JPH06272859A - Device and method for confirming ignition state of combustion furnace - Google Patents

Device and method for confirming ignition state of combustion furnace

Info

Publication number
JPH06272859A
JPH06272859A JP6688793A JP6688793A JPH06272859A JP H06272859 A JPH06272859 A JP H06272859A JP 6688793 A JP6688793 A JP 6688793A JP 6688793 A JP6688793 A JP 6688793A JP H06272859 A JPH06272859 A JP H06272859A
Authority
JP
Japan
Prior art keywords
pressure
gas
conduit
combustion furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6688793A
Other languages
Japanese (ja)
Other versions
JP3552730B2 (en
Inventor
Masaji Uematsu
正次 上松
Masaichi Tsuboi
政一 坪井
Katsutoshi Murayama
勝利 村山
Toshiaki Hasegawa
敏明 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP06688793A priority Critical patent/JP3552730B2/en
Publication of JPH06272859A publication Critical patent/JPH06272859A/en
Application granted granted Critical
Publication of JP3552730B2 publication Critical patent/JP3552730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To quickly confirm an ignition state upon starting a combustion furnace by deflecting a pressure change in the course of a supply passage of fuel gas or oxidizing agent gas to the combustion furnace. CONSTITUTION:A control valve 7 for oxidizing agent gas is opened to introduce the oxidizing gas into a combustion chamber 5, and a fine pressure difference sensor 12 confirms that fuel gas is ignited and combustion is continued. Pressure is instantaneously raised owing to small explosion in the combustion chamber 5 at the instant of the ignition. Fire pressure waves produced at that time is transmitted to a pressure detection side of the fine pressure difference sensor 12 through an oxidizing agent gas flow passage 8, and conduits 11, 13, and on the back pressure side of the fine pressure difference sensor 12 the instantaneous rise of the pressure is attenuated because of the existance of the throttle valve 16 in the course of a chamber 14 and a conduit 15, so that the firing is confirmed by the detection of the pressure difference by the fine pressure difference sensor 12. Hereby, ignition conditions upon starting of the combustion furnace are rapidly confirmed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼炉の起動時における
着火状態を確認するための装置およびその確認方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for confirming an ignition state at the time of starting a combustion furnace and a confirmation method thereof.

【0002】[0002]

【従来技術】近年、燃焼炉は固体燃料から液体又は気体
燃料への転換が図られ、これに伴って燃料の着火不良や
失火による爆発事故が頻発する状況となった。このため
燃焼炉における着火状態の変化を早期に発見して、燃焼
炉への燃料停止等の安全措置操作を的確に行う自動装置
が設置されている。燃焼炉における着火不良や失火の検
出方法は、種々検討が行われた結果、温度を検出する方
法よりも光学的な方法が早期発見に有効であることか
ら、現在は一般に火炎が放つ赤外線、紫外線や可視光線
等の電磁波を捉える火炎監視装置が最も広く用いられて
いる。
2. Description of the Related Art In recent years, combustion furnaces have been changed from solid fuels to liquid or gas fuels, which has led to frequent occurrence of explosion accidents due to poor ignition or misfire of the fuel. For this reason, an automatic device is installed to detect a change in the ignition state in the combustion furnace at an early stage and appropriately perform a safety measure operation such as stopping the fuel in the combustion furnace. As a result of various studies, the method of detecting ignition failure and misfire in a combustion furnace is currently effective because an optical method is more effective for early detection than a method of detecting temperature. Flame monitoring devices that capture electromagnetic waves such as visible light and visible light are most widely used.

【0003】水素は将来のクリーンを燃料として、また
メタノールは低公害で輸送が容易な安価な燃料として大
量に使用するために大型装置の開発が要請されている。
大型の水素およびメタノール製造装置の開発において最
も問題となるのは炭化水素より合成ガスを製造するため
のガス改質装置であり、熱効率が高く大型化が有利なガ
ス改質装置として、水蒸気改質と部分酸化を組み合わせ
た方式が最近注目されている。この方式は、炭化水素と
水蒸気の接触反応による一次改質反応を行い、酸化剤ガ
スを加えて部分酸化した後、二次改質反応を行い、得ら
れた高温ガスを一次改質反応の熱源に用いるものであ
る。これは他から熱を供給することなく、従って一次改
質反応管を外熱する改質炉を用いる必要も無いので、ガ
ス改質装置を高圧化することができ、大型化が容易であ
る等の利点がある。このように一次改質反応、部分酸化
および二次改質反応を行う自己熱交換型反応器(以下、
これを『断熱リホーマー』と称する)については、特開
昭60-186401 号、特開平1-261201号および特開平2-1830
3 号等に具体的な構造が示されている。
[0003] In order to use a large amount of hydrogen as a future clean fuel and methanol as an inexpensive fuel that is low in pollution and easy to transport, it is required to develop a large-scale device.
The biggest problem in the development of large-scale hydrogen and methanol production equipment is a gas reformer for producing synthesis gas from hydrocarbons. Recently, a method that combines partial oxidation with partial oxidation has been receiving attention. In this method, the primary reforming reaction is carried out by the contact reaction between hydrocarbons and steam, the oxidizing gas is added to carry out partial oxidation, then the secondary reforming reaction is carried out, and the obtained high-temperature gas is used as the heat source for the primary reforming reaction. Is used for. This is because it does not need to supply heat from other sources and therefore does not need to use a reforming furnace that externally heats the primary reforming reaction tube, so that the gas reforming apparatus can be operated at a high pressure and can be easily enlarged. There are advantages. In this way, the autothermal exchange type reactor (hereinafter, referred to as the primary reforming reaction, the partial oxidation and the secondary reforming reaction)
This is referred to as "adiabatic reformer"), as disclosed in JP-A-60-186401, JP-A1-261201 and JP-A-2-830.
The concrete structure is shown in No. 3 etc.

【0004】[0004]

【発明が解決しようとする課題】火炎が放つ赤外線、紫
外線や可視光線等の電磁波を捉える火炎監視装置は、適
切な位置に検出端を設置することにより火炎の有無が正
確に検知され、その応答が早いことから、一般の燃焼炉
において広く用いられている。しかしながらこれに用い
られる光学センサー(光電管)は透明ガラスにより覆わ
れていることから、高圧下での使用することができず、
一般に10気圧程度の圧力に耐える設計となっている。特
殊に設計されたセンサーであっても20〜30気圧が限度で
あり、この特別設計のセンサーは相当高価である。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention A flame monitoring device for capturing electromagnetic waves such as infrared rays, ultraviolet rays, and visible rays emitted by a flame is capable of accurately detecting the presence or absence of a flame by installing a detection end at an appropriate position, and responding thereto. Since it is fast, it is widely used in general combustion furnaces. However, since the optical sensor (photocell) used for this is covered with transparent glass, it cannot be used under high pressure,
Generally designed to withstand a pressure of about 10 atmospheres. Even a specially designed sensor has a limit of 20-30 atm, and this specially designed sensor is quite expensive.

【0005】発明者等は断熱リホーマーを用いた大型水
素製造装置の開発を行い、ガス改質装置を80気圧以上の
圧力として反応を行うプロセスを検討しているが、この
プロセスにおいて一次改質ガスを部分酸化する工程を安
全に起動するために、酸化剤ガスを導入した時の着火状
態を確認することが必要である。
The inventors have developed a large-scale hydrogen production apparatus using an adiabatic reformer and are studying a process in which the gas reformer is operated at a pressure of 80 atm or higher. In this process, the primary reformed gas is used. In order to safely start the process of partial oxidation of methane, it is necessary to confirm the ignition state when the oxidant gas is introduced.

【0006】しかしながら一般に用いられている電磁波
による火炎監視装置は、上記理由により使用することが
できない。発明者等はこれに代わるものとして温度セン
サーによる監視を検討したが、断熱リホーマーの燃焼室
(炉) の内部温度は1500℃以上となるので該温度に耐え
る材料の温度センサーが無く、このため温度センサーを
セラミックス等の耐熱材を用いた保護管に入れて検出す
ることも試みたが、厚い保護管壁を介しての検知では時
間遅れを生じるので危険であった。
However, the commonly used electromagnetic wave flame monitoring device cannot be used for the above reason. The inventors have considered monitoring with a temperature sensor as an alternative, but the combustion chamber of the adiabatic reformer
Since the internal temperature of the (furnace) is 1500 ° C or higher, there is no temperature sensor for the material that withstands this temperature.Therefore, it was tried to put the temperature sensor in a protective tube using a heat resistant material such as ceramics for detection. Detection through a thick protective tube wall was dangerous because it caused a time delay.

【0007】また一般の燃焼炉の着火では燃料ガスと酸
化剤ガスを少量導入しながら電気スパークを発生させる
ことにより行われるが、上記の如く燃焼室 (炉) の内部
温度が1500℃以上となる場合には電気スパークを設置す
ることが困難である。このため燃料ガスを着火点よりも
高温に加熱して、酸化剤ガスを少量導入し、着火させる
方式を採らざるを得ないが、その着火の確認がされずに
可燃性ガスと酸化剤ガスの導入を継続した場合には炉内
爆発の危険があり、その被害は極めて大きいものとなる
ので絶対に避けなければならない。本発明の目的は、特
にこのような高圧の燃焼炉において着火状態を完全に確
認して燃焼炉の安全な運転を継続する方法及びその装置
を提供することにある。
In general, the ignition of a combustion furnace is performed by generating an electric spark while introducing a small amount of fuel gas and oxidant gas, but the internal temperature of the combustion chamber (furnace) becomes 1500 ° C. or higher as described above. In some cases it is difficult to install an electric spark. For this reason, there is no choice but to adopt a method in which the fuel gas is heated to a temperature higher than the ignition point and a small amount of oxidant gas is introduced to ignite, but the ignition is not confirmed and the combustible gas and oxidant gas are introduced. If you continue to, there is a danger of explosion in the furnace, and the damage will be extremely large, so you must absolutely avoid it. It is an object of the present invention to provide a method and an apparatus thereof, in particular, for completely confirming the ignition state in such a high pressure combustion furnace and continuing safe operation of the combustion furnace.

【0008】[0008]

【課題を解決するための手段】発明者等は上記の如き課
題を有する燃焼炉の着火状態の確認方法、特に高圧下で
燃焼を行う断熱リホーマーの着火状態の確認について鋭
意検討した結果、燃焼炉の燃料ガス又は酸化剤ガスの供
給流路の途中の圧力の変化を検出することにより、燃焼
炉の着火状態が速やかに確認されることを見出し本発明
に到達した。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method for confirming the ignition state of a combustion furnace having the above-mentioned problems, and particularly for confirming the ignition state of an adiabatic reformer that burns under high pressure. The inventors have found that the ignition state of the combustion furnace can be promptly confirmed by detecting a change in the pressure in the supply passage of the fuel gas or the oxidant gas, and have reached the present invention.

【0009】すなわち本発明は、燃焼炉の燃料ガスまた
は酸化剤ガスの供給流路の途中に圧力検知のための導管
を設置し、該導管を二つに分岐して隔膜式差圧センサー
の受圧部とチャンバーを経由して該センサーの背圧部に
連結し、受圧部と背圧部の差圧変動を検出することを特
徴とする着火状態の確認方法及びその装置である。
That is, according to the present invention, a conduit for pressure detection is installed in the middle of a fuel gas or oxidant gas supply passage of a combustion furnace, and the conduit is branched into two to receive the pressure of a diaphragm type differential pressure sensor. A method for confirming an ignition state and an apparatus therefor, characterized by being connected to a back pressure portion of the sensor via a section and a chamber and detecting a pressure difference variation between the pressure receiving section and the back pressure section.

【0010】本発明の方法および装置は一般の低圧の燃
焼炉に於いて採用されるが、圧力10気圧以上、特に30気
圧以上の高圧下で燃焼が行われる燃焼炉において有利に
用いられる。このような高圧の燃焼炉が用いられるの例
としては、炭化水素の部分酸化によるガス改質装置、
炭化水素と水蒸気の接触反応により一次改質反応を行
った後、燃焼室 (炉) において空気または酸素を混合し
て部分酸化を行い、次に二次改質反応を行うガス改質装
置、および炭化水素と水蒸気の接触反応による一次改
質反応を行い、酸化剤ガスを加えて部分酸化した後、二
次改質反応を行い、得られた高温ガスを一次改質反応の
熱源に用いるガス改質装置(断熱リホーマー)が挙げら
れる。このようにして得られた改質ガスは水素や一酸化
炭素の製造、或いはメタノール、アンモニアや有機化学
物質を合成するための合成ガスの製造に用いられる。
Although the method and apparatus of the present invention are employed in general low pressure combustion furnaces, they are advantageously used in combustion furnaces in which combustion is performed under a high pressure of 10 atm or more, particularly 30 atm or more. Examples of the use of such a high-pressure combustion furnace include a gas reformer by partial oxidation of hydrocarbons,
A gas reformer that performs a primary reforming reaction by contacting hydrocarbons and steam, then mixes air or oxygen in the combustion chamber (furnace) to perform partial oxidation, and then performs a secondary reforming reaction, and A primary reforming reaction is carried out by the catalytic reaction of hydrocarbons and steam, and after partial oxidation by adding an oxidant gas, a secondary reforming reaction is carried out, and the obtained high temperature gas is used as a heat source for the primary reforming reaction. Quality equipment (adiabatic reformer). The reformed gas thus obtained is used for producing hydrogen and carbon monoxide, or for producing synthetic gas for synthesizing methanol, ammonia and organic chemicals.

【0011】本発明における燃焼炉は燃料ガスと酸化剤
ガスを混合して酸化反応が行われる装置のことであり、
例えば前述の断熱リホーマーの如き反応器の燃焼室も含
まれる。従って本発明における燃焼炉には、各種物質の
加熱、水蒸気の発生または加熱用の一般の燃焼炉の他、
上記の如く水素や一酸化炭素の製造、メタノールやアン
モニア等の合成ガスの製造のために炭化水素の部分酸化
を行う場合に用いられる反応器等がある。
The combustion furnace in the present invention is a device in which a fuel gas and an oxidant gas are mixed to carry out an oxidation reaction,
Also included is the combustion chamber of the reactor, such as the adiabatic reformer described above. Therefore, in the combustion furnace of the present invention, other than a general combustion furnace for heating various substances, generating steam or heating,
As described above, there are reactors and the like used when partial oxidation of hydrocarbons is carried out for the production of hydrogen and carbon monoxide and the production of synthesis gas such as methanol and ammonia.

【0012】燃焼炉に使用される燃料ガスとしては、天
然ガスやLPGの如き気体燃料が挙げられるが、更に部
分酸化が行われる水蒸気改質ガスも含まれ、またアンモ
ニア、メタノールや有機化学物質の合成装置等から放出
されるパージガス、或いはこれらのガスの混合物等も含
まれる。酸化剤ガスとしては、酸素ガス、空気および酸
素富化された空気等が挙げられる。これらの燃料ガスお
よび酸化剤ガスは燃焼炉における燃焼状態を好適に維持
するために、燃焼炉に加熱して供給されることが多く、
また部分酸化を行う場合等の炭素析出を防止するために
水蒸気を燃料ガスまたは酸化剤ガスに混合されることも
ある。
Examples of the fuel gas used in the combustion furnace include gaseous fuels such as natural gas and LPG, but also steam reformed gas in which partial oxidation is carried out, ammonia, methanol and organic chemical substances. Purge gas discharged from the synthesizer or the like, or a mixture of these gases is also included. Examples of the oxidant gas include oxygen gas, air and oxygen-enriched air. These fuel gas and oxidant gas are often heated and supplied to the combustion furnace in order to appropriately maintain the combustion state in the combustion furnace,
Further, steam may be mixed with the fuel gas or the oxidant gas in order to prevent carbon deposition in the case of performing partial oxidation.

【0013】燃料ガスが酸化剤ガスと接触して着火する
瞬間は、大小の差はあるが必ず小さな爆発的な燃焼を生
じ、これを音や光で確認することが一般に行われてい
る。この時に人には感知できないが周辺の気相に微小な
気圧変化を生じ、またその後燃焼が安定に継続すれば、
燃焼開始以前とは明らかに異なる燃焼による特徴ある微
小な圧力変動がみられる。本発明ではこの着火と燃焼が
継続している状態を「着火状態」と称している。もしこ
の微小圧力変化を捉えることができれば、瞬時にして着
火の状態を確認できることになる。本発明は燃料ガス又
は酸化剤ガスの供給流路の途中に導管を設置して隔膜式
差圧センサーを取付けることによりこの微小圧力変化を
検知するものである。
At the moment when the fuel gas comes into contact with the oxidant gas and ignites, a small explosive combustion always occurs although there is a difference in size, and it is generally confirmed by sound or light. At this time, if a person cannot perceive it, a minute change in atmospheric pressure occurs in the surrounding gas phase, and if combustion continues steadily thereafter,
A distinctive minute pressure fluctuation due to combustion is clearly seen, which is clearly different from that before the start of combustion. In the present invention, the state where the ignition and the combustion are continued is referred to as the "ignition state". If this minute change in pressure can be captured, the state of ignition can be confirmed instantly. The present invention detects this minute pressure change by installing a conduit in the middle of the fuel gas or oxidant gas supply flow path and attaching a diaphragm type differential pressure sensor.

【0014】燃料ガス又は酸化剤ガスの供給流路から微
差圧センサーへの導管には一般に内径 3〜10mm程度の配
管が用いられ、隔膜式の差圧伝送器の受圧側に接続され
る。隔膜式の差圧伝送器の背圧側には圧力変動を吸収す
るための容器 (チャンバー)が設置されて導管を通して
もとの燃料ガス又は酸化剤ガスの供給流路に接続され
る。この導管の流量を調整するために制限オリフィス又
は絞り弁が設置される。但しこの導管に内径 0.2〜1mm
程度の配管を用いればこのような制限オリフィスや絞り
弁を無くすこともできる。
A pipe having an inner diameter of about 3 to 10 mm is generally used as a conduit from the fuel gas or oxidant gas supply flow path to the minute differential pressure sensor, and is connected to the pressure receiving side of a diaphragm type differential pressure transmitter. A container (chamber) for absorbing pressure fluctuation is installed on the back pressure side of the diaphragm type differential pressure transmitter, and is connected to the original fuel gas or oxidant gas supply passage through a conduit. A restrictive orifice or throttle valve is installed to regulate the flow rate in this conduit. However, the inside diameter of this conduit is 0.2-1 mm
It is also possible to eliminate such a restriction orifice and a throttle valve by using a pipe of a certain degree.

【0015】微小圧力変化を検知するための微差圧セン
サーには隔膜式の差圧伝送器が用いられる。この微差圧
センサーは圧力測定スパンが水柱圧 3000mm 以下のも
の、好ましくは水柱圧 500mm以下のものが好適に用いら
れる。微差圧センサーで検知された情報は記録計に記録
して着火状態を捉えることができ、警報に接続すること
が好ましい。
A diaphragm type differential pressure transmitter is used as a minute differential pressure sensor for detecting a minute pressure change. This fine differential pressure sensor preferably has a pressure measuring span of 3000 mm or less in water column pressure, and preferably 500 mm or less in water column pressure. The information detected by the slight differential pressure sensor can be recorded in a recorder to catch the ignition state, and it is preferable to connect the alarm.

【0016】燃料ガス又は酸化剤ガスの供給流路に微差
圧センサーへの導管を取付ける位置は、燃焼バーナーま
での距離が大きいと検知の感度が鈍くなるので好適な距
離が選定される。着火時間は燃料ガス又は酸化剤ガスの
供給弁から燃焼バーナーまでの距離、該流路の配管径、
ガス流量、圧力、温度から予め計算することができ、こ
の時間の計算値と微差圧センサーによる圧力が変動した
時間を対比することにより着火状態が確実に確認され
る。
A suitable distance is selected for the position where the conduit for the slight differential pressure sensor is attached to the fuel gas or oxidant gas supply passage because the detection sensitivity becomes low if the distance to the combustion burner is large. The ignition time is the distance from the fuel gas or oxidant gas supply valve to the combustion burner, the pipe diameter of the flow passage,
It can be calculated in advance from the gas flow rate, pressure, and temperature, and the ignition state is surely confirmed by comparing the calculated value of this time with the time when the pressure by the differential pressure sensor fluctuates.

【0017】[0017]

【実施例】次に図面を用いた本発明の実施例により、本
発明を具体的に説明する。図1は断熱リホーマーに本発
明の着火確認装置を設置した場合の系統図である。図1
における反応器は特開昭60-186401 に示された断熱リホ
ーマーである。その外穀1 の内部に一次改質反応管2 が
設置され、原料の炭化水素と水蒸気の混合ガスは流路3
から導入され、この一次改質反応管内に充填された触媒
との接触することにより一次改質反応が行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments of the present invention using the drawings. FIG. 1 is a system diagram when the ignition confirmation device of the present invention is installed in an adiabatic reformer. Figure 1
The reactor described in JP-A-60-186401 is an adiabatic reformer. A primary reforming reaction tube 2 is installed inside the outer grain 1, and a mixed gas of raw material hydrocarbons and steam is passed through the flow path 3
The primary reforming reaction is carried out by coming into contact with the catalyst introduced into the primary reforming reaction tube.

【0018】一次改質ガスはその輸送管4 を経て燃焼室
5 に導入される。一方、酸化剤ガス(酸素) は流路6 か
らその流量調節弁7 を経て流路8 より燃焼室に導入さ
れ、一次改質ガスの部分酸化が行われる。部分酸化され
たガスは二次改質触媒層9 と接触して二次改質ガスとな
り、この高温ガスは一次改質反応管2 の外側を通過して
一次改質反応の熱源として利用された後、流路10から次
の工程に送られて熱回収が行われ、冷却されて未反応水
蒸気が凝縮・分離される。
The primary reformed gas is passed through the transportation pipe 4 and the combustion chamber
Introduced in 5. On the other hand, the oxidant gas (oxygen) is introduced into the combustion chamber from the flow path 6 through the flow rate control valve 7 and the flow path 8 to partially oxidize the primary reformed gas. The partially oxidized gas comes into contact with the secondary reforming catalyst layer 9 to become the secondary reformed gas, and this high-temperature gas passes outside the primary reforming reaction tube 2 and is used as a heat source for the primary reforming reaction. After that, it is sent to the next step from the flow path 10 to recover heat, and is cooled to condense and separate unreacted water vapor.

【0019】本発明の着火確認装置は、燃焼室5 に酸化
剤ガスを導入する流路8 の途中に設置される。燃焼室5
内の微小圧力変化を鋭敏に捉えるため圧力を検出するた
めの導管11はできるだけ燃焼室の近くに設置し、その途
中に弁類や曲がり部分をなるべく少なくすることが望ま
しい。この導管は微差圧センサー12の受圧側へ連結され
る導管13と、チャンバー14に連結される導管15に分岐さ
れ、この導管15の途中には絞り弁16が設置されている。
また微差圧センサー12の背圧側とチャンバーは導管17に
より連結されている。微差圧センサー12からの情報は、
伝送回路18を経て、記録計19に送られ連続的に記録され
ることにより圧力変化を制御室で監視することができ、
また警報にも連結されている。
The ignition confirmation device of the present invention is installed in the middle of the flow path 8 for introducing the oxidant gas into the combustion chamber 5. Combustion chamber 5
It is desirable to install a conduit 11 for detecting pressure in order to detect a minute change in pressure inside the combustion chamber as close to the combustion chamber as possible, and to minimize valves and bent portions in the middle thereof. This conduit is branched into a conduit 13 connected to the pressure receiving side of the slight differential pressure sensor 12 and a conduit 15 connected to the chamber 14, and a throttle valve 16 is installed in the middle of this conduit 15.
The back pressure side of the slight differential pressure sensor 12 and the chamber are connected by a conduit 17. Information from the differential pressure sensor 12 is
The pressure change can be monitored in the control room by being sent to the recorder 19 and continuously recorded via the transmission circuit 18,
It is also linked to an alarm.

【0020】図1の断熱リホーマーを起動する場合は、
まず流路3 から可燃性ガスと水蒸気の混合ガスを着火温
度より高い温度に加熱して供給し、該断熱リホーマー反
応器の内部が十分加熱されて燃焼室5 の内部も着火温度
よりも高温となったことを確認する。次に酸化剤ガスの
調節弁7(又は仕切弁) を開いて酸化剤ガスを燃焼室に導
入して、燃料ガスが着火し且つ燃焼が継続していること
を微差圧センサーにより確認する。着火の瞬間は燃焼室
(炉) 内での小爆発により瞬間的に圧力が上昇する。こ
の時に発生した微小圧力波が酸化剤ガス流路8 、導管11
および導管13を経て微差圧センサー12の受圧側に伝わ
り、微差圧センサー12の背圧側はチャンバー14と導管15
の途中には絞り弁16があるため瞬間的な圧力の上昇は減
衰、消去されてしまうため、微差圧センサーによる差圧
の検出から着火が確認される。
When activating the adiabatic reformer of FIG.
First, the mixed gas of combustible gas and water vapor is heated to a temperature higher than the ignition temperature and supplied from the flow path 3, the inside of the adiabatic reformer reactor is sufficiently heated, and the inside of the combustion chamber 5 is heated to a temperature higher than the ignition temperature. Confirm that it has become. Next, the oxidant gas control valve 7 (or the sluice valve) is opened to introduce the oxidant gas into the combustion chamber, and it is confirmed by the slight differential pressure sensor that the fuel gas is ignited and the combustion is continued. Combustion chamber at the moment of ignition
The pressure rises momentarily due to a small explosion in the (furnace). The minute pressure wave generated at this time is the oxidant gas flow path 8 and the conduit 11
Is transmitted to the pressure receiving side of the slight differential pressure sensor 12 via the conduit 13 and the back pressure side of the slight differential pressure sensor 12, and the chamber 14 and the conduit 15
Since there is a throttle valve 16 in the middle of, a momentary increase in pressure is attenuated and erased, so ignition is confirmed from the detection of the differential pressure by the slight differential pressure sensor.

【0021】このように着火の瞬間は微差圧センサーの
受圧側と背圧側の差圧が瞬間的に増大することから確認
される。着火の際の操作圧力に制約は特に無いが、安全
面から起動時は該反応器または燃焼室 (炉) 内の圧力を
平常の操作圧力よりも低くすることが好ましい。酸化剤
ガスが流路8 を経て燃焼室に達する時間は、その管径、
燃焼室までの距離および酸化剤ガス量、温度、圧力によ
り計算されるが、その時間は数秒ないし数十秒となるよ
うに燃焼室までの距離等を設計しておく必要がある。予
めこの時間を計算しておき、ほぼその時間内に着火の状
態が確認されない場合には、酸化剤ガスと可燃性ガスの
供給を停止して、不活性ガスを該反応器に導入し、該反
応器内を不活性ガスで完全に置換し、前述の加熱度操作
を再度行うこととなる。
As described above, the moment of ignition is confirmed by the instantaneous increase in the differential pressure between the pressure receiving side and the back pressure side of the slight differential pressure sensor. Although there is no particular restriction on the operating pressure at the time of ignition, it is preferable to set the pressure in the reactor or the combustion chamber (furnace) to be lower than the normal operating pressure at the time of start-up for safety reasons. The time required for the oxidant gas to reach the combustion chamber through the flow path 8 is
It is calculated by the distance to the combustion chamber and the amount of oxidizing gas, temperature, and pressure, but it is necessary to design the distance to the combustion chamber so that the time is several seconds to several tens of seconds. This time is calculated in advance, and if the ignition state is not confirmed within substantially that time, the supply of the oxidant gas and the flammable gas is stopped, and an inert gas is introduced into the reactor, The inside of the reactor is completely replaced with an inert gas, and the above heating degree operation is repeated.

【0022】燃焼室 (炉) 内での着火の状態が確認され
た後は、流路3 からの可燃性ガス(炭化水素)と水蒸気
の混合ガスの供給量と、酸化剤ガスの供給量を増大して
該反応器を昇圧し、平常運転に移行する。以上、図1の
断熱リホーマーを起動する場合の説明を行ったが、他の
部分酸化を有する炭化水素の反応器や一般の燃焼炉に本
発明の着火確認装置を設置した場合にも同様の操作が行
われる。
After confirming the ignition state in the combustion chamber (furnace), the supply amount of the mixed gas of combustible gas (hydrocarbon) and steam and the supply amount of the oxidant gas from the flow path 3 are checked. Increase the pressure in the reactor and shift to normal operation. Although the case where the adiabatic reformer of FIG. 1 is started has been described above, the same operation is performed when the ignition confirmation device of the present invention is installed in another hydrocarbon reactor having partial oxidation or a general combustion furnace. Is done.

【0023】[0023]

【実施例】図1に示す断熱リホーマー反応器(操作圧力
80kg/cm2 G 、燃焼室内径0.7m)において、系内を窒素
ガスで置換した後、流路3 から可燃性ガスと水蒸気の混
合ガス(CO 0.8 mol%、CO2 3.9mol% 、CH4 9.1mol% 、 H
2 24.8mol%、 N2 4.0mol%、 H2 O 57.4mol%) 35kgmol/h
rを 630℃で導入し、圧力を 17.9kg/cm2 G に保持し
た。酸化剤ガスの調節弁7 から燃焼室までの流路8 の距
離は 16.2mであり、内径は16.2mmである。この配管も同
様の圧力で窒素ガスによる置換も行った。二次改質触媒
層9 の温度が 615℃となり、着火温度以上に達したこと
が確認された後、調節弁7 を開けて純酸素ガスを 7.5
Nm3 /hr で反応器に導入した。
EXAMPLE Adiabatic reformer reactor shown in FIG. 1 (operating pressure
At 80 kg / cm 2 G, combustion chamber diameter 0.7 m, the system was replaced with nitrogen gas, and then a mixture of combustible gas and steam (CO 0.8 mol%, CO 2 3.9 mol%, CH 4 9.1 mol%, H
2 24.8mol%, N 2 4.0mol%, H 2 O 57.4mol%) 35kgmol / h
r was introduced at 630 ° C and the pressure was maintained at 17.9 kg / cm 2 G. The flow path 8 from the oxidant gas control valve 7 to the combustion chamber has a distance of 16.2 m and an inner diameter of 16.2 mm. This pipe was also replaced with nitrogen gas at the same pressure. After it was confirmed that the temperature of the secondary reforming catalyst layer 9 reached 615 ° C and reached the ignition temperature or higher, the control valve 7 was opened and pure oxygen gas was added to 7.5
It was introduced into the reactor at Nm 3 / hr.

【0024】この時の微差圧センサーの差圧の変動を図
2に示す。これによると調節弁7 を開けた瞬間の小さな
圧力ピークと24秒後に第2の圧力ピークおよびその後の
燃焼による特徴ある圧力変動が確1され、二次改質触媒
層9 の温度はその後 615℃より徐々に上昇した。流路8
の距離と内径、および導入された純酸素ガスの量とその
圧力・温度条件から純酸素ガスが調節弁7 から燃焼室に
至る時間は凡そ21秒であることから、この第2の圧力ピ
ーク時において燃焼室5 で着火が行われたものと判断さ
れる。その後、流路3 から供給するガスを天然ガスと水
蒸気の混合ガスとし、純酸素ガスと共に徐々に増量して
昇圧し、圧力 80kg/cm2 G の平常運転に移行した。
The fluctuation of the differential pressure of the slight differential pressure sensor at this time is shown in FIG. According to this, a small pressure peak at the moment when the control valve 7 is opened, a second pressure peak after 24 seconds and a characteristic pressure fluctuation due to the subsequent combustion are confirmed, and the temperature of the secondary reforming catalyst layer 9 is then 615 ° C. Rose more gradually. Channel 8
Based on the distance and inner diameter, the amount of pure oxygen gas introduced, and the pressure and temperature conditions, the time for pure oxygen gas to reach the combustion chamber from the control valve 7 is approximately 21 seconds. It is judged that the ignition was performed in combustion chamber 5 at. After that, the gas supplied from the flow path 3 was a mixed gas of natural gas and water vapor, and the amount was gradually increased along with pure oxygen gas to raise the pressure, and the operation was shifted to normal operation at a pressure of 80 kg / cm 2 G.

【0025】[0025]

【発明の効果】本発明の方法によれば燃焼炉の起動時に
おける着火状況を迅速に確認できるので、燃焼炉を安全
に起動することができる。また本発明の着火確認装置は
平常運転時においても微差圧センサーの差圧の感度を上
げ、更に平常運転時の極微小変動の監視を継続すること
により、例えば純酸素バーナーの破損や失火を含めた燃
焼の異常を確認することもできる。本発明の方法は高圧
で燃焼が行われる反応器等における燃焼室(炉)にも適
用することができ、コスト的にも極めて有利な方法であ
る。
According to the method of the present invention, the ignition status at the time of starting the combustion furnace can be confirmed quickly, so that the combustion furnace can be safely started. Further, the ignition confirmation device of the present invention increases the differential pressure sensitivity of the differential pressure sensor even during normal operation, and by continuing to monitor the minute fluctuations during normal operation, for example, damage or misfire of the pure oxygen burner. It is also possible to check the included combustion abnormality. The method of the present invention can be applied to a combustion chamber (furnace) in a reactor or the like in which combustion is performed at high pressure, and is a very advantageous method in terms of cost.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】断熱リホーマーに本発明の着火確認装置を設置
した場合の系統図を示す。
FIG. 1 shows a system diagram when an ignition confirmation device of the present invention is installed in an adiabatic reformer.

【図2】実施例における微差圧センサーの差圧の変動を
示す。
FIG. 2 shows fluctuations in the differential pressure of the slight differential pressure sensor in the example.

【0027】[0027]

【符号の説明】[Explanation of symbols]

1 断熱リホーマーの外穀 2 一次改質反応管 3 原料炭化水素と水蒸気の混合ガスの流路 4 一次改質ガス輸送管 5 燃焼室 6 酸化剤ガス (酸素) の流路 7 流量調節弁 9 二次改質触媒層 10 二次改質ガスの出口流路 11 圧力検出用導管 12 微差圧センサー 14 チャンバー 16 絞り弁 19 記録計 1 Outer grain of adiabatic reformer 2 Primary reforming reaction tube 3 Flow path for mixed gas of raw hydrocarbon and steam 4 Primary reformed gas transport tube 5 Combustion chamber 6 Flow path for oxidant gas (oxygen) 7 Flow control valve 9 2 Secondary reforming catalyst layer 10 Secondary reformed gas outlet flow path 11 Pressure detection conduit 12 Fine differential pressure sensor 14 Chamber 16 Throttle valve 19 Recorder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 敏明 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Hasegawa 2-53-1, Shirute, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】燃料ガスまたは酸化剤ガスの供給流路の途
中に圧力検知のための導管を有し、該導管が二つに分岐
して隔膜式差圧センサーの受圧部とチャンバーを経由し
て該センサーの背圧部に連結された燃焼炉の着火状態の
確認装置
1. A conduit for pressure detection is provided in the middle of a fuel gas or oxidant gas supply passage, and the conduit branches into two via a pressure receiving portion and a chamber of a diaphragm type differential pressure sensor. For confirming the ignition state of the combustion furnace connected to the back pressure part of the sensor
【請求項2】分岐した導管とチャンバーの間に制限オリ
フィスまたは絞り弁を有する請求項1の燃焼炉の着火状
態の確認装置
2. A device for confirming an ignition state of a combustion furnace according to claim 1, wherein a restricting orifice or a throttle valve is provided between the branched conduit and the chamber.
【請求項3】燃焼炉の燃料ガスまたは酸化剤ガスの供給
流路の途中に圧力検知のための導管を設置し、該導管を
二つに分岐して隔膜式差圧センサーの受圧部とチャンバ
ーを経由して該センサーの背圧部に連結し、受圧部と背
圧部の差圧変動を検出することを特徴とする着火状態の
確認方法
3. A pressure detecting conduit is installed in the middle of a fuel gas or oxidant gas supply passage of a combustion furnace, and the conduit is branched into two to form a pressure receiving portion and a chamber of a diaphragm type differential pressure sensor. A method for confirming an ignition state, characterized in that it is connected to a back pressure portion of the sensor via a sensor to detect a pressure difference variation between the pressure receiving portion and the back pressure portion.
【請求項4】炭化水素の部分酸化、または炭化水素の水
蒸気改質ガスの部分酸化を有するガス改質製造装置にお
いて、部分酸化反応を行う燃焼炉への酸化剤ガスまたは
炭化水素供給流路の途中に圧力検知のための導管を設置
する請求項3の着火状態の確認方法
4. In a gas reforming production apparatus having partial oxidation of hydrocarbons or partial oxidation of steam reformed gas of hydrocarbons, an oxidant gas or hydrocarbon supply flow path of a oxidant gas to a combustion furnace for performing partial oxidation reaction is provided. The ignition state confirmation method according to claim 3, wherein a conduit for pressure detection is installed on the way.
【請求項5】炭化水素と水蒸気の接触反応による一次改
質反応を行い、酸化剤ガスを加えて部分酸化した後、二
次改質反応を行い、得られた高温ガスを一次改質反応の
熱源に用いるガス改質装置において、部分酸化反応を行
う燃焼炉への酸化剤ガスまたは炭化水素の供給流路の途
中に圧力検知のための導管を設置する請求項3の着火状
態の確認方法
5. A primary reforming reaction is carried out by a catalytic reaction of hydrocarbon and steam, and after partial oxidation by adding an oxidant gas, a secondary reforming reaction is carried out, and the obtained high temperature gas is subjected to primary reforming reaction. A method for confirming an ignition state according to claim 3, wherein in a gas reformer used as a heat source, a conduit for pressure detection is installed in the middle of a supply flow path of an oxidant gas or a hydrocarbon to a combustion furnace that performs a partial oxidation reaction.
JP06688793A 1993-03-25 1993-03-25 Apparatus and method for checking ignition state of combustion furnace Expired - Fee Related JP3552730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06688793A JP3552730B2 (en) 1993-03-25 1993-03-25 Apparatus and method for checking ignition state of combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06688793A JP3552730B2 (en) 1993-03-25 1993-03-25 Apparatus and method for checking ignition state of combustion furnace

Publications (2)

Publication Number Publication Date
JPH06272859A true JPH06272859A (en) 1994-09-27
JP3552730B2 JP3552730B2 (en) 2004-08-11

Family

ID=13328870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06688793A Expired - Fee Related JP3552730B2 (en) 1993-03-25 1993-03-25 Apparatus and method for checking ignition state of combustion furnace

Country Status (1)

Country Link
JP (1) JP3552730B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375919A (en) * 2019-08-20 2019-10-25 无锡威孚环保催化剂有限公司 Three-element catalytic agent carrier back pressure detection device

Also Published As

Publication number Publication date
JP3552730B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
AU2008209376B8 (en) Multistage combustor and method for starting a fuel cell system
US5813849A (en) Flame detection apparatus and methods
US3911083A (en) Nitrogen oxide control using steam-hydrocarbon injection
BR9714172A (en) Production method of gas flow including hydrogen and hydrogen generator by a plasma reformer.
US4033725A (en) Apparatus for NOx control using steam-hydrocarbon injection
US7740811B2 (en) Hydrogen generator having double burners and method of operating the same
EP0240639B1 (en) Incineration of combustible gases
CA2425691A1 (en) Process and apparatus for detecting a loss of reaction in a hydrocarbon conversion reaction
WO2005052451A1 (en) Burner control sensor configuration
CN114893792A (en) Remote ignition system and method for hydrogen bromide synthesis furnace
JP3552730B2 (en) Apparatus and method for checking ignition state of combustion furnace
JP2022190447A (en) Burner for torch ignition mechanism and operating method for the same
CN1232438C (en) Method for operating a furnace
JPS61279071A (en) Fuel cell
CA2379942A1 (en) A combined heat and power plant and a process for the operation thereof
JPH0648701A (en) Steam-reforming reactor
JPH10267264A (en) Monitoring system for combustion furnace
US4219324A (en) Process for treating metals using recycled gases
JP2000240938A (en) Catalyst combustor
EP0935098B2 (en) Flame detection apparatus and method
KR100388938B1 (en) Method of measuring gas seepaging from thefilled-up-land
CN213739309U (en) Gasification burner for high-pressure online ignition
RU2347200C2 (en) Method of measuring of heats of processed stream and device for its realisation
JP2010218790A (en) Fuel cell power generation system
JP2003327404A (en) Hydrogen manufacturing apparatus and its operation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040414

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

LAPS Cancellation because of no payment of annual fees