JPH0627302B2 - High-strength ferrite heat-resistant steel with excellent weldability and toughness - Google Patents

High-strength ferrite heat-resistant steel with excellent weldability and toughness

Info

Publication number
JPH0627302B2
JPH0627302B2 JP60048193A JP4819385A JPH0627302B2 JP H0627302 B2 JPH0627302 B2 JP H0627302B2 JP 60048193 A JP60048193 A JP 60048193A JP 4819385 A JP4819385 A JP 4819385A JP H0627302 B2 JPH0627302 B2 JP H0627302B2
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
resistant steel
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60048193A
Other languages
Japanese (ja)
Other versions
JPS61210157A (en
Inventor
靖男 乙黒
英明 伊藤
俊明 斎藤
勝邦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60048193A priority Critical patent/JPH0627302B2/en
Publication of JPS61210157A publication Critical patent/JPS61210157A/en
Publication of JPH0627302B2 publication Critical patent/JPH0627302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接性,靭性のすぐれた高強度フェライト系耐
熱鋼に関するものであり、特にボイラ、石油精製、原子
力等の分野での、使用に好適な高強度フェライト系耐熱
鋼に関するものである。
TECHNICAL FIELD The present invention relates to a high-strength ferritic heat-resistant steel having excellent weldability and toughness, and is particularly suitable for use in the fields of boilers, oil refining, nuclear power, etc. The present invention relates to a suitable high strength ferritic heat resistant steel.

(従来の技術) 近年、火力発電ボイラにおいては大型化と高温高圧化が
定着してきたが、550℃を超すとその材料を選択する
に当り、耐酸化性、高温強度の点からフェライト系の 鋼から18-8ステンレス鋼のごときオーステナイト系の高
級鋼へと飛躍して使用されているのが現状である。
(Prior Art) In recent years, thermal power generation boilers are becoming larger and higher in temperature and pressure. However, when the temperature exceeds 550 ° C., when selecting the material, from the viewpoint of oxidation resistance and high temperature strength, ferrite type At present, it is being leapt from steel to high-grade austenitic steel such as 18-8 stainless steel.

しかしながら低合金鋼、ステンレス鋼、超合金と材料が
高級になるに従い、コストが上昇し、ボイラ建造費が高
価につくために、材料上の問題からボイラの蒸気温度が
逆に制約されて現在では566℃が上限となっている。
従ってボイラの効率を高めるためには圧力を高めた超々
臨界圧ボイラが使用されている。
However, as low-alloy steel, stainless steel, superalloys, and higher-grade materials become more expensive, the cost of building boilers becomes higher, and the steam temperature of the boiler is conversely restricted due to material problems. The upper limit is 566 ° C.
Therefore, in order to increase the efficiency of the boiler, an ultra-supercritical pressure boiler with increased pressure is used.

ところで 鋼とオーステナイトステンレス鋼の中間を埋めるための
鋼材は過去数十年模索されているがCr量が中間の5Cr,
9Cr,12Cr等のボイラ鋼管は強度を高めるとその溶接性
が悪化するため、研究はかなり行われたが、ボイラの施
工上作業能率を著しく低下させるために実用化されにく
いのが実情である。このような観点から 鋼とオーステナイトステンレス鋼の中間を埋めるクリー
プ強度を有する新規な鋼の出現が待望されていた。
by the way Steel materials for filling the middle of steel and austenitic stainless steel have been sought for several decades, but the Cr content is 5Cr, which is in the middle.
Since the weldability of 9Cr, 12Cr and other boiler steel pipes deteriorates when the strength is increased, much research has been conducted, but it is difficult to put it into practical use because it significantly reduces the work efficiency in the construction of the boiler. From this perspective The advent of new steels with creep strength that fills the gap between steels and austenitic stainless steels has long been awaited.

(発明が解決しようとする問題点) 本発明者らはこのような事情にかんがみ既に溶接性を向
上させてなおかつクリープ破断強度も従来材を大幅に上
廻る新しい鋼種を開発し、(イ)特公昭56−34628
号公報、(ロ)特開昭59-153865号公報或いは(ハ)特願昭59
−68377号により提案を行なっている。これら(イ)
〜(ハ)のいずれの鋼も600℃において長時間使用に耐
えるすぐれた鋼であるがいずれもMoを多量に含むために
加熱脆化の点で不利であった。
(Problems to be Solved by the Invention) In view of such circumstances, the present inventors have developed a new steel type that has already improved weldability and has a creep rupture strength significantly higher than that of conventional materials. Kosho 56-34628
Gazette, (b) Japanese Patent Laid-Open No. 59-153865, or (c) Japanese Patent Application No. 59
Proposed by No. -68377. These (a)
All of the steels (c) to (c) are excellent steels that can be used for a long time at 600 ° C, but all of them are disadvantageous in terms of heat embrittlement because they contain a large amount of Mo.

(問題点を解決するための手段) そこで本発明者らは600℃でのクリープ破断強度を維
持しつつ、Mo量を低減することを考え、そのためにはN
を相当量添加することおよびSi量を低減することまたは
更にBを添加することで補えることを明らかにした。ま
た高靭性を確保するために必要な(C+N)量とSi量の範
囲をを明らかにした。これらの知見にもとづいて溶接
性,靭性,クリープ破断強度のすぐれたフェライト系耐
熱鋼を開発することに成功したものである。
(Means for Solving Problems) Therefore, the present inventors considered reducing the amount of Mo while maintaining the creep rupture strength at 600 ° C.
It has been clarified that it can be compensated by adding a considerable amount of Si and reducing the Si content or further adding B. Also, the range of (C + N) content and Si content necessary to secure high toughness was clarified. Based on these findings, we have succeeded in developing a ferritic heat-resistant steel with excellent weldability, toughness, and creep rupture strength.

(発明の構成・作用) 本発明の成分範囲を示せば第1表のごとくである。(Structure / Operation of the Invention) The composition range of the present invention is shown in Table 1.

以下に本発明について詳細に説明する。 The present invention will be described in detail below.

先ず本発明鋼に含まれる各成分の限定理由について述べ
るとCは強度の保持に必要であるが、溶接性の点から上
限を0.14%とした。即ち後述するCr量との関係で、
この種の鋼は非常に焼入性がよく溶接熱影響部が著しく
硬化し、溶接時低温割れの原因となる。従って溶接を完
全に行うためにはかなり高温の予熱を必要とし、ひいて
は溶接作業性が著しく損われる。しかるにCを0.14
%以下に保てば溶接熱影響部の最高硬さが低下し、溶接
割れの防止を容易に行いうるので上限を0.14%とした。
また下限についてはC量を0.04%未満にするとクリ
ープ破断強度の確保が困難になるので下限を0.04%
と定めた。
First, the reason for limiting each component contained in the steel of the present invention will be described. C is necessary for maintaining strength, but the upper limit was made 0.14% from the viewpoint of weldability. That is, in relation to the amount of Cr described later,
This type of steel has very good hardenability and the heat-affected zone of the weld hardens significantly, causing cold cracking during welding. Therefore, in order to complete welding, preheating at a considerably high temperature is required, and welding workability is significantly impaired. However, C is 0.14
%, The maximum hardness of the heat-affected zone of the weld is reduced and welding cracks can be easily prevented. Therefore, the upper limit was made 0.14%.
Regarding the lower limit, if the C content is less than 0.04%, it becomes difficult to secure the creep rupture strength, so the lower limit is 0.04%.
I decided.

Mnは脱酸のためのみでなく強度保持上も必要な成分であ
る。上限を0.8%としたのはこれを超すと靭性の点か
ら好ましくないからであり、下限は脱酸に必要な最少量
として0.2%と定めた。
Mn is a component necessary not only for deoxidation but also for maintaining strength. The upper limit of 0.8% is not preferable from the viewpoint of toughness if it exceeds this, and the lower limit was set to 0.2% as the minimum amount necessary for deoxidation.

Crは耐酸化性に不可欠の元素であって、耐熱鋼には必ら
ず添加されており、M23C6,M6C(但しMは金属元素を指
す)の微細析出により高温強度を高めているが、下限は
その析出硬化が顕著に認められる8%とし、上限は溶接
性及び靭性の点から9.5%とした。
Cr is an essential element for oxidation resistance, and is inevitably added to heat-resistant steel. It enhances high temperature strength by fine precipitation of M 23 C 6 and M 6 C (where M is a metal element). However, the lower limit was set to 8% at which precipitation hardening was remarkably recognized, and the upper limit was set to 9.5% from the viewpoint of weldability and toughness.

Moは固溶体強化により、高温強度を顕著に高める元素で
あるので通常耐熱鋼には添加されるが、多量に添加され
た場合、溶接性,耐酸化性を損うので上限を1.2%と
し、一方N量を高めたとしてもクリープ破断強度の向上
に効果のあるのは0.8%以上からであるので下限を0.8
%定めた。
Mo is an element that remarkably enhances high temperature strength by solid solution strengthening, so it is usually added to heat-resistant steel, but if added in a large amount, weldability and oxidation resistance are impaired, so the upper limit is 1.2%. On the other hand, even if the amount of N is increased, the effect of improving the creep rupture strength is from 0.8% or more, so the lower limit is 0.8.
% Fixed.

VはMo同様素地に固溶しても析出物として析出しても鋼
の高温強度を著しく高める元素である。特に析出の場合
にはV4C3としてのM23C6,M6Cの一部に入り、析出物の粗
大化の抑制に顕著な効果を示す。しかしながら600℃
前後でSUS 304ステンレス鋼を超すクリープ破断強度
を出すためには0.15%未満では不充分であり、また
0.25%を超すと溶接性を損うので上限0.25%,
下限を0.15%とした。
V, like Mo, is an element that remarkably enhances the high temperature strength of steel, whether it is solid-solved in the matrix or precipitated as a precipitate. Particularly in the case of precipitation enters the part of the M 23 C 6, M 6 C as V 4 C 3, shows a remarkable effect in suppressing the coarsening of precipitates. However, 600 ° C
In order to obtain creep rupture strength exceeding SUS 304 stainless steel before and after, less than 0.15% is not sufficient, and above 0.25%, weldability is impaired, so an upper limit of 0.25%,
The lower limit was 0.15%.

NbはNb(CN)の析出によって高温強度を高めるが、また微
細な分散析出が後続するM23C6,M6C等の析出状態を微細
にコントロールするために長時間クリープ強度にも貢献
する。その量は0.04%未満では効果がなく、0.1
0%を超すとかえって凝集粗大化を生じて強度を下げる
ため、上限を0.10%,下限を0.04%とした。
Nb is increasing the high temperature strength by precipitation of Nb (CN), also contribute to long-term creep strength to finely control the precipitation conditions such as M 23 C 6, M 6 C where fine dispersion precipitation followed . If the amount is less than 0.04%, there is no effect, and
If it exceeds 0%, aggregation coarsening occurs rather to lower the strength, so the upper limit was made 0.10% and the lower limit was made 0.04%.

Nはマトリックスに固溶あるいは窒化物,炭窒化物とし
て析出し、クリープ破断強度度を高める元素であるが
0.02%未満では急激に強度が低下すること、また
0.05%を超すと鋳造時にブローホールを発生し、健
全な鋼塊が出来にくい等の問題を生ずるので上限を0.
05%,下限を0.02%とした。
N is an element that dissolves in the matrix or precipitates as a nitride or carbonitride and increases the creep rupture strength. However, if it is less than 0.02%, the strength decreases sharply, and if it exceeds 0.05%, it is cast. Since blowholes sometimes occur and it is difficult to form a sound steel ingot, the upper limit is set to 0.
05% and the lower limit was 0.02%.

Siは本来脱酸のために添加される元素であるが材質的に
は靭性に悪影響のある元素である。そこで靭性におよぼ
す影響を調べたところ、0.14%未満に抑えると靭性
が向上することが分ったので、Si量を0.14%未満に
制限することとした。なお好ましい範囲は0.095%
以下である。
Si is an element that is originally added for deoxidation, but is an element that adversely affects toughness in terms of material. Therefore, when the influence on the toughness was investigated, it was found that the toughness was improved when the content was suppressed to less than 0.14%, so the content of Si was limited to less than 0.14%. The preferable range is 0.095%.
It is the following.

次に(C+N)とSi量との関係を第1図について述べ
る。
Next, the relationship between (C + N) and the amount of Si will be described with reference to FIG.

CとNはいずれもクリープ破断強度を著しく向上する
が、強度,靭性,溶接性等を考慮するとその添加量には
最適な範囲があり、第1図ABCDEFで囲まれる範囲
になければならないことが分った。すなわち直線ABは
(C+N)が0.16%の線であり、これを超すと靭性
低下および析出物の凝集化傾向が強くなるための長時間
クリープ破断強度の低下を生じるようになる。直線BC
は(C+N)とSi量の兼ね合いから靭性を良好に保つた
めの境界線である。直線CDはSi量が0.14%の線で
あり、これ以上では良好な靭性が期待できない。直線D
Eは(C+N)が0.06%の線であってこれを切ると
十分なクリープ破断強度が期待できない。直線EFは
(C+N)とSi量の兼ね合いからクリープ破断強度をあ
るレベル以上に保つための限界線である。すなわち基本
的にはABCの上または右側は靭性が不良の部分であ
り、直線DEFの下側は強度が不足する部分である。
Both C and N significantly improve the creep rupture strength, but considering the strength, toughness, weldability, etc., there is an optimum range for the addition amount, and it must be within the range surrounded by ABCDEF in FIG. I understand. That is, the straight line AB is a line in which (C + N) is 0.16%, and if it exceeds this, the toughness decreases and the tendency of the precipitates to agglomerate becomes strong, resulting in a decrease in long-term creep rupture strength. Straight line BC
Is a boundary line for maintaining good toughness from the balance of (C + N) and Si content. The straight line CD has a Si content of 0.14%, and good toughness cannot be expected if the Si content is more than this. Straight line D
E is a line in which (C + N) is 0.06%, and if it is cut, sufficient creep rupture strength cannot be expected. The straight line EF is a limit line for keeping the creep rupture strength at a certain level or more from the balance of (C + N) and the amount of Si. That is, basically, the upper or right side of ABC is a portion with poor toughness, and the lower side of the straight line DEF is a portion with insufficient strength.

以上が本発明の基本成分であるが、本発明においてはさ
らにクリープ強度向上の目的で0.001〜0.008
%のBを含有させることができる。すなわちBは本来焼
入性を著しく高める元素としてよく知られているが、ク
リープ強度の点からも極めて有効であり、微量添加によ
って著しくクリープ強度が向上する。その量は0.00
1%未満ではほとんど効果がなく、0.008%を超す
と熱間加工性,溶接性を損うので上限を0.008%,
下限を0.001%とした。
The above are the basic components of the present invention, but in the present invention, 0.001 to 0.008 is used for the purpose of further improving the creep strength.
% B can be included. That is, B is originally well known as an element that remarkably enhances hardenability, but it is also extremely effective from the viewpoint of creep strength, and the addition of a trace amount significantly improves creep strength. The amount is 0.00
If it is less than 1%, there is almost no effect, and if it exceeds 0.008%, the hot workability and weldability are impaired, so the upper limit is 0.008%,
The lower limit was made 0.001%.

次に本発明の効果を実施例についてさらに具体的に述べ
る。
Next, the effects of the present invention will be described more specifically with reference to Examples.

実施例 第2表に供試鋼の化学組成,650℃11kg/mm2の応力
でのクリープ破断時間,破断伸び,溶接性を表わすy型
拘束割れ試験における割れ防止のための予熱温度,60
0℃1000時間時効後の衝撃値,常温の引張り特性を
示す。
Examples Table 2 shows the chemical composition of the test steel, the creep rupture time at a stress of 650 ° C. 11 kg / mm 2 , the elongation at break, and the preheating temperature for preventing cracking in the y-type constrained cracking test, which indicates weldability, 60
The impact value after aging at 0 ° C for 1000 hours and the tensile properties at room temperature are shown.

第2表に示すもののうちNo.5,6,9,11,13,
15〜17鋼は本発明鋼であり、その他は比較鋼であ
る。
No. 5, 6, 9, 11, 13, among those shown in Table 2
Steels 15 to 17 are the invention steels, and the others are comparative steels.

No.2鋼は通常低合金耐熱鋼として使用されている 鋼であり、No.1鋼は更に耐高温腐食性を向上させたボ
イラ熱交換器用合金鋼鋼管であるがクリープ破断強度が
低いのでこれを改良するために開発された鋼管がNo.3
鋼である。しかしながらこの鋼は高温で長時間使用する
と靭性が低下するという難点がある。
No.2 steel is usually used as low alloy heat resistant steel No. 1 steel is an alloy steel pipe for boiler heat exchangers with further improved high-temperature corrosion resistance, but since the creep rupture strength is low, the steel pipe developed to improve this is No. 3
It is steel. However, this steel has a drawback that its toughness decreases when it is used at a high temperature for a long time.

本発明鋼は上述の使用中脆化を軽減しなおかつクリープ
破断強度を改良したものであるが、そのためには(C+
N)量とSi量の関係が第1図ABCDEFの範囲内であ
る必要がある。No.4,8鋼はC量が本発明の範囲の下
限を切り、しかも第1図EFD線の下に位置するもので
あって低いクリープ破断強度しかえられない。No.7,
12,14鋼は(C+N)量が高く、第1図A−B−C
線の上に位置するために時効による脆化が大きい。しか
もNo.7鋼はC量が本発明の範囲の上限を超すものであ
ってy割れ試験における割れ停止のための予熱温度が1
50℃にも達し、溶接性の点からも問題がある。No.1
0鋼はSi量が本発明の範囲の上限を超すものであって時
効脆化が大きい。
The steel of the present invention reduces the embrittlement during use and has an improved creep rupture strength.
The relationship between N) amount and Si amount must be within the range of ABCDEF in FIG. The No. 4 and 8 steels have a C content below the lower limit of the range of the present invention, and are located below the EFD line in FIG. 1, and have only a low creep rupture strength. No.7,
12 and 14 steels have a high (C + N) amount, and are shown in FIG. 1A-B-C.
Since it is located on the line, embrittlement due to aging is large. Moreover, the No. 7 steel has a C content exceeding the upper limit of the range of the present invention, and the preheating temperature for stopping cracking in the y crack test is 1
It reaches 50 ° C., and there is a problem in terms of weldability. No. 1
No. 0 steel has an Si content exceeding the upper limit of the range of the present invention and has a large age embrittlement.

これに対して本発明鋼は上記比較鋼にくらべ、クリープ
破断強度,時効後靭性,溶接性のバランスがとれた鋼で
あり、特に市販の 鋼である比較鋼No.2鋼,市販の9Cr-1Mo鋼である比較鋼
No.1鋼より、はるかに高い強度を有しており、同一応
力レベルではかなり高い温度で使用できる。
On the other hand, the steel of the present invention has a better balance of creep rupture strength, toughness after aging, and weldability than the comparative steels described above. Comparative steel No. 2 steel which is steel, comparative steel which is commercially available 9Cr-1Mo steel
It has much higher strength than No. 1 steel and can be used at considerably higher temperatures at the same stress level.

またNo.15,16,17鋼は本発明の基本成分にさら
にBを含有させたものであり、No.15鋼はNo.11鋼に
くらべ、No.16,17鋼はNo.13鋼にくらべ、それぞ
れクリープ破断強度が一層向上している。
The No. 15, 16 and 17 steels are obtained by further adding B to the basic composition of the present invention. The No. 15 steel is compared to the No. 11 steel, and the No. 16 and 17 steels are the No. 13 steels. Compared with each, the creep rupture strength is further improved.

また本発明鋼は溶接性の点からも 鋼とほぼ同等であって極めて使い易い鋼である。In addition, the steel of the present invention is also weldable. It is almost the same as steel and is extremely easy to use.

(発明の効果) 以上の如く本発明鋼は従来のフェライト系耐熱鋼にくら
べ、装置の高温化,高圧化に対応できる高温強度の増大
を達成した鋼であり、溶接性,靭性等実用上の特性もす
ぐれており、産業界に貢献するところが極めて大きい。
(Effects of the Invention) As described above, the steel of the present invention is a steel that achieves an increase in high-temperature strength that can withstand high temperatures and high pressures of equipment, as compared with the conventional ferritic heat-resistant steel, and has practically high weldability and toughness. It has excellent characteristics and contributes greatly to the industrial world.

【図面の簡単な説明】 第1図は本発明における(C+N)とSi量の関係を示す
図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between (C + N) and the amount of Si in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 勝邦 神奈川県相模原市淵野辺5−10―1 新日 本製鐵株式會社第2技術研究所内 (56)参考文献 特開 昭59−232254(JP,A) 特開 昭59−211553(JP,A) 特開 昭60−24353(JP,A) 特開 昭60−215746(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsukuni Hashimoto 5-10-1, Fuchinobe, Sagamihara-shi, Kanagawa Inside the 2nd Technical Research Laboratory, Nippon Steel Corporation (56) Reference JP-A-59-232254 (JP) , A) JP 59-211553 (JP, A) JP 60-24353 (JP, A) JP 60-215746 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量でC0.04〜0.14%、Mn 0.
2〜0.8%、Cr 8.0〜9.5%、Mo 0.8〜1.
2%、V0.15〜0.25%、Nb 0.04〜0.1
0%、N0.02〜0.05%を含有し、Si 0.14
%未満に制限し、且つ(C+N)とSi量の関係が第1図
ABCDEFに囲まれた範囲(但しCD線上を含まず)
にあり、残部Feおよび不可避不純物よりなることを特徴
とする溶接性,靭性のすぐれた高強度フェライト系耐熱
鋼。 Si%,(C+N)% Si%,(C+N)% A( 0 ,0.16)D(0.14,0.06) B(0.05,0.16)E(0.08,0.06) C(0.14,0.115 ) F( 0 ,0.1 )
1. C0.04-0.14% by weight, Mn 0.
2 to 0.8%, Cr 8.0 to 9.5%, Mo 0.8 to 1.
2%, V 0.15-0.25%, Nb 0.04-0.1
0%, N 0.02 to 0.05% contained, Si 0.14
%, And the relationship between (C + N) and the amount of Si is surrounded by ABCDEF in Fig. 1 (but not on the CD line)
The high-strength ferritic heat-resistant steel with excellent weldability and toughness, characterized in that the balance is Fe and inevitable impurities. Si%, (C + N)% Si%, (C + N)% A (0, 0.16) D (0.14, 0.06) B (0.05, 0.16) E (0. 08,0.06) C (0.14,0.115) F (0,0.1)
【請求項2】重量でC0.04〜0.14%、Mn 0.
2〜0.8%、Cr 8.0〜9.5%、Mo 0.8〜1.
2%、V0.15〜0.25%、Nb 0.04〜0.1
0%、N0.02〜0.05%、B0.001〜0.0
08%を含有し、Si 0.14%未満に制限し、且つ
(C+N)とSi量の関係が第1図ABCDEFに囲まれ
た範囲(但しCD線上を含まず)にあり、残部Feおよび
不可避不純物よりなることを特徴とする溶接性,靭性の
すぐれた高強度フェライト系耐熱鋼。 Si%,(C+N)% Si%,(C+N)% A( 0 ,0.16)D(0.14,0.06) B(0.05,0.16)E(0.08,0.06) C(0.14,0.115 ) F( 0 ,0.1 )
2. C0.04-0.14% by weight, Mn 0.
2 to 0.8%, Cr 8.0 to 9.5%, Mo 0.8 to 1.
2%, V 0.15-0.25%, Nb 0.04-0.1
0%, N 0.02-0.05%, B 0.001-0.0
08%, Si is limited to less than 0.14%, and the relationship between (C + N) and Si content is in the range surrounded by ABCDEF in FIG. 1 (but not on the CD line), the balance Fe and unavoidable. High-strength ferritic heat-resistant steel with excellent weldability and toughness, which is characterized by containing impurities. Si%, (C + N)% Si%, (C + N)% A (0, 0.16) D (0.14, 0.06) B (0.05, 0.16) E (0. 08,0.06) C (0.14,0.115) F (0,0.1)
JP60048193A 1985-03-13 1985-03-13 High-strength ferrite heat-resistant steel with excellent weldability and toughness Expired - Lifetime JPH0627302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048193A JPH0627302B2 (en) 1985-03-13 1985-03-13 High-strength ferrite heat-resistant steel with excellent weldability and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048193A JPH0627302B2 (en) 1985-03-13 1985-03-13 High-strength ferrite heat-resistant steel with excellent weldability and toughness

Publications (2)

Publication Number Publication Date
JPS61210157A JPS61210157A (en) 1986-09-18
JPH0627302B2 true JPH0627302B2 (en) 1994-04-13

Family

ID=12796547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048193A Expired - Lifetime JPH0627302B2 (en) 1985-03-13 1985-03-13 High-strength ferrite heat-resistant steel with excellent weldability and toughness

Country Status (1)

Country Link
JP (1) JPH0627302B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211553A (en) * 1983-05-16 1984-11-30 Mitsubishi Heavy Ind Ltd High cr steel with superior toughness and superior strength at high temperature
JPS59232254A (en) * 1983-06-13 1984-12-27 Hitachi Ltd Rotor shaft for steam turbine
JPS6024353A (en) * 1983-07-20 1985-02-07 Japan Steel Works Ltd:The Heat-resistant 12% cr steel

Also Published As

Publication number Publication date
JPS61210157A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
JP2967886B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
JP3334217B2 (en) Low Cr ferritic heat resistant steel with excellent toughness and creep strength
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
EP0199046B1 (en) High-strength heat-resisting ferritic steel pipe and tube
JPH0517850A (en) High chromium ferrite-based heat resistant steel excellent in copper checking resistance
JP2559217B2 (en) High-strength ferrite steel for steel pipes for improving weldability
JPH0360905B2 (en)
JPH0454737B2 (en)
JP2559218B2 (en) High-strength ferrite type heat-resistant steel pipe steel
JP2561592B2 (en) Welding material for high Cr ferritic heat resistant steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel
JP3091125B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
JPH0627302B2 (en) High-strength ferrite heat-resistant steel with excellent weldability and toughness
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JP3565155B2 (en) High strength low alloy heat resistant steel
JPH0636996B2 (en) Submerged arc welding wire for 9Cr-Mo steel
JPH0639659B2 (en) High strength high chromium steel with excellent oxidation resistance and weldability
JP2551511B2 (en) Welding material for high Cr ferritic heat resistant steel
JPH06330245A (en) Ferritic heat resistant steel
JPH06142981A (en) Welding material for high-cr ferritic heat resisting steel
JPS6147217B2 (en)