JPH06273438A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH06273438A
JPH06273438A JP5085712A JP8571293A JPH06273438A JP H06273438 A JPH06273438 A JP H06273438A JP 5085712 A JP5085712 A JP 5085712A JP 8571293 A JP8571293 A JP 8571293A JP H06273438 A JPH06273438 A JP H06273438A
Authority
JP
Japan
Prior art keywords
vibrating body
piezoelectric elements
acceleration sensor
acceleration
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5085712A
Other languages
Japanese (ja)
Other versions
JP3129022B2 (en
Inventor
Takeshi Nakamura
村 武 中
Takayuki Kaneko
子 貴 之 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP05085712A priority Critical patent/JP3129022B2/en
Priority to DE69423667T priority patent/DE69423667T2/en
Priority to EP94102967A priority patent/EP0614087B1/en
Publication of JPH06273438A publication Critical patent/JPH06273438A/en
Priority to US08/521,443 priority patent/US5681994A/en
Priority to US08/521,426 priority patent/US5652385A/en
Priority to US08/521,444 priority patent/US5679896A/en
Priority to US08/521,421 priority patent/US5629483A/en
Priority to US08/747,247 priority patent/US5824903A/en
Priority to US08/796,496 priority patent/US5773916A/en
Priority to US08/833,088 priority patent/US5770799A/en
Priority to US09/041,178 priority patent/US5900551A/en
Application granted granted Critical
Publication of JP3129022B2 publication Critical patent/JP3129022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain an acceleration sensor which can detect an acceleration in a plurality of directions. CONSTITUTION:An acceleration sensor 10 includes a quandrangular prism-shaped vibration body 12. Piezoelectric elements 14a, 14b for drive are installed on one end side in the length direction, and other piezoelectric elements 14c, 14d for drive are insatlled on the other end side. Piezoelectric elements 16a, 16b, 16c, 16d for detection are installed on four sides. The piezoelectric elements 14a, 14b for drive and the piezoelectric elements 16a to 16d for detection are polarized from the outside toward the side of the vibration body 12. The piezoelectric elements 14c, 14d for drive are polarized from the side of the vibration body 12 toward the outside. Driving signals of the same phase are applied to the piezoelectric elements 14a to 14d for drive, and the vibration body 12 is length-vibrated. At this time, the vibration body 12 is vibrated in such a way that its expansion and its contraction are reversed on both sides in the length direction. The difference in an output voltage between the opposite piezoelectric elements 16a, 16b for detection and the difference in an output voltage between the piezoelectric elements 16c, 16d for detection are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は加速度センサに関し、
特にたとえば、カメラの手振れ検知や3次元マウスなど
に用いられる加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor,
Particularly, for example, it relates to an acceleration sensor used for camera shake detection and a three-dimensional mouse.

【0002】[0002]

【従来の技術】図11は従来の加速度センサの一例を示
す図解図である。加速度センサ1は、板体2を含む。板
体2の一端は固定され、他端には重り3が取り付けられ
る。さらに、板体2の両面には、圧電素子4が形成され
る。
2. Description of the Related Art FIG. 11 is an illustrative view showing an example of a conventional acceleration sensor. The acceleration sensor 1 includes a plate body 2. One end of the plate body 2 is fixed, and the weight 3 is attached to the other end. Further, piezoelectric elements 4 are formed on both sides of the plate body 2.

【0003】この加速度センサ1の板体2の面に直交す
る向きに加速度が加わると、図12に示すように、板体
2に撓みが生じる。それにより、圧電素子4には、撓み
に応じた電圧が発生する。この電圧を測定することによ
り、加速度を検出することができる。
When acceleration is applied in a direction orthogonal to the surface of the plate 2 of the acceleration sensor 1, the plate 2 is bent as shown in FIG. As a result, a voltage corresponding to the bending is generated in the piezoelectric element 4. By measuring this voltage, the acceleration can be detected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな加速度センサでは、板体の面に直交した向きの加速
度しか検出することができなかった。そのため、複数の
向きの加速度を検出するためには、板体の向きが異なる
ようにして、複数の加速度センサを配置する必要があっ
た。
However, such an acceleration sensor can detect only the acceleration in the direction orthogonal to the plane of the plate body. Therefore, in order to detect accelerations in a plurality of directions, it is necessary to arrange a plurality of acceleration sensors so that the plate bodies have different directions.

【0005】それゆえに、この発明の主たる目的は、複
数の向きの加速度を検出することができる加速度センサ
を提供することである。
Therefore, a main object of the present invention is to provide an acceleration sensor capable of detecting accelerations in a plurality of directions.

【0006】[0006]

【課題を解決するための手段】この発明は、柱状の振動
体と、振動体の側面に形成され、振動体の周方向の複数
の位置に配置される複数の圧電素子とを含み、圧電素子
に駆動信号を印加することによって、振動体をその長さ
方向の中央部の両側で延びと縮みとが逆となるような長
さ振動をするようにした、加速度センサである。また、
この発明は、圧電材料で形成された柱状の振動体と、振
動体の側面に形成され、振動体の周方向の複数の位置に
配置される複数の電極とを含み、電極に駆動信号を印加
することによって、振動体をその長さ方向の中央部の両
側で延びと縮みとが逆となるような長さ振動をするよう
にした、加速度センサである。
The present invention includes a columnar vibrating body and a plurality of piezoelectric elements formed on a side surface of the vibrating body and arranged at a plurality of circumferential positions of the vibrating body. Is an acceleration sensor in which a vibration signal is applied to the vibrating body so that the vibrating body vibrates in such a manner that the extension and contraction are opposite on both sides of the central portion in the longitudinal direction. Also,
The present invention includes a columnar vibrating body formed of a piezoelectric material and a plurality of electrodes formed on a side surface of the vibrating body and arranged at a plurality of circumferential positions of the vibrating body, and applying a drive signal to the electrodes. By doing so, the acceleration sensor is configured to vibrate in such a manner that the vibrating body extends and contracts in opposite directions on both sides of the center portion in the longitudinal direction.

【0007】[0007]

【作用】振動体の側面に形成された圧電素子または電極
に駆動信号を印加することにより、振動体を長さ方向に
振動させることができ、振動体に慣性が与えられる。こ
の状態で、振動体の中心軸に直交する向きに加速度が加
わると、振動体に撓みが生じる。振動体の撓みに応じ
て、圧電素子に電圧が生じる。圧電素子は振動体の周方
向の複数の位置に形成されているため、各圧電素子に
は、圧電素子面に直交する向きの加速度成分に対応した
電圧が発生する。
By applying a drive signal to the piezoelectric element or electrode formed on the side surface of the vibrating body, the vibrating body can be vibrated in the longitudinal direction, and inertia is imparted to the vibrating body. In this state, when acceleration is applied in a direction orthogonal to the central axis of the vibrating body, the vibrating body is bent. A voltage is generated in the piezoelectric element according to the bending of the vibrating body. Since the piezoelectric element is formed at a plurality of positions in the circumferential direction of the vibrating body, a voltage corresponding to the acceleration component in the direction orthogonal to the piezoelectric element surface is generated in each piezoelectric element.

【0008】[0008]

【発明の効果】この発明によれば、圧電素子面に直交す
る向きの加速度成分に対応して、各圧電素子に電圧が発
生するため、振動体の中心軸に直交する全ての向きの加
速度を検出することができる。
According to the present invention, since a voltage is generated in each piezoelectric element corresponding to the acceleration component in the direction orthogonal to the piezoelectric element surface, the acceleration in all directions orthogonal to the central axis of the vibrating body is obtained. Can be detected.

【0009】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0010】[0010]

【実施例】図1はこの発明の一実施例を示す平面図であ
る。加速度センサ10は、振動体12を含む。振動体1
2は、たとえばエリンバ,鉄−ニッケル合金,石英,ガ
ラス,水晶,セラミックなど、一般的に機械的な振動を
生じる材料で形成される。この振動体12は、たとえば
正4角柱状に形成される。
1 is a plan view showing an embodiment of the present invention. The acceleration sensor 10 includes a vibrating body 12. Vibrating body 1
The material 2 is generally made of a material that causes mechanical vibration, such as elinvar, iron-nickel alloy, quartz, glass, crystal, and ceramic. The vibrating body 12 is formed in, for example, a regular quadrangular prism shape.

【0011】振動体12の長さ方向の一端側には、図2
に示すように、振動体12の対向する側面に、駆動用圧
電素子14a,14bが形成される。また、振動体12
の長さ方向の他端側には、駆動用圧電素子14a,14
bが形成された側面に、別の駆動用圧電素子14c,1
4dが形成される。さらに、駆動用圧電素子14a,1
4bが形成された面には、検出用圧電素子16a,16
bが形成される。これらの検出用圧電素子16a,16
bは、駆動用圧電素子14a,14bに隣接して、振動
体12の一端側に形成される。さらに、図3に示すよう
に、振動体12の検出用圧電素子16a,16bが形成
されていない側面には、別の検出用圧電素子16c,1
6dが形成される。これらの検出用圧電素子16c,1
6dは、振動体12の長さ方向の一端側に形成される。
As shown in FIG.
As shown in, the driving piezoelectric elements 14a and 14b are formed on the opposite side surfaces of the vibrating body 12. In addition, the vibrating body 12
On the other end side in the length direction of the drive piezoelectric elements 14a, 14
On the side surface where b is formed, another driving piezoelectric element 14c, 1
4d is formed. Further, the driving piezoelectric elements 14a, 1
On the surface on which 4b is formed, the detection piezoelectric elements 16a, 16
b is formed. These detecting piezoelectric elements 16a, 16
b is formed on one end side of the vibrating body 12 adjacent to the driving piezoelectric elements 14a and 14b. Further, as shown in FIG. 3, on the side surface of the vibrating body 12 where the detecting piezoelectric elements 16a and 16b are not formed, another detecting piezoelectric elements 16c and 1c are provided.
6d is formed. These detecting piezoelectric elements 16c, 1
6d is formed on one end side in the length direction of the vibrating body 12.

【0012】駆動用圧電素子14aは、たとえば圧電セ
ラミックで形成される圧電板18aを含む。この圧電板
18aの両面に電極20a,22aが形成される。そし
て、一方の電極22aが、振動体12の側面に接着され
る。同様に、駆動用圧電素子14b,14c,14dは
圧電板18b,18c,18dを含み、これらの圧電板
18b,18c,18dの両面には、それぞれ電極20
b,22b,電極20c,22cおよび電極20d,2
2dが形成される。そして、それらの駆動用圧電素子1
4b,14c,14dの一方の電極22b,22c,2
2dが、振動体12の側面に接着される。振動体12の
一端側の駆動用圧電素子14a,14bでは、圧電板1
8a,18bは外側から振動体12側に向かって分極さ
せられる。また、振動体12の他端側の駆動用圧電素子
14c,14dでは、圧電板18c,18dは振動体1
2側から外側に向かって分極させられる。
The driving piezoelectric element 14a includes a piezoelectric plate 18a made of, for example, a piezoelectric ceramic. Electrodes 20a and 22a are formed on both surfaces of the piezoelectric plate 18a. Then, the one electrode 22a is bonded to the side surface of the vibrating body 12. Similarly, the driving piezoelectric elements 14b, 14c, 14d include piezoelectric plates 18b, 18c, 18d, and the electrodes 20 are provided on both surfaces of the piezoelectric plates 18b, 18c, 18d, respectively.
b, 22b, electrodes 20c, 22c and electrodes 20d, 2
2d is formed. Then, those driving piezoelectric elements 1
One electrode 22b, 22c, 2 of 4b, 14c, 14d
2d is bonded to the side surface of the vibrating body 12. In the driving piezoelectric elements 14a and 14b on one end side of the vibrating body 12, the piezoelectric plate 1
8a and 18b are polarized from the outside toward the vibrating body 12 side. Further, in the driving piezoelectric elements 14c and 14d on the other end side of the vibrating body 12, the piezoelectric plates 18c and 18d are the vibrating body 1
It is polarized from the 2 side toward the outside.

【0013】また、検出用圧電素子16a,16b,1
6c,16dは、圧電板24a,24b,24c,24
dを含む。これらの圧電板24a,24b,24c,2
4dの両面には、それぞれ電極26a,28a,電極2
6b,28b,電極26c,28cおよび電極26d,
28dが形成される。そして、これらの検出用圧電素子
16a,16b,16c,16dの一方の電極28a,
28b,28c,28dが、振動体12の側面に接着さ
れる。これらの検出用圧電素子16a,16b,16
c,16dでは、圧電板24a,24b,24c,24
dは、たとえば外側から振動体12側に向かって分極さ
せられる。
Further, the detecting piezoelectric elements 16a, 16b, 1
6c, 16d are piezoelectric plates 24a, 24b, 24c, 24
Including d. These piezoelectric plates 24a, 24b, 24c, 2
Electrodes 26a, 28a and electrode 2 are provided on both sides of 4d, respectively.
6b, 28b, electrodes 26c, 28c and electrodes 26d,
28d is formed. Then, one of the electrodes 28a of the detecting piezoelectric elements 16a, 16b, 16c, 16d,
28b, 28c, 28d are bonded to the side surface of the vibrating body 12. These detecting piezoelectric elements 16a, 16b, 16
c, 16d, the piezoelectric plates 24a, 24b, 24c, 24
For example, d is polarized from the outside toward the vibrating body 12 side.

【0014】この加速度センサ10では、たとえば振動
体12の一端が支持され、振動体12の他端には重り3
0が取り付けられる。したがって、この実施例では、振
動体12は片持ち梁構造となる。この加速度センサ10
を使用する場合、図4に示すように、駆動用圧電素子1
4a〜14dに発振回路32が接続される。この発振回
路32によって、駆動用圧電素子14a〜14dに、同
位相の信号が印加される。駆動用圧電素子14a,14
bは互いに対向するように形成され、駆動用圧電素子1
4c,14dも互いに対向するように形成されているた
め、振動体12は長さ方向に振動する。また、駆動用圧
電素子14a,14bと駆動用圧電素子14c,14d
とは逆方向に分極しているため、同位相の駆動信号によ
って互いに逆方向に変位する。したがって、図1の実線
の矢印に示すように、振動体12の中央部を中心とし
て、振動体12の一方側が伸びるとき、他方側は収縮す
る。また、図1の1点鎖線の矢印に示すように、振動体
12の一方側が収縮するとき、他方側は伸びる。このよ
うにして、振動体12は、その長さ方向に振動する。し
たがって、振動体12の両側部分の変位が吸収され、振
動体12の両端は変位しないため、支持部への振動漏れ
が少ない。そのため、安定した振動を得ることができ
る。
In this acceleration sensor 10, for example, one end of a vibrating body 12 is supported, and a weight 3 is attached to the other end of the vibrating body 12.
0 is attached. Therefore, in this embodiment, the vibrating body 12 has a cantilever structure. This acceleration sensor 10
When using, as shown in FIG. 4, the driving piezoelectric element 1
The oscillator circuit 32 is connected to 4a to 14d. The oscillation circuit 32 applies signals of the same phase to the driving piezoelectric elements 14a to 14d. Driving piezoelectric elements 14a, 14
b are formed so as to face each other, and the driving piezoelectric element 1
Since 4c and 14d are also formed so as to face each other, the vibrating body 12 vibrates in the longitudinal direction. In addition, the driving piezoelectric elements 14a and 14b and the driving piezoelectric elements 14c and 14d
Since they are polarized in the opposite directions, they are displaced in opposite directions by the drive signals of the same phase. Therefore, as shown by the solid arrow in FIG. 1, when one side of the vibrating body 12 extends around the center of the vibrating body 12, the other side contracts. When one side of the vibrating body 12 contracts, the other side of the vibrating body 12 expands, as indicated by the dashed-dotted line arrow in FIG. 1. In this way, the vibrating body 12 vibrates in its length direction. Therefore, the displacement of both sides of the vibrating body 12 is absorbed, and both ends of the vibrating body 12 are not displaced, so that there is little vibration leakage to the supporting portion. Therefore, stable vibration can be obtained.

【0015】振動体12が振動することによって、振動
体12に慣性が与えられる。この状態で、たとえば検出
用圧電素子16a,16bの面に直交する向きに加速度
が加わると、図5に示すように、振動体12は検出用圧
電素子16a,16bの面に直交する向きに撓む。振動
体12が撓むことにより、振動体12の振動が妨げら
れ、共振特性が変化する。この共振特性の変化を測定す
ることにより、加速度を検出することができる。このよ
うにして加速度を測定するためには、検出用圧電素子1
6a,16bに発生する電圧を測定すればよい。また、
検出用圧電素子16c,16dの面に直交する向きの加
速度については、検出用圧電素子16c,16dに発生
する電圧を測定すればよい。
The vibration of the vibrating body 12 gives inertia to the vibrating body 12. In this state, for example, when acceleration is applied in a direction orthogonal to the planes of the detection piezoelectric elements 16a and 16b, the vibrating body 12 bends in a direction orthogonal to the planes of the detection piezoelectric elements 16a and 16b, as shown in FIG. Mu. The bending of the vibrating body 12 hinders the vibration of the vibrating body 12 and changes the resonance characteristic. Acceleration can be detected by measuring the change in the resonance characteristic. In order to measure the acceleration in this way, the piezoelectric element for detection 1
The voltage generated in 6a and 16b may be measured. Also,
For the acceleration in the direction orthogonal to the surfaces of the detection piezoelectric elements 16c and 16d, the voltage generated in the detection piezoelectric elements 16c and 16d may be measured.

【0016】加速度を検出するために、図6に示すよう
に、検出用圧電素子16a,16bが差動回路34に接
続され、別の検出用圧電素子16c,16dが差動回路
36に接続される。これらの検出用圧電素子16a〜1
6dは、外側から振動体12側に向かって分極している
ため、加速度センサ10に加速度が加わっていないとき
には、同位相で同じ大きさの電圧が発生する。したがっ
て、差動回路34,36の出力は0となる。また、加速
度センサ10に加速度が加わって振動体12が撓むと、
対向する圧電素子には逆位相の電圧が発生する。そのた
め、対向する検出用圧電素子16a,16bの出力電圧
の差を測定することにより、差動回路34から大きい出
力信号を得ることができる。したがって、駆動用圧電素
子16a,16bの面に直交する向きの加速度を高感度
で検出することができる。同様に、検出用圧電素子16
c,16dの出力電圧の差を差動回路36で出力させる
ことにより、これらの圧電素子16c,16dの面に直
交する向きの加速度を高感度で検出することができる。
In order to detect the acceleration, as shown in FIG. 6, the detecting piezoelectric elements 16a and 16b are connected to the differential circuit 34, and the other detecting piezoelectric elements 16c and 16d are connected to the differential circuit 36. It These detecting piezoelectric elements 16a to 1
Since 6d is polarized from the outside toward the vibrating body 12, the voltage of the same phase and the same magnitude is generated when acceleration is not applied to the acceleration sensor 10. Therefore, the outputs of the differential circuits 34 and 36 become zero. Further, when acceleration is applied to the acceleration sensor 10 and the vibrating body 12 bends,
Voltages of opposite phases are generated in the opposing piezoelectric elements. Therefore, a large output signal can be obtained from the differential circuit 34 by measuring the difference between the output voltages of the opposing detection piezoelectric elements 16a and 16b. Therefore, the acceleration in the direction orthogonal to the surfaces of the driving piezoelectric elements 16a and 16b can be detected with high sensitivity. Similarly, the detection piezoelectric element 16
By causing the differential circuit 36 to output the difference between the output voltages of c and 16d, the acceleration in the direction orthogonal to the surfaces of these piezoelectric elements 16c and 16d can be detected with high sensitivity.

【0017】さらに、駆動用圧電素子16a〜16dの
面に直交しない加速度が加速度センサ10に加わった場
合、振動体12は加速度が加わった向きに撓む。そし
て、検出用圧電素子16a〜16dには、振動体12の
撓みに対応した電圧が発生する。つまり、検出用圧電素
子16a〜16dに発生する電圧は、検出用圧電素子1
6a〜16dの面に直交する向きの加速度成分に対応し
ている。したがって、差動回路34,36の出力信号か
ら、振動体12の中心軸に直交する全ての向きの加速度
を検出することができる。
Further, when an acceleration that is not orthogonal to the planes of the driving piezoelectric elements 16a to 16d is applied to the acceleration sensor 10, the vibrating body 12 bends in the direction in which the acceleration is applied. Then, a voltage corresponding to the bending of the vibrating body 12 is generated in the detecting piezoelectric elements 16a to 16d. That is, the voltage generated in the detection piezoelectric elements 16a to 16d is the same as the detection piezoelectric element 1
This corresponds to the acceleration component in the direction orthogonal to the planes 6a to 16d. Therefore, the accelerations in all directions orthogonal to the central axis of the vibrating body 12 can be detected from the output signals of the differential circuits 34 and 36.

【0018】なお、検出用圧電素子16a〜16dは必
ずしも必要ではなく、駆動用圧電素子14a〜14dを
検出用として兼用してもよい。その場合、図7,図8お
よび図9に示すように、駆動用圧電素子14a,14b
と駆動用圧電素子14c,14dとは、振動体12の異
なる対向側面に形成される。そして、駆動用圧電素子1
4a,14bは振動体12の一端側に形成され、駆動用
圧電素子14c,14dは振動体12の他端側に形成さ
れる。この加速度センサ10においても、駆動用圧電素
子14a,14bと駆動用圧電素子14c,14dと
は、互いに逆方向に分極している。そして、図10に示
すように、駆動用圧電素子14a〜14dに、抵抗38
a,38b,38c,38dを介して発振回路32が接
続される。この発振回路32からの信号によって、振動
体12はその長さ方向に振動する。そして、駆動用圧電
素子14a〜14dに同位相の信号を印加することによ
って、振動体12の長さ方向の両側で伸びと縮みとが逆
になるような振動が生じる。
The detecting piezoelectric elements 16a to 16d are not always necessary, and the driving piezoelectric elements 14a to 14d may also be used for detecting. In that case, as shown in FIGS. 7, 8 and 9, the driving piezoelectric elements 14a, 14b.
The driving piezoelectric elements 14c and 14d are formed on different facing side surfaces of the vibrating body 12. Then, the driving piezoelectric element 1
4a and 14b are formed on one end side of the vibrating body 12, and the driving piezoelectric elements 14c and 14d are formed on the other end side of the vibrating body 12. Also in the acceleration sensor 10, the driving piezoelectric elements 14a and 14b and the driving piezoelectric elements 14c and 14d are polarized in opposite directions. Then, as shown in FIG. 10, a resistor 38 is connected to the driving piezoelectric elements 14a to 14d.
The oscillation circuit 32 is connected via a, 38b, 38c, and 38d. The vibrating body 12 vibrates in the lengthwise direction by the signal from the oscillation circuit 32. Then, by applying signals of the same phase to the driving piezoelectric elements 14a to 14d, vibration occurs in which the expansion and the contraction are opposite on both sides in the length direction of the vibrating body 12.

【0019】駆動用圧電素子14a,14bは差動回路
34の入力端に接続され、駆動用圧電素子14c,14
dは差動回路36の入力端に接続される。加速度センサ
10に加速度が加わり、振動体12に撓みが生じると、
各圧電素子14a〜14dに電圧が生じる。これらの電
圧の差を差動回路34,36で測定することにより、加
速度センサ10に加わった加速度を検出することができ
る。このとき、圧電素子14a〜14dに印加された駆
動信号は、差動回路34,36で相殺される。したがっ
て、差動回路34,36の出力端からは、加速度に対応
した信号だけが出力される。
The driving piezoelectric elements 14a and 14b are connected to the input ends of the differential circuit 34, and the driving piezoelectric elements 14c and 14b are connected.
d is connected to the input terminal of the differential circuit 36. When acceleration is applied to the acceleration sensor 10 and the vibrating body 12 is bent,
A voltage is generated in each of the piezoelectric elements 14a to 14d. By measuring the difference between these voltages by the differential circuits 34 and 36, the acceleration applied to the acceleration sensor 10 can be detected. At this time, the drive signals applied to the piezoelectric elements 14a to 14d are canceled by the differential circuits 34 and 36. Therefore, only the signal corresponding to the acceleration is output from the output terminals of the differential circuits 34 and 36.

【0020】なお、上述の実施例において、振動体12
は片持ち梁構造でなく、両持ち梁構造にしてもよい。こ
の場合、たとえば振動体12が、フレームなどに支持さ
れる。このように、振動体12を両持ち梁構造として
も、振動体12の両端部は変位しないため、振動の漏れ
が少ない。そのため、特性の良好な加速度センサを得る
ことができる。さらに、両持ち梁構造の加速度センサに
おいて、振動体12の両端部に重りを形成してもよい。
このようにすれば、振動体12が撓んだとき、重りの質
量によって振動体12の撓みを大きくすることができ、
高感度の加速度センサを得ることができる。
In the above embodiment, the vibrating body 12
May have a cantilever structure instead of a cantilever structure. In this case, for example, the vibrating body 12 is supported by the frame or the like. In this way, even if the vibrating body 12 has a double-supported beam structure, both ends of the vibrating body 12 do not displace, so that there is little vibration leakage. Therefore, an acceleration sensor having good characteristics can be obtained. Furthermore, in an acceleration sensor having a doubly supported beam structure, weights may be formed at both ends of the vibrating body 12.
With this configuration, when the vibrating body 12 is bent, the bending of the vibrating body 12 can be increased by the mass of the weight.
A highly sensitive acceleration sensor can be obtained.

【0021】上述の各実施例では、駆動用圧電素子14
a,14bと駆動用圧電素子14c,14dとを逆方向
に分極したが、全ての駆動用圧電素子14a〜14dを
同じ方向に分極してもよい。つまり、駆動用圧電素子1
4a〜14dを外側から振動体12方向に向かって分極
してもよいし、振動体12側から外側に向かって分極し
てもよい。このような場合、駆動用圧電素子14a,1
4bに印加される駆動信号と駆動用圧電素子14c,1
4dに印加される駆動信号とは、互いに逆位相である。
このようにしても、振動体12の長さ方向の両側で伸び
と縮みとが逆となるように、振動体12を振動させるこ
とができる。
In each of the above embodiments, the driving piezoelectric element 14 is used.
Although a and 14b and the driving piezoelectric elements 14c and 14d are polarized in opposite directions, all the driving piezoelectric elements 14a to 14d may be polarized in the same direction. That is, the driving piezoelectric element 1
4a to 14d may be polarized from the outside toward the vibrating body 12 or may be polarized from the vibrating body 12 side toward the outside. In such a case, the driving piezoelectric elements 14a, 1
Drive signal applied to 4b and drive piezoelectric elements 14c, 1
The drive signals applied to 4d have opposite phases to each other.
Even in this case, the vibrating body 12 can be vibrated so that the expansion and the contraction are opposite on both sides in the longitudinal direction of the vibrating body 12.

【0022】また、振動体12の形状としては、6角柱
状や8角柱状など、他の多角柱状に形成してもよいし、
円柱状に形成してもよい。このような柱状でも、駆動用
圧電素子を対向する側面に形成し、検出用に用いられる
圧電素子を振動体の周方向の複数の位置に形成すること
によって、加速度を検出することができる。さらに、振
動体の材料としては、圧電セラミックで形成してもよ
い。この場合、上述の各実施例と同様の位置に、電極が
形成される。そして、これらの電極に駆動信号を印加す
ることにより振動体12を振動させることができる。ま
た、電極からの出力電圧を測定することによって、加速
度を検出することができる。振動体が圧電セラミックで
形成される場合、電極の形状としては、平板状に限ら
ず、たとえばくし型電極としてもよい。
The vibrating body 12 may be formed in another polygonal column shape such as a hexagonal column shape or an octagonal column shape.
It may be formed in a cylindrical shape. Even with such a columnar shape, the acceleration can be detected by forming the driving piezoelectric element on the opposite side surfaces and forming the piezoelectric elements used for detection at a plurality of positions in the circumferential direction of the vibrating body. Further, the vibrating body may be formed of piezoelectric ceramic. In this case, electrodes are formed at the same positions as those in the above-mentioned respective embodiments. The vibrator 12 can be vibrated by applying a drive signal to these electrodes. Further, the acceleration can be detected by measuring the output voltage from the electrode. When the vibrating body is formed of piezoelectric ceramic, the shape of the electrode is not limited to the flat plate shape, and may be, for example, a comb-shaped electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】図1に示す加速度センサの一方の対向側面で切
断した断面図である。
FIG. 2 is a sectional view taken along one of opposite side surfaces of the acceleration sensor shown in FIG.

【図3】図1に示す加速度センサの他方の対向側面で切
断した断面図である。
FIG. 3 is a cross-sectional view of the acceleration sensor shown in FIG. 1 taken along the other opposing side surface.

【図4】図1に示す加速度センサを振動させるための駆
動回路を示す回路図である。
FIG. 4 is a circuit diagram showing a drive circuit for vibrating the acceleration sensor shown in FIG.

【図5】図1に示す加速度センサに加速度が加わった状
態を示す図解図である。
5 is an illustrative view showing a state where acceleration is applied to the acceleration sensor shown in FIG. 1. FIG.

【図6】図1に示す加速度センサの出力電圧を測定する
ための検出回路を示す回路図である。
6 is a circuit diagram showing a detection circuit for measuring an output voltage of the acceleration sensor shown in FIG.

【図7】この発明の他の実施例を示す平面図である。FIG. 7 is a plan view showing another embodiment of the present invention.

【図8】図7に示す加速度センサの一方の対向側面で切
断した断面図である。
FIG. 8 is a cross-sectional view of the acceleration sensor shown in FIG.

【図9】図7に示す加速度センサの他方の対向側面で切
断した断面図である。
9 is a cross-sectional view of the acceleration sensor shown in FIG. 7, taken along the other opposing side surface.

【図10】図7に示す加速度センサの駆動回路および検
出回路を示す回路図である。
10 is a circuit diagram showing a drive circuit and a detection circuit of the acceleration sensor shown in FIG.

【図11】従来の加速度センサの一例を示す図解図であ
る。
FIG. 11 is an illustrative view showing one example of a conventional acceleration sensor.

【図12】図11に示す従来の加速度センサに加速度が
加わったときの状態を示す図解図である。
FIG. 12 is an illustrative view showing a state when acceleration is applied to the conventional acceleration sensor shown in FIG. 11.

【符号の説明】[Explanation of symbols]

10 加速度センサ 12 振動体 14a 駆動用圧電素子 14b 駆動用圧電素子 14c 駆動用圧電素子 14d 駆動用圧電素子 16a 検出用圧電素子 16b 検出用圧電素子 16c 検出用圧電素子 16d 検出用圧電素子 Reference Signs List 10 acceleration sensor 12 vibrating body 14a driving piezoelectric element 14b driving piezoelectric element 14c driving piezoelectric element 14d driving piezoelectric element 16a detecting piezoelectric element 16b detecting piezoelectric element 16c detecting piezoelectric element 16d detecting piezoelectric element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 柱状の振動体、および前記振動体の側面
に形成され、前記振動体の周方向の複数の位置に配置さ
れる複数の圧電素子を含み、 前記圧電素子に駆動信号を印加することによって、前記
振動体をその長さ方向の中央部の両側で延びと縮みとが
逆となるような長さ振動をするようにした、加速度セン
サ。
1. A columnar vibrating body, and a plurality of piezoelectric elements formed on a side surface of the vibrating body and arranged at a plurality of circumferential positions of the vibrating body, wherein a drive signal is applied to the piezoelectric element. Thus, the acceleration sensor is configured to vibrate in such a manner that the vibrating body extends and contracts in opposite directions on both sides of the central portion in the longitudinal direction.
【請求項2】 圧電材料で形成された柱状の振動体、お
よび前記振動体の側面に形成され、前記振動体の周方向
の複数の位置に配置される複数の電極を含み、 前記電極に駆動信号を印加することによって、前記振動
体をその長さ方向の中央部の両側で延びと縮みとが逆と
なるような長さ振動をするようにした、加速度センサ。
2. A columnar vibrating body formed of a piezoelectric material, and a plurality of electrodes formed on a side surface of the vibrating body and arranged at a plurality of positions in a circumferential direction of the vibrating body. An acceleration sensor, wherein a vibration is applied to the vibrating body on both sides of a central portion in the lengthwise direction so that the vibrating body extends and contracts in the opposite direction.
JP05085712A 1993-03-01 1993-03-19 Acceleration sensor Expired - Lifetime JP3129022B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP05085712A JP3129022B2 (en) 1993-03-19 1993-03-19 Acceleration sensor
DE69423667T DE69423667T2 (en) 1993-03-01 1994-02-28 Piezoelectric vibrator and acceleration sensor using this
EP94102967A EP0614087B1 (en) 1993-03-01 1994-02-28 Piezoelectric vibrator and acceleration sensor using the same
US08/521,421 US5629483A (en) 1993-03-01 1995-08-30 Piezoelectric vibrator and acceleration sensor using the same
US08/521,426 US5652385A (en) 1993-03-01 1995-08-30 Piezoelectric vibrator and acceleration sensor using the same
US08/521,444 US5679896A (en) 1993-03-01 1995-08-30 Piezoelectric vibrator and acceleration sensor using the same
US08/521,443 US5681994A (en) 1993-03-01 1995-08-30 Piezoelectric vibrator and acceleration sensor using the same
US08/747,247 US5824903A (en) 1993-03-01 1996-11-18 Piezoelectric vibrator and acceleration sensor using the same
US08/796,496 US5773916A (en) 1993-03-01 1997-02-06 Piezoelectric vibrator and acceleration sensor using the same
US08/833,088 US5770799A (en) 1993-03-01 1997-04-04 Piezoelectric vibrator and acceleration sensor using the same
US09/041,178 US5900551A (en) 1993-03-01 1998-03-12 Piezoelectric acceleration sensor having a weighted plate-shaped vibrating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05085712A JP3129022B2 (en) 1993-03-19 1993-03-19 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH06273438A true JPH06273438A (en) 1994-09-30
JP3129022B2 JP3129022B2 (en) 2001-01-29

Family

ID=13866448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05085712A Expired - Lifetime JP3129022B2 (en) 1993-03-01 1993-03-19 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP3129022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706053A1 (en) 1994-10-04 1996-04-10 Murata Manufacturing Co., Ltd. Acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706053A1 (en) 1994-10-04 1996-04-10 Murata Manufacturing Co., Ltd. Acceleration sensor
US5677485A (en) * 1994-10-04 1997-10-14 Murata Manufacturing Co., Ltd. Acceleration sensor with compensation for ambient temperature change

Also Published As

Publication number Publication date
JP3129022B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3151927B2 (en) Acceleration sensor
JP5536994B2 (en) Inertial sensor and inertia detection device
US4479385A (en) Double resonator cantilever accelerometer
US5117148A (en) Vibrator
US5847487A (en) Vibration gyroscope and image blur prevention apparatus using the same
GB2158579A (en) Angular rate sensor system
KR100364968B1 (en) Vibrating Gyroscope
JP3882972B2 (en) Angular velocity sensor
JPH063455B2 (en) Vibrating gyro
JPH0520693B2 (en)
JPH11230759A (en) Motion sensor
US5597954A (en) Bearing sensor and bearing-distance sensor
US11846651B2 (en) Electrostatic actuator and physical quantity sensor
US6044706A (en) Dual axial gyroscope with piezoelectric ceramics
JP2000074673A (en) Compound movement sensor
JP3139205B2 (en) Acceleration sensor
JP3129022B2 (en) Acceleration sensor
JPH10267663A (en) Angular velocity sensor
JPH10267658A (en) Vibration-type angular velocity sensor
JP3139212B2 (en) Acceleration sensor
JP3139204B2 (en) Acceleration sensor
JPH10339640A (en) Angular speed sensor
JP3139211B2 (en) Acceleration sensor
JP2009156831A (en) Acceleration detecting unit and acceleration detecting apparatus
JPH08278147A (en) Vibrating gyro

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13