult to make a rod lens having a large diameter, there is a problem that when it is desired to increase the distance between the lens and the subject, the F value decreases and the optical system becomes dark.
【0004】次に、方式においては、レンズアレイの
各層における単レンズの光軸を十分な精度で合わせるこ
とが難しく、特に長いアレイを作ることは困難であると
いう問題がある。加えて、方式においては、光線の
屈折角の積算が大きくなるため、色収差が大きくなり易
いという欠点がある。Next, the method has a problem that it is difficult to align the optical axes of the single lenses in each layer of the lens array with sufficient accuracy, and it is difficult to form a particularly long array. In addition, the method has a drawback that chromatic aberration is likely to be large because the integration of refraction angles of light rays is large.
【0005】一方、方式は、像の反転にダハプリズム
(あるいはルーフミラー)を使うために、屈折角の積算
は小さく、色収差は小さい。しかしながら、ダハプリズ
ム(あるいはルーフミラー)とレンズの軸合わせを精度
よく行うことが難しいという問題点がある。そこで、本
発明は、上記した各種従来技術の問題点を解消し、特に
難しいノウハウを必要とせず、製作が容易で、色収差が
小さい結像素子を提供することを目的とする。On the other hand, in the method, since the roof prism (or roof prism) is used for reversing the image, the integration of the refraction angles is small and the chromatic aberration is small. However, there is a problem that it is difficult to accurately align the axes of the roof prism (or roof mirror) and the lens. Therefore, it is an object of the present invention to solve the problems of the above-mentioned various conventional techniques, and to provide an imaging element that does not require particularly difficult know-how, is easy to manufacture, and has small chromatic aberration.
【0006】また、本発明は、ライン状のみならず、二
次元像の投影を可能とする面状に構成することのできる
結像素子を提供することを目的とする。Another object of the present invention is to provide an image forming element which can be formed not only in a line shape but also in a plane shape capable of projecting a two-dimensional image.
【0007】[0007]
【課題を解決するための手段】本願第1の発明による結
像素子は、ダブプリズム(あるいは梯形プリズム)の反
射面が、入・出射面に直交する面と該反射面が交わる直
線に平行な稜線を持つ直角プリズムが少なくとも一つ以
上並んだ直角プリズム面に置き換えられたダブプリズム
をそれぞれ形成する一対の透明部材を、該透明部材の直
角プリズム面が外側になるように接して対称に配置し、
さらに二枚の焦点距離が等しい凸レンズを両透明部材の
入・出射面にそれぞれ配置したものを構成単位とし、該
構成単位が該凸レンズの光軸に垂直な直線上に複数個配
列されて構成される。In the imaging element according to the first aspect of the present invention, the reflecting surface of the dove prism (or the trapezoidal prism) is parallel to the straight line intersecting the surface orthogonal to the entrance / exit surface and the reflecting surface. A pair of transparent members, each forming a Dove prism in which at least one right-angled prism having a ridge line is replaced by a right-angled prism surface, are arranged symmetrically in contact with each other so that the right-angled prism surface of the transparent member faces outward. ,
Further, two convex lenses having the same focal length are respectively arranged on the entrance and exit surfaces of both transparent members as a constitutional unit, and a plurality of the constitutional units are arranged on a straight line perpendicular to the optical axis of the convex lens. It
【0008】また、本願第2の発明による結像素子は、
この構成単位を該凸レンズの光軸に垂直な面上で、少な
くとも一つは同一直線上にないように三つ以上配列され
て構成される。本願第2の発明による別の結像素子は、
ダブプリズムの反射面が、入・出射面に直交する面と該
反射面が交わる直線に平行な稜線を持つ直角プリズムが
少なくとも一つ以上並んだ直角プリズム面に置き換えら
れたダブプリズムをそれぞれ形成する一対の透明部材
を、該透明部材の直角プリズム面が外側になるように接
して対称に配置し、さらに入・出射面それぞれに二枚の
互いに焦点距離が等しく母線が平行なシリンドリカル凸
レンズを配置したものを構成単位とし、該構成単位が該
シリンドリカル凸レンズの母線に垂直な直線上に複数個
配列され、かつ、両シリンドリカル凸レンズ列に面して
該構成単位の配列方向に平行な母線を持つ二本の帯状シ
リンドリカル凸レンズが配設されて構成される。Further, the imaging element according to the second invention of the present application,
Three or more of these constituent units are arranged on a plane perpendicular to the optical axis of the convex lens so that at least one is not on the same straight line. Another imaging element according to the second invention of the present application is
Each of the dove prisms is formed by replacing the reflecting surface of the dove prism with a surface of a right-angle prism having at least one right-angle prism having a ridge line parallel to a straight line intersecting the reflecting surface and the surface orthogonal to the entrance / exit surface. A pair of transparent members are symmetrically arranged so that the right-angled prism surfaces of the transparent members are in contact with each other, and two cylindrical convex lenses with equal focal lengths and parallel generatrices are arranged on each of the entrance and exit surfaces. A plurality of structural units that are arranged on a straight line perpendicular to the generatrix of the cylindrical convex lens, and that have two generatrix lines facing both cylindrical convex lens rows and parallel to the arrangement direction of the structural units. The band-shaped cylindrical convex lens is arranged.
【0009】[0009]
【作用】レンズアレイを使った結像素子では、各構成単
位が正立像を結ぶことがつながりのあるライン像を得る
ために必要である。上記した本発明による結像素子によ
れば、ダブプリズムと直角プリズムによる像反転作用を
使って像を正立させることができるので、レンズの負担
を低減し、色収差や光軸合わせの負担を減らすことが可
能となる。In the image forming device using the lens array, it is necessary for each constituent unit to form a continuous line image in which an erect image is formed. According to the above-described image forming element of the present invention, since the image can be erected by using the image inverting action of the Dove prism and the right angle prism, the burden on the lens is reduced and the burden of chromatic aberration and optical axis alignment is reduced. It becomes possible.
【0010】しかも、本発明による結像素子は、二次元
方向に正立等倍像を得ることができ、したがって、面状
の結像素子を形成することが可能である。In addition, the imaging element according to the present invention can obtain an erecting equal-magnification image in a two-dimensional direction, and therefore a planar imaging element can be formed.
【0011】[0011]
【実施例】図1は、本願第1の発明による結像素子の構
成単位の一例の斜視図であり、図2(a)はyz面、図
2(b)はxz面の平面図である。図中、1および2は
凸レンズ、3は透明部材、4は直角プリズム面、5は接
着剤、6は物体面、7は像面である。物体面6、像面7
はそれぞれのレンズから焦点距離だけ離れた位置にあ
り、凸レンズ1,2は共通の光軸を持ち、これが物体面
6、像面7と交わる点をそれぞれ物体面、像面の原点O
とする。y方向には図2(a)に示すように直角プリズ
ム面の働きで正立像が得られ、x方向にはダブプリズム
3の働きで正立像が得られる。このことをさらに詳しく
説明する。1 is a perspective view of an example of a structural unit of an imaging element according to the first invention of the present application, FIG. 2 (a) is a yz plane, and FIG. 2 (b) is a plan view of an xz plane. . In the figure, 1 and 2 are convex lenses, 3 is a transparent member, 4 is a rectangular prism surface, 5 is an adhesive, 6 is an object surface, and 7 is an image surface. Object plane 6, image plane 7
Is located at a position away from each lens by a focal length, the convex lenses 1 and 2 have a common optical axis, and the points where they intersect the object plane 6 and the image plane 7 are the object plane and the origin O of the image plane, respectively.
And As shown in FIG. 2A, an erect image is obtained in the y direction by the action of the right-angle prism surface, and an erect image is obtained in the x direction by the action of the Dove prism 3. This will be described in more detail.
【0012】図3は、直角プリズムの作用を説明するも
ので、図1の構成単位を像面7から見たxy平面図であ
る。物体面の原点Oとx軸上の点x1 から発した光は、
凸レンズ1により進行ベクトルのy成分が0である平行
光にそれぞれ変換され、透明部材3に入って直角プリズ
ム面4で反射し、透明部材3を出て凸レンズ2に至る。
この間に光線ベクトルはy成分を生じないから、像面に
おいてこれらの光が点Oと同じy座標に至ることが分か
る。FIG. 3 is a xy plan view of the structural unit of FIG. 1 viewed from the image plane 7 for explaining the function of the right-angled prism. The light emitted from the origin O of the object plane and the point x 1 on the x-axis is
The convex lens 1 converts the traveling vector into parallel light whose y component is 0, enters the transparent member 3, is reflected by the rectangular prism surface 4, and exits the transparent member 3 to reach the convex lens 2.
Since the ray vector does not generate the y component during this period, it can be seen that these rays reach the same y coordinate as the point O on the image plane.
【0013】透明部材3は、xz面内ではダブプリズム
(あるいは梯型プリズム)と同様な機能を有する。図4
は、ダブプリズムの作用を説明するもので、入射面に光
軸となす角αで入射した光が反射面で反射して、出射面
から逆向きに同じ角度αで出射するのが特徴であり、入
・出射面が反射面と鋭角θをなしているため、屈折によ
り光軸に沿った光に対して効率よく作用する。The transparent member 3 has the same function as a Dove prism (or a trapezoidal prism) in the xz plane. Figure 4
Explains the function of the Dove prism, and is characterized in that the light incident on the incident surface at an angle α with the optical axis is reflected by the reflecting surface and emitted from the emitting surface in the opposite direction at the same angle α. Since the entrance / exit surface forms an acute angle θ with the reflecting surface, it efficiently acts on the light along the optical axis due to refraction.
【0014】このことから、xz面内での上記構成単位
の作用を以下のように説明できる。物体面6の点x1 か
ら凸レンズ1に入った光はまずレンズ1の作用で光軸
(z軸)と角度−tan-1(x1 /f)をなす平行光に
変換される(ただし、fはレンズ1及び2の焦点距離を
表す)。次いで、上記した透明部材3の作用(ダブプリ
ズムの作用)によって、この光は光軸と角度tan
-1(x1 /f)をなす平行光に変換され、レンズ2の作
用で像面7上の座標x1 の点に集束する。こうして、x
1 のy座標は上記した通り保存されるから、結局、物体
面の点x1 から発した光は、像面上の点Oから見て同等
の位置、すなわち、正立等倍像の位置に集束されること
になる。From this, the action of the above-mentioned structural units in the xz plane can be explained as follows. The light entering the convex lens 1 from the point x 1 on the object plane 6 is first converted into parallel light which forms an angle −tan −1 (x 1 / f) with the optical axis (z axis) by the action of the lens 1 (however, f represents the focal length of lenses 1 and 2). Then, due to the above-mentioned action of the transparent member 3 (action of the Dove prism), this light is transmitted through the optical axis at an angle tan.
The light is converted into parallel light of −1 (x 1 / f) and is focused by the action of the lens 2 at the point of coordinate x 1 on the image plane 7. Thus x
Since the y-coordinate of 1 is stored as described above, the light emitted from the point x 1 on the object plane is eventually at the same position as seen from the point O on the image plane, that is, the position of the erecting equal-magnification image. It will be focused.
【0015】また、図3において、物体面のy軸上の点
y1 から発した光は、凸レンズ1で進行ベクトルのx成
分が0である平行光に変換され、透明部材3に入って直
角プリズム面4で反射するが、この際直角プリズム4の
作用で進行ベクトルのy成分の大きさはそのままで符号
が反転し、透明部材3を出て凸レンズ2に至る。図4の
作用において、透明部材3を出た光のベクトルはx成分
を持たないから、上記したx座標についての説明がy座
標にもそのまま当てはまり、この光線がレンズ2の作用
で像面7上の正立等倍像の位置座標y1 の点に集束する
こととなる。In FIG. 3, light emitted from a point y 1 on the y-axis of the object plane is converted by the convex lens 1 into parallel light having a traveling vector x component of 0, and enters the transparent member 3 to form a right angle. The light is reflected by the prism surface 4, but at this time, the action of the right-angle prism 4 causes the sign of the y component of the traveling vector to be reversed and the sign to be reversed, and the light exits the transparent member 3 and reaches the convex lens 2. In the operation of FIG. 4, since the vector of the light emitted from the transparent member 3 does not have the x component, the above description of the x coordinate applies to the y coordinate as it is, and this light ray is acted on the image plane 7 by the action of the lens 2. Will be focused on the point of the position coordinate y 1 of the erecting equal-magnification image of.
【0016】以上の説明は物体面6の任意の座標の点に
ついても適用でき、像面7には完全な正立等倍像が得ら
れることとなる。すなわち、(1)レンズ1による位置
−角度変換、(2)ダブプリズムおよび直角プリズム面
による角度の反転、(3)レンズ2による角度−位置変
換によって、x方向の正立等倍像が得られる。したがっ
て、この構成単位をx方向あるいはy方向に並べること
によって、連続した正立等倍像を得ることができる。The above description can be applied to a point at arbitrary coordinates on the object plane 6, and a perfect erect image of equal magnification can be obtained on the image plane 7. That is, an erecting equal-magnification image in the x direction is obtained by (1) position-angle conversion by the lens 1, (2) angle reversal by the Dove prism and right-angle prism surfaces, and (3) angle-position conversion by the lens 2. . Therefore, by arranging these structural units in the x direction or the y direction, continuous erecting equal-magnification images can be obtained.
【0017】このことは、レンズ1からレンズ2までの
間で位置の情報が意味を持たないことを示しており、こ
れが本結像素子の光学的な安定性につながっている。す
なわち、図2(b)においてレンズ1あるいはレンズ2
の位置がx,y方向に少しずれても、それは像の平行移
動に現われるだけであって、像の質自体はほとんど変わ
らない。レンズアレイを組み立てる上で最も問題になる
のは、レンズ間のピッチの変動が配列方向に積算されて
無視できない光軸ずれを起こすことであるが、本結像素
子は、この配列方向の光軸ずれの影響を受けにくいとい
う特徴をもっている。This means that the position information between the lens 1 and the lens 2 has no meaning, which leads to the optical stability of the present imaging element. That is, the lens 1 or the lens 2 in FIG.
Even if the position of is slightly shifted in the x and y directions, it appears only in the translation of the image, and the image quality itself is hardly changed. The most important factor in assembling the lens array is that the fluctuations in the pitch between the lenses are integrated in the array direction and cause a non-negligible optical axis shift. It has the characteristic that it is not easily affected by the gap.
【0018】図7乃至図9は、上記した構成単位を直線
上に配列する場合の配列方法の例を簡略的に示したもの
であり、各図中の(a)および(b)はそれぞれ透明部
材3のアレイおよび凸レンズ1,2のアレイを示してい
る。図7および図8は、各構成単位の直角プリズム面4
が互いに接するように並べる例であり、図7に示した例
は直角プリズムの噛み合いを使って配列密度を上げてい
るため、噛み合いの部分で隣の構成単位の光が混じらな
いように、レンズ1,2には遮光部1−1(2−1)を
設けて不連続に並んだアレイを用いる必要がある。この
場合、図5(a)に示すように直角プリズムの側面を遮
光しない場合には、レンズ1,2には遮光部1−1(2
−1)が必要であるが、図5(b)に示すように重なり
合う部分を黒塗装8で遮光した透明部材を使う場合に
は、この遮光部は必要ない。FIGS. 7 to 9 schematically show an example of an arrangement method when the above-mentioned constituent units are arranged on a straight line. (A) and (b) in each figure are transparent. An array of members 3 and an array of convex lenses 1 and 2 are shown. 7 and 8 show the rectangular prism surface 4 of each structural unit.
7 are arranged so as to be in contact with each other. In the example shown in FIG. 7, since the arrangement density is increased by using the meshing of the right-angle prisms, the lens 1 is arranged so that the light of the adjacent structural unit is not mixed in the meshing part. , 2, it is necessary to provide a light-shielding portion 1-1 (2-1) and use an array that is discontinuously arranged. In this case, as shown in FIG. 5A, when the side surface of the right-angle prism is not shielded, the lenses 1 and 2 are shielded by the shield portions 1-1 (2
-1) is required, but when using a transparent member in which overlapping portions are shielded by black coating 8 as shown in FIG. 5B, this shielding portion is not necessary.
【0019】一方、図8に示すように、各構成単位が重
ならないように並べられた例においても、遮光部は必要
ない。また、図9に示したものは、これと垂直な方向に
並べる例であるが、この場合も隣の構成単位の光が混じ
らないように各構成単位の間には遮光板3−1,3−1
…を置いてシールドするのがよい。本願第1の発明によ
る結像素子の構成単位を図8のように配列した実施例を
図6に、図9のように配列した実施例を図10に示し
た。いずれにおいても連続した正立等倍像を得ることが
できる。On the other hand, as shown in FIG. 8, even in the example in which the constituent units are arranged so as not to overlap each other, the light shielding portion is not necessary. Further, although the example shown in FIG. 9 is an example of arranging in a direction perpendicular to this, in this case as well, the light shielding plates 3-1 and 3 are provided between the respective constituent units so that light of adjacent constituent units is not mixed. -1
It is better to put a shield on it. FIG. 6 shows an embodiment in which the constituent units of the imaging device according to the first invention of the present application are arranged as shown in FIG. 8, and FIG. 10 shows an embodiment in which the constituent units are arranged as shown in FIG. In either case, continuous erecting equal-magnification images can be obtained.
【0020】具体的な実施例として、a=11.2mm、
b=2.8mm、θ=45°、プリズムの高さ6mmで反射
面に1mmピッチの直角プリズムを6列刻んだポリメチル
メタクリレート製の図5(a)に示したプリズム20個
と、曲率半径8mmで6mm×6mmの正方形の凸レンズが1
0個並んだポリメチルメタクリレート製レンズアレイ二
枚を使い、図6の結像素子を組立てた。この結像素子を
使用することにより、共役長47mmで明るい正立等倍像
が得られることを確認した。また、同じ部品を図10の
ように組み立てた場合も、同じ共役長で正立等倍像が得
られた。As a concrete example, a = 11.2 mm,
b = 2.8 mm, θ = 45 °, 20 mm prisms shown in FIG. 5 (a) made of polymethylmethacrylate in which 6 rows of rectangular prisms with a pitch of 1 mm are engraved on the reflecting surface with a prism height of 6 mm and a radius of curvature. One 8 mm 6 mm x 6 mm square convex lens
The image-forming element of FIG. 6 was assembled by using two lens arrays made of polymethylmethacrylate arranged in a line. It was confirmed that a bright erect equal-magnification image with a conjugate length of 47 mm was obtained by using this imaging element. Also, when the same parts were assembled as shown in FIG. 10, an erecting equal-magnification image was obtained with the same conjugate length.
【0021】また、容易に分かるように、本構成単位は
直線上に限らず二次元的に並べても像の連続性は保たれ
る。したがって、例えば図7乃至図9の配列方法をy方
向に複数列積み上げることによって明るさを増したり、
大面積の像を得ることが可能になる。本願第2の発明に
よる結像素子はこれを実現するものであり、例えば図1
7のような配列方法により構成される。図18は、この
ような本願第2の発明による結像素子の実施例を示す斜
視図であり、本結像素子は大面積の正立等倍像を得るの
に適している。Further, as can be easily understood, the continuity of the image is maintained even when the present structural unit is not limited to a straight line but arranged two-dimensionally. Therefore, for example, the brightness can be increased by stacking a plurality of columns in the y direction by the arraying method of FIGS.
It is possible to obtain a large area image. The imaging element according to the second invention of the present application realizes this, and for example, FIG.
7 is arranged by the arrangement method. FIG. 18 is a perspective view showing an embodiment of such an imaging element according to the second invention of the present application, and the present imaging element is suitable for obtaining an erecting equal-magnification image of a large area.
【0022】上記した結像素子における構成単位につい
ては、二つの透明部材3が対する面、すなわち反射面の
反対側の面は粗面とし、黒色の接着剤5で接着するのが
好ましい。これによって、図11中に点線により示した
ように、反射面に反射してから出射面に至らなかった光
線を吸収し、迷光の発生を防ぐことができる。この場合
でも、図12のような迷光を生じることが考えられる
が、このような迷光はθ≦90°−sin-1(1/n)
が満たされれば存在しない。With respect to the constituent units of the above-mentioned image forming element, it is preferable that the surfaces facing the two transparent members 3, that is, the surfaces opposite to the reflecting surfaces are rough surfaces and are bonded with the black adhesive 5. As a result, as shown by the dotted line in FIG. 11, it is possible to absorb rays that have not reached the emission surface after being reflected by the reflection surface, and prevent stray light from being generated. Even in this case, stray light as shown in FIG. 12 may be generated, but such stray light is θ ≦ 90 ° -sin −1 (1 / n).
It does not exist if is satisfied.
【0023】図13は、透明部材3の好ましい長さを示
したものである。光軸(z軸)に沿った光線が損失無く
伝わる条件は、FIG. 13 shows a preferable length of the transparent member 3. The condition that a light ray along the optical axis (z axis) propagates without loss is
【0024】[0024]
【数1】 [Equation 1]
【0025】であり、この場合各構成単位ではレンズの
中心軸周辺の像が最も明るく、収差の最も少ない部分を
有効に使えるので、有利である。次に、図14は、本願
第3の発明による結像素子の構成単位とシリンドリカル
レンズの一部の一例を示す斜視図であり、図15(a)
はyz面、図15(b)はxz面の平面図である。上述
した構成単位におけるレンズ1,2の働きをそれぞれ二
つのシリンドリカル凸レンズ9,11およびシリンドリ
カル凸レンズ10,12の組み合わせで置き換えたもの
である。このようにシリンドリカル凸レンズを使うこと
によって部品数は増えるが、(1)アレイ化する際にシ
リンドリカル凸レンズ11,12をそれぞれ一本の共通
の帯状シリンドリカル凸レンズに形成することができ、
この結果、各構成単位のy方向の像のずれを生じにくい
こと、(2)必要ならば、帯状シリンドリカル凸レンズ
11,12の焦点距離及び位置を変えてy方向の視野角
(開口角)の変更や拡大・縮小が可能になるというメリ
ットがある。In this case, in each constitutional unit, the image around the central axis of the lens is the brightest and the portion with the smallest aberration can be effectively used, which is advantageous. Next, FIG. 14 is a perspective view showing an example of a structural unit of an imaging element and a part of a cylindrical lens according to the third invention of the present application, and FIG.
Is a yz plane and FIG. 15B is a plan view of an xz plane. The functions of the lenses 1 and 2 in the above-described structural unit are replaced by a combination of two cylindrical convex lenses 9 and 11 and cylindrical convex lenses 10 and 12, respectively. Although the number of parts is increased by using the cylindrical convex lens as described above, (1) the cylindrical convex lenses 11 and 12 can be respectively formed into one common band-shaped cylindrical convex lens when arrayed.
As a result, it is unlikely that the image of each structural unit is displaced in the y direction. (2) If necessary, the viewing angle (aperture angle) in the y direction is changed by changing the focal lengths and positions of the belt-shaped cylindrical convex lenses 11 and 12. It has the advantage that it can be enlarged or reduced.
【0026】図16は、図14,15に示した構成単位
を配列した本願第3の発明による結像素子の実施例であ
る。この結像素子においても、図9のような配列も可能
であり、その場合は図15においてシリンドリカル凸レ
ンズ9〜12をそのままにして、各構成単位の張り合わ
された二つの透明部材3がz軸を中心に90°回転した
ものとなる。FIG. 16 shows an embodiment of the image forming device according to the third invention of the present application in which the constituent units shown in FIGS. 14 and 15 are arranged. Also in this image forming element, the arrangement as shown in FIG. 9 is possible, and in that case, the two cylindrical transparent members 3 of the respective constituent units are bonded to each other along the z axis while leaving the cylindrical convex lenses 9 to 12 in FIG. It will be rotated 90 ° to the center.
【0027】具体的な実施例として、先と同じプリズム
20個と、曲率半径9mmで6mm×6mmの正方形のシリン
ドリカル凸レンズが10個並んだポリメチルメタクリレ
ート製レンズアレイ二枚と、曲率半径8mmで幅6mmの帯
状シリンドリカル凸レンズ二本とを使い、図16の結像
素子を組立てた。この結像素子を使用することにより、
共役長50mmで明るい正立等倍像が得られることを確認
した。As a concrete example, 20 same prisms as above, two polymethylmethacrylate lens arrays in which 10 cylindrical convex lenses having a radius of curvature of 9 mm and a square of 6 mm × 6 mm are arranged, and a radius of curvature of 8 mm and a width The image forming element of FIG. 16 was assembled using two 6 mm band-shaped cylindrical convex lenses. By using this imaging element,
It was confirmed that a bright erect image with a conjugate length of 50 mm was obtained.
【0028】図16に示した結像素子も、y方向に積み
重ねて大面積の像を得るようにすることができるが、図
17のように積み上げるのではシリンドリカルレンズを
使うメリットが生きないので、この結像素子はあくまで
一次元の配列を基本とし、必要ならば一次元配列を積み
上げて二次元配列とするものである。The image forming element shown in FIG. 16 can also be stacked in the y direction to obtain a large area image, but if stacked as shown in FIG. 17, the merit of using a cylindrical lens cannot be realized. This image forming element is basically a one-dimensional array, and if necessary, one-dimensional arrays are stacked to form a two-dimensional array.
【0029】[0029]
【発明の効果】以上説明した通り、本発明による結像素
子においては、ロッドレンズアレイや三層レンズアレイ
と異なり、反射を利用して像反転を行いレンズの負担を
軽減したため、屈折によって生じる色収差を初めとする
収差は他のレンズアレイに比較して少ない。As described above, in the image forming element according to the present invention, unlike the rod lens array and the three-layer lens array, the image inversion is performed by utilizing reflection to reduce the burden on the lens, so that the chromatic aberration caused by refraction is caused. The aberrations such as are smaller than those of other lens arrays.
【0030】また、本発明による結像素子は、単純な光
学部品の組み合わせで構成されており、比較的簡単な軸
合わせで実用的な性能を得ることが可能である。更に、
本発明による結像素子によれば、ライン状だけでなく、
面状のものを構成することができ、明るい像を得ること
ができるのみならず、二次元像の正立等倍像の投影が可
能となり、新たな有用性を付加するものである。Further, the image forming element according to the present invention is composed of a combination of simple optical parts, and it is possible to obtain a practical performance with a relatively simple axial alignment. Furthermore,
According to the imaging element of the present invention, not only the line shape,
It is possible to form a planar object and not only obtain a bright image, but also to project an erecting equal-magnification image of a two-dimensional image, which adds new utility.
【図1】本願第1の発明による結像素子の構成単位の一
例を示す斜視図である。FIG. 1 is a perspective view showing an example of a structural unit of an imaging element according to the first invention of the present application.
【図2】本願第1の発明による結像素子の構成単位の一
例を示す平面図である。FIG. 2 is a plan view showing an example of a structural unit of the imaging element according to the first invention of the present application.
【図3】本願第1の発明による結像素子の構成単位の作
用を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining an operation of a structural unit of the imaging element according to the first invention of the present application.
【図4】ダブプリズムの作用を説明する説明図である。FIG. 4 is an explanatory diagram illustrating an operation of a Dove prism.
【図5】本願第1の発明による結像素子における透明部
材の斜視図である。FIG. 5 is a perspective view of a transparent member in the imaging element according to the first invention of the present application.
【図6】本願第1の発明による結像素子の実施例を示す
斜視図である。FIG. 6 is a perspective view showing an embodiment of the imaging element according to the first invention of the present application.
【図7】本願第1の発明による結像素子における構成要
素の配列例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of arrangement of constituent elements in the imaging element according to the first invention of the present application.
【図8】本願第1の発明による結像素子における構成要
素の配列例を示す説明図である。FIG. 8 is an explanatory diagram showing an arrangement example of components in the imaging element according to the first invention of the present application.
【図9】本願第1の発明による結像素子における構成要
素の配列例を示す説明図である。FIG. 9 is an explanatory diagram showing an arrangement example of constituent elements in the imaging element according to the first invention of the present application.
【図10】本願第1の発明による結像素子の他の実施例
を示す斜視図である。FIG. 10 is a perspective view showing another embodiment of the imaging element according to the first invention of the present application.
【図11】本願第1の発明による結像素子における構成
単位の作用を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining the operation of the structural units in the imaging element according to the first invention of the present application.
【図12】本願第1の発明による結像素子における構成
単位の作用を説明するための説明図である。FIG. 12 is an explanatory diagram for explaining the operation of the structural units in the imaging element according to the first invention of the present application.
【図13】本願第1の発明による結像素子における構成
単位の作用を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining the operation of the structural units in the imaging element according to the first invention of the present application.
【図14】本願第3の発明による結像素子の構成単位の
一例を示す斜視図である。FIG. 14 is a perspective view showing an example of a structural unit of an imaging element according to the third invention of the present application.
【図15】本願第3の発明による結像素子の構成単位の
一例を示す平面図である。FIG. 15 is a plan view showing an example of a structural unit of an imaging element according to the third invention of the present application.
【図16】本願第3の発明による結像素子の実施例を示
す斜視図である。FIG. 16 is a perspective view showing an embodiment of an imaging element according to the third invention of the present application.
【図17】本願第2の発明による結像素子における構成
要素の配列例を示す説明図である。FIG. 17 is an explanatory diagram showing an example of arrangement of constituent elements in the imaging element according to the second invention of the present application.
【図18】本願第2の発明による結像素子の実施例を示
す斜視図である。FIG. 18 is a perspective view showing an embodiment of an imaging element according to the second invention of the present application.
1…凸レンズ 1−1…遮光部 2…凸レンズ 2−1…遮光部 3…透明部材 3−1…遮光板 4…直角プリズム面 5…接着剤 6…物体面 7…像面 8…黒塗装 9…シリンドリカル凸レンズ 10…シリンドリカル凸レンズ 11…帯状シリンドリカル凸レンズ 12…帯状シリンドリカル凸レンズ DESCRIPTION OF SYMBOLS 1 ... Convex lens 1-1 ... Light-shielding part 2 ... Convex lens 2-1 ... Light-shielding part 3 ... Transparent member 3-1 ... Light-shielding plate 4 ... Right-angled prism surface 5 ... Adhesive agent 6 ... Object surface 7 ... Image surface 8 ... Black paint 9 ... Cylindrical convex lens 10 ... Cylindrical convex lens 11 ... Band-shaped cylindrical convex lens 12 ... Band-shaped cylindrical convex lens
Claims (3)
直交する面と該反射面が交わる直線に平行な稜線を持つ
直角プリズムが少なくとも一つ以上並んだ直角プリズム
面に置き換えられたダブプリズムをそれぞれ形成する一
対の透明部材を、該透明部材の直角プリズム面が外側に
なるように接して対称に配置し、さらに二枚の互いに焦
点距離が等しい凸レンズを該入・出射面にそれぞれ配置
したものを構成単位とし、該構成単位が該凸レンズの光
軸に垂直な直線上に複数個配列されている結像素子。1. A dove prism in which the reflecting surface of the dove prism is replaced with at least one right-angle prism having a ridge line parallel to a straight line intersecting the reflecting surface and the surface orthogonal to the entrance / exit surface. A pair of transparent members forming prisms are symmetrically arranged so that the right-angled prism surfaces of the transparent members are in contact with each other, and two convex lenses having the same focal length are arranged on the entrance and exit surfaces, respectively. An imaging element in which a plurality of the constituent units are arranged on a straight line perpendicular to the optical axis of the convex lens.
上で、少なくとも一つは同一直線上にないように三つ以
上配列されている請求項1に記載の結像素子。2. The imaging element according to claim 1, wherein three or more constituent units are arranged on a plane perpendicular to the optical axis of the convex lens, and at least one of them is not on the same straight line.
直交する面と該反射面が交わる直線に平行な稜線を持つ
直角プリズムが少なくとも一つ以上並んだ直角プリズム
面に置き換えられたダブプリズムをそれぞれ形成する一
対の透明部材を、該透明部材の直角プリズム面が外側に
なるように接して対称に配置し、さらに該入・出射面に
それぞれ二枚の互いに焦点距離が等しく母線が平行なシ
リンドリカル凸レンズを配置したものを構成単位とし、
該構成単位が該シリンドリカル凸レンズの母線に垂直な
直線上に複数個配列されたものと、該シリンドリカル凸
レンズの列のそれぞれに面して配設され、かつ、該構成
単位の配列方向に平行な母線を持つ二本の帯状シリンド
リカル凸レンズとを備えた結像素子。3. A dove prism in which the reflecting surface of the dove prism is replaced with a right-angle prism surface in which at least one right-angle prism having a ridge line parallel to a straight line intersecting the reflecting surface and the surface orthogonal to the entrance / exit surface is arranged. A pair of transparent members forming each prism are symmetrically arranged so that the right-angled prism surface of the transparent member is on the outer side, and further, the two entrance and exit surfaces have the same focal length and the generatrix is parallel to each other. With a cylindrical convex lens arranged as a structural unit,
A plurality of the constituent units arranged on a straight line perpendicular to the generatrix of the cylindrical convex lens, and a generatrix arranged so as to face each row of the cylindrical convex lenses and parallel to the arrangement direction of the constituent units. With two strip-shaped cylindrical convex lenses having an image forming element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13213193A JPH06273692A (en) | 1993-01-19 | 1993-06-02 | Image forming element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP667393 | 1993-01-19 | ||
JP5-6673 | 1993-01-19 | ||
JP13213193A JPH06273692A (en) | 1993-01-19 | 1993-06-02 | Image forming element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06273692A true JPH06273692A (en) | 1994-09-30 |
Family
ID=26340861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13213193A Pending JPH06273692A (en) | 1993-01-19 | 1993-06-02 | Image forming element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06273692A (en) |
-
1993
- 1993-06-02 JP JP13213193A patent/JPH06273692A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4101297B2 (en) | Electrical device comprising a pixel array | |
US7187399B2 (en) | Exposure head with spatial light modulator | |
EP0539691B1 (en) | Nipkow disk for confocal optical scanner | |
US5907438A (en) | Imaging device | |
US4736225A (en) | Slit exposure projection device | |
JPH03175402A (en) | Optical transmission plate | |
JP2000284217A (en) | Erect variable power array lens device | |
JPH06273692A (en) | Image forming element | |
JPH06250119A (en) | Image forming element | |
JPH06208081A (en) | Line image forming element | |
JPH0485515A (en) | Image forming element | |
JPH06265813A (en) | Image forming element | |
JP3258085B2 (en) | Line imaging device | |
JPH07120699A (en) | Line imaging element | |
JP3258097B2 (en) | Planar split projection element | |
JPH0485516A (en) | Image forming element | |
JPH0713101A (en) | Line image forming element | |
JPH06214191A (en) | Line image-forming element | |
JPH0727996A (en) | Imaging element | |
JPS59127017A (en) | Optical scanner | |
JP3306793B2 (en) | Imaging element | |
JPH06250117A (en) | Image forming element | |
JPH06214190A (en) | Line image-forming element | |
JP3258083B2 (en) | Dove prism assembly, imaging element unit and line imaging element | |
JPH0485513A (en) | Optical component |