JPH06272623A - Exhaust gas purifying method for otto cycle engine - Google Patents

Exhaust gas purifying method for otto cycle engine

Info

Publication number
JPH06272623A
JPH06272623A JP5086689A JP8668993A JPH06272623A JP H06272623 A JPH06272623 A JP H06272623A JP 5086689 A JP5086689 A JP 5086689A JP 8668993 A JP8668993 A JP 8668993A JP H06272623 A JPH06272623 A JP H06272623A
Authority
JP
Japan
Prior art keywords
exhaust gas
intake
engine
exhaust
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5086689A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanesaka
弘 兼坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP5086689A priority Critical patent/JPH06272623A/en
Publication of JPH06272623A publication Critical patent/JPH06272623A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent purifying performance of exhaust gas from reducing by incomplete combustion and reduction of combustion speed by setting a sufficient combustion temperature at all times, and carrying out operation in which thermal efficiency is not deteriorated. CONSTITUTION:In an Otto cycle engine in which a Miller cycle provided with a rotary valve 18 is used jointly, exhaust gas in an engine make reverse flow in a cylinder 2 through an exhaust valve 10 at the bottom dead point in intake stroke. Hereby, a sufficient combustion temperature is set at the top dead point in compressing stroke, and operation in which thermal efficiency is not deteriorated is carried out, so that it is possible to prevent purifying performance of exhaust gas from reducing by incomplete combustion and reduction of combustion speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ミラーサイクルを併用
したオットーサイクルエンジンの排気浄化方法に係り、
特に部分負荷時において、不完全燃焼や燃焼速度の減少
による排気浄化の低下が生じないオットーサイクルエン
ジンの排気浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification method for an Otto cycle engine that also uses a Miller cycle,
In particular, the present invention relates to an exhaust gas purification method for an Otto cycle engine, which does not cause a reduction in exhaust gas purification due to incomplete combustion or a reduction in combustion speed at a partial load.

【0002】[0002]

【従来の技術】当量比に近い燃料と空気の混合気を吸入
するエンジンにおいて、軽負荷動作やアイドル動作など
の部分負荷時には、絞り弁によってエンジンへの混合気
吸入量を絞ることが行なわれているが、この部分負荷時
にはポンプ損失が生じ、エンジンの効率が低下する。こ
れに対して、本発明者はエンジンの通気通路にカム軸と
同期して回転するロータリーバルブ(回転弁)を設け、
その動作を制御することにより、ポンプ損失の少ない吸
気量制御を行なう方法を提案している(内燃機関;20
巻6、7号、1981)。
2. Description of the Related Art In an engine that inhales a mixture of fuel and air with an equivalence ratio, the throttle valve regulates the intake of the mixture to the engine during partial load such as light load operation or idle operation. However, at this partial load, pump loss occurs and engine efficiency decreases. On the other hand, the present inventor has provided a rotary valve (rotary valve) that rotates in synchronization with the cam shaft in the ventilation passage of the engine.
By controlling the operation, a method of performing intake air amount control with less pump loss is proposed (internal combustion engine: 20
Vol. 6, No. 7, 1981).

【0003】図2は通常のオット−サイクルエンジンと
ミラーサイクルを併用したオットーサイクルエンジンの
P−V線図であり、通常のオット−サイクルエンジンの
場合における負荷制御では、絞り弁によって吸気を絞
り、吸気行程において吸気圧力はP0まで低下しP0か
ら吸気行程が開始されP0と同じ圧力であるP2から圧
縮行程に入りP3まで圧縮される。
FIG. 2 is a P-V diagram of an Otto-cycle engine in which a normal Otto-cycle engine and a Miller cycle are used in combination. In load control in the case of a normal Otto-cycle engine, throttle is used to throttle intake air. In the intake stroke, the intake pressure drops to P0, the intake stroke starts from P0, and the compression stroke starts from P2, which is the same pressure as P0, and is compressed to P3.

【0004】この時、P7−P0−P2−Paで表され
る絞り損失によって点P2における温度は大気温度と同
一となり、P3における圧縮温度は絞りのない全負荷状
態と同じとなって燃焼上に何等の不都合を生じることは
ないが、絞り損失をなくす目的でロータリーバルブを備
えた提案のオットーサイクルエンジンを用いると、吸気
行程において吸気圧力は点P7、即ち大気圧のままで吸
気行程の途中Paまで吸気し、Paにおいてロータリー
バルブを閉じると、ピストンはさらに低下し、混合気は
断熱膨脹しつつ圧力と温度を下げ、P2で吸気行程下死
点となる。このP2から圧縮行程に入り、Paで再び吸
気状態の圧力及び温度になって大気圧に達し、Paから
実質的な圧縮行程が始まり、絞り損失は発生せずに圧縮
上死点P3に至る。この時、通常のエンジンに比べ実質
的な圧縮行程はPaからP3となり短く、実質的に圧縮
比が低下したことになり、点P3の温度は要求される圧
縮温度に達せず、圧縮上死点P3で点火栓により着火さ
れる。
At this time, the temperature at the point P2 becomes the same as the atmospheric temperature due to the throttle loss represented by P7-P0-P2-Pa, and the compression temperature at the point P3 becomes the same as in the full load state without a throttle, resulting in combustion. Although no inconvenience is caused, if the proposed Otto cycle engine equipped with a rotary valve is used for the purpose of eliminating throttling loss, in the intake stroke, the intake pressure is at point P7, that is, at the atmospheric pressure, while Pa is in the middle of the intake stroke. When the intake is performed up to and the rotary valve is closed at Pa, the piston further lowers, the mixture is adiabatically expanded and the pressure and temperature are lowered, and at P2, the intake stroke bottom dead center. The compression stroke starts from P2, the pressure and temperature of the intake state again reach Pa, and the atmospheric pressure is reached. From Pa, the substantial compression stroke begins, and the compression loss occurs without reaching the compression top dead center P3. At this time, the substantial compression stroke is shorter from Pa to P3 as compared with the normal engine, which means that the compression ratio is substantially reduced, the temperature at the point P3 does not reach the required compression temperature, and the compression top dead center is reached. It is ignited by the spark plug at P3.

【0005】しかし、実際にはP3で十分な圧縮温度に
達せず、換言すると、図2のP3からP4に達せず、点
線で示すような曲線ルートを通ってP12を介してP5
に至る。そして、P5で膨脹行程が終了して排気弁が開
き、シリンダ内の圧力はP6のほぼ大気圧まで低下し、
P7で排気行程を終了することになり、絞り損失は低減
されたが、燃焼速度の低下により熱効率の上昇は制限さ
れているばかりか、圧縮温度の低下に伴い点P5におけ
る排気温度も低下し、排気浄化用の触媒の作動温度に達
せず排気の無害化においても問題があった。
However, in actuality, a sufficient compression temperature is not reached at P3, in other words, P3 to P4 in FIG. 2 is not reached, and a curve route as shown by a dotted line is passed through P12 to P5.
Leading to. Then, at P5, the expansion stroke ends, the exhaust valve opens, and the pressure in the cylinder drops to almost atmospheric pressure at P6.
Although the exhaust stroke is ended at P7 and the throttling loss is reduced, not only is the increase in thermal efficiency limited by the decrease in combustion speed, but the exhaust temperature at point P5 also decreases as the compression temperature decreases, There was a problem in detoxifying exhaust gas because the operating temperature of the exhaust gas purification catalyst was not reached.

【0006】[0006]

【発明が解決しようとする課題】前述のように提案に係
るロータリーバルブを備えたオットーサイクルエンジン
では、十分な燃焼温度に達しないことがあり、この場合
は図2において、P3−P4−P12に囲まれた斜線を
付した面積分だけ仕事量が失われ、熱効率が低下するば
かりか、触媒の作動温度に排気温度が達せず排気浄化の
低下が生じてしまう。
In the Otto cycle engine equipped with the proposed rotary valve as described above, a sufficient combustion temperature may not be reached. In this case, P3-P4-P12 in FIG. The amount of work is lost by the area surrounded by the shaded area, which not only lowers the thermal efficiency but also lowers the exhaust gas purification temperature because the exhaust temperature does not reach the operating temperature of the catalyst.

【0007】本発明は前述したようなロータリーバルブ
を備えたミラーサイクルを併用したオットーサイクルエ
ンジンの動作の現状に鑑みてなされたものであり、その
目的は、常に十分な燃焼温度が達成されて熱効率の低下
のない動作を行ない、不完全燃焼や燃焼温度の減少によ
り排気温度の低下を防止する、排気浄化の低下が生じな
いオットーサイクルエンジンの排気浄化方法を提供する
ことにある。
The present invention has been made in view of the current state of the operation of an Otto cycle engine that also uses a Miller cycle equipped with a rotary valve as described above, and an object thereof is to always achieve a sufficient combustion temperature and achieve a thermal efficiency. It is an object of the present invention to provide an exhaust gas purification method for an Otto-cycle engine, in which the exhaust gas temperature is prevented from lowering due to incomplete combustion or a decrease in combustion temperature by performing an operation without deterioration of the exhaust gas.

【0008】[0008]

【課題を解決するための手段】前記目的は、ロータリー
バルブを備えたミラーサイクルを併用したオットーサイ
クルエンジンの排気浄化方法において、吸気行程の下死
点で、エンジンの排気ガスを排気弁を通じてシリンダ内
に逆流させることにより達成される。
SUMMARY OF THE INVENTION The above object is to provide an exhaust gas purification method for an Otto cycle engine that also uses a Miller cycle equipped with a rotary valve, in which the exhaust gas of the engine is introduced into the cylinder through the exhaust valve at the bottom dead center of the intake stroke. It is achieved by regurgitating.

【0009】[0009]

【作用】この手段によると、エンジンの吸気行程下死点
において、排気ガスがシリンダ内に逆流し、シリンダ内
のガスは圧力が負圧から大気圧近くまで図2で示せばP
2からP8まで圧力上昇しつつ断熱圧縮され、温度上昇
すると共に、混合した高温の排気ガスによってさらに温
度が上昇する。この状態から圧縮行程が開始されるの
で、圧縮行程の終りの温度は上昇し、常に十分な燃焼温
度が得られ、不完全燃焼や燃焼速度の減少による熱効率
の低下のない動作が行なわれるばかりか、排気温度も上
昇して排気の浄化の低下が生じない。
According to this means, the exhaust gas flows back into the cylinder at the bottom dead center of the intake stroke of the engine, and the gas in the cylinder has a pressure from negative pressure to near atmospheric pressure, which is shown in FIG.
Adiabatic compression is performed while increasing the pressure from 2 to P8, and the temperature rises, and further the temperature rises due to the mixed high-temperature exhaust gas. Since the compression stroke is started from this state, the temperature at the end of the compression stroke rises, a sufficient combustion temperature is always obtained, and not only the incomplete combustion and the reduction of the combustion speed but also the operation without the reduction of the thermal efficiency are performed. Also, the exhaust gas temperature does not rise and the exhaust gas purification does not decrease.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1乃至図6を参
照して説明する。ここで、図1は実施例の排気浄化方法
に使用するミラーサイクルを併用したオットーサイクル
エンジンの吸、排気弁が閉じた状態での要部の構成を示
す説明図、図2は実施例に係るP−V線図、図3は実施
例の排気ガスの逆流前後のシリンダ内混合気の状態の説
明図、図4は実施例の排気浄化方法に使用するオットー
サイクルエンジンの排気弁が開きロ−タリ−バルブが閉
じた状態での要部の構成を示す説明図、図5は実施例の
動作の説明図、図6はロ−タリ−バルブの開閉時期調整
装置の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Here, FIG. 1 is an explanatory diagram showing a configuration of a main part of an Otto cycle engine using a Miller cycle used in the exhaust gas purification method of the embodiment in a state where intake and exhaust valves are closed, and FIG. 2 is related to the embodiment. Fig. 3 is a P-V diagram, Fig. 3 is an explanatory view of the state of the air-fuel mixture in the cylinder before and after the exhaust gas reverse flow, and Fig. 4 is an exhaust valve of the Otto cycle engine used in the exhaust purification method of the embodiment. FIG. 5 is an explanatory view showing a configuration of a main part when the rotary valve is closed, FIG. 5 is an explanatory view of an operation of the embodiment, and FIG. 6 is an explanatory view of an opening / closing timing adjusting device of the rotary valve.

【0011】先ず、実施例に使用するミラーサイクルを
併用したオットーサイクルエンジンの構成を説明する。
このミラーサイクルエンジンは基本的には図1に示すよ
うに、シリンダ1内でピストン2が摺動し、コンロッド
3により図示せぬクランク軸を回転させる4サイクルエ
ンジンにおいて、そのシリンダヘッド4にシリンダ1に
臨んで点火栓5を、吸気口6には吸気弁7と燃料噴射弁
8を、又、排気口9には排気弁10をそれぞれ設置し、
排気弁10の端部に弁ばね11の力を受けるばね受け1
2と補助カム13を有するカム14の動きを伝えるタペ
ット15が設置されている。
First, the construction of an Otto cycle engine used in combination with the Miller cycle used in the embodiment will be described.
This mirror cycle engine is basically a four-cycle engine in which a piston 2 slides in a cylinder 1 and a crankshaft (not shown) is rotated by a connecting rod 3 as shown in FIG. The spark plug 5, the intake valve 7 and the fuel injection valve 8 at the intake port 6, and the exhaust valve 10 at the exhaust port 9, respectively.
A spring bearing 1 that receives the force of a valve spring 11 at the end of the exhaust valve 10.
2 and a tappet 15 for transmitting the movement of a cam 14 having an auxiliary cam 13 are installed.

【0012】前記点火栓5は、エンジンのクランク軸と
同期して点火動作を行い、又、吸気弁7及び排気弁10
も、前記クランク軸と同期して周知のバルブ開閉機構に
より開閉するので、その開閉周期は通常のエンジンと同
様に設定してある。そして、当該エンジンでは、吸気行
程の下死点近くにおいて、補助カム13が作動して、排
気弁10を図5に示すように、吸気行程の終わりの下死
点近傍から下死点終了後にわたる所定時間の間、開放し
て排気ガスをシリンダ1内に逆流させるような構成とな
っている。又、前記吸気口6と連通する吸気枝管16の
一端には、吸気集合管17が設置され吸気通路が形成さ
れている。
The spark plug 5 carries out an ignition operation in synchronization with the crankshaft of the engine, and also has an intake valve 7 and an exhaust valve 10.
Also, since it is opened / closed by a known valve opening / closing mechanism in synchronization with the crankshaft, the opening / closing cycle thereof is set in the same manner as in a normal engine. In the engine, the auxiliary cam 13 operates near the bottom dead center of the intake stroke to move the exhaust valve 10 from near the bottom dead center of the intake stroke to after the bottom dead center as shown in FIG. The exhaust gas is made to flow back into the cylinder 1 for a predetermined period of time. An intake manifold 17 is installed at one end of an intake branch pipe 16 communicating with the intake port 6 to form an intake passage.

【0013】このような多気筒エンジンのそれぞれのシ
リンダに配置された吸気枝管16には、制御弁としての
ロータリーバルブ18が配設してあり、クランク軸から
同期伝達機構を介して駆動されその開閉時期を図6に示
す開閉時期調整装置で調節されるようにしてある。そし
て、排気口9と連通する排気マニホールド20の下流に
触媒19が配置されており、排気を浄化するものであ
る。
A rotary valve 18 as a control valve is arranged in the intake branch pipe 16 arranged in each cylinder of such a multi-cylinder engine, and is driven by a crankshaft through a synchronous transmission mechanism. The opening / closing timing is adjusted by the opening / closing timing adjusting device shown in FIG. A catalyst 19 is arranged downstream of the exhaust manifold 20 communicating with the exhaust port 9 to purify the exhaust gas.

【0014】なお、本発明に用いるロ−タリ−バルブ1
8の開閉時期調整装置を図6について説明する。図6に
おいてロ−タリ−バルブ18の軸21の一端21aには
ヘリカルスプライン22が設置され、相対する駆動軸2
3の一端には前記スプライン22と逆方向に捩られたヘ
リカルスプライン24が設置されている。駆動軸23の
他端にはクランク軸の一端に設けたクランク歯車(図示
せず)と同期して歯車25が噛合い、駆動軸23を駆動
している。
The rotary valve 1 used in the present invention
The opening / closing timing adjusting device 8 will be described with reference to FIG. In FIG. 6, a helical spline 22 is installed at one end 21a of the shaft 21 of the rotary valve 18, and the opposite drive shaft 2
A helical spline 24 that is twisted in the opposite direction to the spline 22 is installed at one end of 3. A gear 25 meshes with the other end of the drive shaft 23 in synchronization with a crank gear (not shown) provided at one end of the crank shaft to drive the drive shaft 23.

【0015】ヘリカルスプライン22と24とに噛合う
調整駒26の溝27にはレバ−28の一端29が係合し
ている。
One end 29 of a lever 28 is engaged with a groove 27 of an adjusting piece 26 which meshes with the helical splines 22 and 24.

【0016】従って、本発明の負荷調節はレバ−28の
一端29を図6の左右に動かすことによって、ロ−タリ
−バルブ18の閉時期、即ち図2における点Paを変更
することにより吸気行程における吸気量(図2に示す長
さa)を変更して行われる。
Therefore, in the load adjustment of the present invention, by moving one end 29 of the lever 28 left and right in FIG. 6, the closing timing of the rotary valve 18, that is, the point Pa in FIG. The intake air amount (length a shown in FIG. 2) at is changed.

【0017】次に、このような4サイクルのミラーサイ
クルを併用したオットーサイクルエンジンを用いた、実
施例に係る排気浄化方法を説明する。
Next, an exhaust purification method according to the embodiment using the Otto cycle engine combined with such a 4-cycle Miller cycle will be described.

【0018】実施例に係るミラーサイクルを併用したオ
ットーサイクルエンジンは、ロータリーバルブ18は吸
気弁7の開閉時期と同じく開閉し、吸気弁7が開弁する
エンジンの吸気行程において、吸気口6やシリンダ1内
には、大気圧に近い空気とそれに対応する量のガソリン
が燃料噴射弁8より噴射される。そして、空気とガソリ
ンが混合気となってシリンダ1内に流入するが、この時
シリンダ1の圧力は大気に近く、エンジンの吸気行程の
下死点近くにおいて補助カム13により排気弁10が開
弁しても、シリンダ1内と排気口9との圧力差は小さ
く、逆流する排気ガスの量も少なく、通常の4サイクル
オットーサイクルエンジンと同様な動作が行なわれる。
In the Otto cycle engine combined with the mirror cycle according to the embodiment, the rotary valve 18 is opened and closed at the same time as the intake valve 7 is opened and closed, and the intake port 6 and the cylinder are opened in the intake stroke of the engine in which the intake valve 7 is opened. Air close to the atmospheric pressure and gasoline in an amount corresponding to the atmospheric pressure are injected from the fuel injection valve 8 into the fuel cell 1. Then, air and gasoline form a mixture and flow into the cylinder 1. At this time, the pressure of the cylinder 1 is close to the atmosphere, and the exhaust valve 10 is opened by the auxiliary cam 13 near the bottom dead center of the intake stroke of the engine. However, the pressure difference between the inside of the cylinder 1 and the exhaust port 9 is small, the amount of exhaust gas flowing back is small, and the same operation as that of a normal 4-cycle Otto cycle engine is performed.

【0019】ところで、軽負荷動作やアイドル動作の部
分負荷時には、混合気の吸入量を制限するようにロ−タ
リ−バルブ18の閉じ時期は早められ、図2に示すよう
に吸気行程の途中の点Paで閉じることにより吸入空気
量を制限するので、シリンダ1内の圧力は、大気状態の
ままの点P7から点Paまで混合気を吸入し、吸気行程
途中のPaにおいてロータリーバルブ18が閉じられる
が、ピストン2はさらに低下し、混合気は断熱膨脹しつ
つ圧力と温度を下げ、P2で吸気行程下死点に達する。
この吸気行程の下死点P2において、補助カム13によ
り排気弁10が開弁され、大気圧状態にある排気口9内
の排気ガスは、負圧であるシリンダ1内に逆流する。こ
の時図3(b)に示すように、シリンダ1内の混合気は
大気圧以下の圧力p1で、容積v1はシリンダ1の排気
量となり、温度はt1となっているが、排気ガスの逆流
によって、混合気は大気圧近傍まで断熱圧縮され、図3
(a)に示すように、容積はv2に減少し、圧力は大気
圧近くのp2と高くなり、温度がt2に上昇し、混合気
の状態は図2でP2からP8に移動する。ところで、逆
流した排気ガスの温度は、エンジン始動直後の低冷却水
温時にあっては、約200℃程度であり、これに圧縮さ
れた混合気が混合して図2の点P8では、さらに温度が
上昇する。この混合気と排気ガスとの混合ガスは、図2
の点P8から圧縮されて点P8aで大気圧状態となる
が、この時逆流した排気ガスの量は、図3(b)に示さ
れる。
By the way, at the time of partial load of light load operation or idle operation, the closing timing of the rotary valve 18 is advanced so as to limit the intake amount of the air-fuel mixture, and as shown in FIG. Since the intake air amount is limited by closing at point Pa, the pressure in the cylinder 1 sucks the air-fuel mixture from point P7 in the atmospheric state to point Pa, and the rotary valve 18 is closed at Pa in the middle of the intake stroke. However, the piston 2 is further lowered, the mixture is adiabatically expanded and the pressure and temperature are lowered, and at P2, the intake stroke bottom dead center is reached.
At the bottom dead center P2 of the intake stroke, the exhaust valve 10 is opened by the auxiliary cam 13, and the exhaust gas in the exhaust port 9 under atmospheric pressure flows backward into the cylinder 1 which is a negative pressure. At this time, as shown in FIG. 3B, the air-fuel mixture in the cylinder 1 has a pressure p1 below atmospheric pressure, the volume v1 is the exhaust amount of the cylinder 1, and the temperature is t1, but the exhaust gas reverse flow Causes the air-fuel mixture to be adiabatically compressed to near atmospheric pressure.
As shown in (a), the volume decreases to v2, the pressure increases to p2 near atmospheric pressure, the temperature rises to t2, and the state of the air-fuel mixture moves from P2 to P8 in FIG. By the way, the temperature of the exhaust gas that flows back is about 200 ° C. at the time of low cooling water temperature immediately after the engine is started, and the compressed air-fuel mixture mixes with this, and at point P8 in FIG. To rise. The mixed gas of this mixed gas and exhaust gas is as shown in FIG.
The point P8 is compressed to the atmospheric pressure state at the point P8a, and the amount of the exhaust gas that flows backward at this time is shown in FIG. 3 (b).

【0020】実施例においては、図2の点P8から圧縮
行程が開始され、圧縮上死点P9では、従来の点P3よ
りも圧力も温度も高く、ここで点火栓5により着火さ
れ、燃焼によってシリンダ1内の圧力は点P10にまで
高くなり、点P10より膨脹して点P11で膨脹行程を
完了する。膨脹後の点P11においても、当然のことな
がら温度は従来よりも高く、高い排気ガス温度は触媒に
活性を与えるのである。排出直後の排気口9にある排気
ガスは活性が強く燃焼促進剤としての効果がある。とこ
ろで、2サイクルガソリンエンジンが、多量の排気ガス
が混合気に混入していても、よく燃焼することが知られ
ており、実施例でも多量の排気ガスが混入しても、燃焼
不良となることはない。
In the embodiment, the compression stroke starts at point P8 in FIG. 2, and at the compression top dead center P9, the pressure and temperature are higher than those of the conventional point P3, where it is ignited by the ignition plug 5 and burned. The pressure in the cylinder 1 rises to the point P10, expands from the point P10, and completes the expansion stroke at the point P11. Even at the point P11 after expansion, the temperature is naturally higher than in the conventional case, and the high exhaust gas temperature gives the catalyst activity. The exhaust gas in the exhaust port 9 immediately after being discharged is highly active and has an effect as a combustion promoter. By the way, it is known that a two-cycle gasoline engine burns well even if a large amount of exhaust gas is mixed in the air-fuel mixture. Even in the examples, even if a large amount of exhaust gas is mixed, combustion failure will occur. There is no.

【0021】実施例では、排気ガスの逆流は、シリンダ
1内の負圧によって生じるので、負圧の大きい排気温度
の低い低負荷では、その量は多く、それによる排気ガス
の温度上昇も大きく、負荷の上昇と共にシリンダ1内の
負圧は小さくなる。このために、排気ガスの逆流量も低
下し、全負荷時のスロットルバルブ全開時には、シリン
ダ1内の圧力はほぼ大気圧となり、排気ガスの逆流は殆
ど発生せず、公知のエンジンと同量の混合気を吸入する
ことが可能で、同出力とすることが可能である。又、公
知のエンジンにおいても、負荷の増大と共に排気温度は
高まるので、負荷の増大と共に排気ガスの逆流量を低減
しても、実施例の触媒19の活性には何らの支障を来す
ものではない。
In the embodiment, the reverse flow of the exhaust gas is generated by the negative pressure in the cylinder 1. Therefore, at a low load with a large negative pressure and a low exhaust temperature, the amount thereof is large and the temperature rise of the exhaust gas is also large. The negative pressure in the cylinder 1 decreases as the load increases. Therefore, the reverse flow rate of the exhaust gas is also reduced, and when the throttle valve is fully opened at full load, the pressure in the cylinder 1 becomes almost atmospheric pressure, and the reverse flow of the exhaust gas hardly occurs. Air-fuel mixture can be inhaled and the same output can be obtained. Further, also in the known engine, the exhaust temperature rises as the load increases, so even if the reverse flow rate of the exhaust gas is reduced as the load increases, the activity of the catalyst 19 of the embodiment will not be hindered. Absent.

【0022】このように実施例によると、圧縮上死点P
9では十分な燃焼温度が与えられるので、不完全燃焼や
燃焼速度の減少が生じることがなく、熱効率の劣化のな
い動作が行なわれ、不完全燃焼や燃焼速度の減少による
熱効率の低下がない。
As described above, according to the embodiment, the compression top dead center P
In No. 9, since a sufficient combustion temperature is given, incomplete combustion or reduction in combustion speed does not occur, operation without deterioration of thermal efficiency is performed, and thermal efficiency does not decrease due to incomplete combustion or reduction in combustion speed.

【0023】又、実施利に係るミラーサイクルを併用し
たオットーサイクルエンジンは、吸気弁7は、図4に示
すように吸気行程下死点においても、開弁中であり、同
時に補助カム13によって排気弁10も開弁するので、
公知のエンジンのように吸気集合管の一端に、1個だけ
のスロットルバルブを有する構成では、排気口9から逆
流した排気ガスの一部は、図4の矢印に示すように、シ
リンダ1内を素通りして吸気管16を通り、他の吸気行
程中のシリンダ内に吸入される。そして、シリンダ1内
の混合気を効果的に圧縮せず、実施例の効果を減退させ
ることが確認された。これに対して実施例の構成におい
ては、吸気枝管16の一部で多シリンダエンジンの各吸
気管にそれぞれロ−タリ−バルブ18を配置することに
よって、吸気口6内に逆流した排気ガスを大気圧である
ロ−タリ−バルブ18の上流側への溢流を防止し、シリ
ンダ1内においても排気ガスの逆流による混合気の圧縮
を確実にしている。
Further, in the Otto cycle engine which also uses the Miller cycle according to the embodiment, the intake valve 7 is open even at the bottom dead center of the intake stroke as shown in FIG. Since the valve 10 also opens,
In a configuration in which only one throttle valve is provided at one end of the intake manifold as in a known engine, a part of the exhaust gas that flows backward from the exhaust port 9 flows in the cylinder 1 as shown by an arrow in FIG. It passes through the intake pipe 16 and is sucked into the cylinder during another intake stroke. Then, it was confirmed that the air-fuel mixture in the cylinder 1 was not effectively compressed and the effect of the embodiment was diminished. On the other hand, in the configuration of the embodiment, the rotary valve 18 is arranged in each of the intake pipes of the multi-cylinder engine in a part of the intake branch pipe 16 so that the exhaust gas that flows back into the intake port 6 is discharged. Overflow to the upstream side of the rotary valve 18, which is at atmospheric pressure, is prevented, and compression of the air-fuel mixture due to reverse flow of exhaust gas is ensured even in the cylinder 1.

【0024】[0024]

【発明の効果】以上に説明したように、本発明による
と、ロータリーバルブを備えたミラーサイクルを併用し
たオットーサイクルエンジンにおいて、部分負荷時に吸
気行程の下死点で、エンジンの排気ガスを排気弁を通じ
てシリンダ内に逆流させることにより、圧縮上死点で十
分な燃焼温度が設定され、排気浄化が促進されるばかり
か、熱効率の劣化のない動作が行なわれ、不完全燃焼や
燃焼速度の減少による排気の低下がない排気浄化方法を
提供することが可能になる。
As described above, according to the present invention, in an Otto cycle engine which also uses a Miller cycle equipped with a rotary valve, exhaust gas of the engine is exhausted at the bottom dead center of the intake stroke during partial load. By backflowing into the cylinder through the cylinder, a sufficient combustion temperature is set at the compression top dead center, not only the exhaust gas purification is promoted, but also the operation without deterioration of the thermal efficiency is performed, resulting in incomplete combustion and reduction of the combustion speed. It is possible to provide an exhaust gas purification method that does not cause a decrease in exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に使用するミラーサイクルを
併用したオットーサイクルエンジンの吸気弁が閉じた状
態での構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the configuration of an Otto cycle engine used together with a Miller cycle used in an embodiment of the present invention in a state where an intake valve is closed.

【図2】該一実施例の動作を説明するP−V線図であ
る。
FIG. 2 is a P-V diagram for explaining the operation of the embodiment.

【図3】該一実施例の排気ガスの逆流によるシリンダ内
の混合気の状態の説明図であって、(a)は逆流後、
(b)は(a)の逆流前の説明図である。
FIG. 3 is an explanatory view of the state of the air-fuel mixture in the cylinder due to the backflow of exhaust gas of the one embodiment, FIG.
(B) is explanatory drawing before the backflow of (a).

【図4】該一実施例に使用するミラーサイクルを併用し
たオットーサイクルエンジンの吸気弁が開いた状態での
構成を示す説明図である。
FIG. 4 is an explanatory diagram showing a configuration of an Otto cycle engine that also uses a Miller cycle used in the one embodiment in a state where an intake valve is opened.

【図5】該一実施例の動作の説明図である。FIG. 5 is an explanatory diagram of an operation of the one embodiment.

【図6】本発明に用いたロ−タリ−バルブの開閉時期調
整装置の説明図で、(a)は全体概略図、(b)は要部
断面図である。
6A and 6B are explanatory views of an opening / closing timing adjusting device for a rotary valve used in the present invention, FIG. 6A is an overall schematic view, and FIG.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ピストン 3 コンロッド 4 シリンダヘッド 5 点火栓 6 吸気口 7 吸気弁 8 燃料噴射弁 9 排気口 10 排気弁 11 弁ばね 12 ばね受け 13 補助カム 14 カム 15 タペット 16 吸気枝管 17 吸気集合管 18 ロ−タリーバルブ 19 触媒 20 排気マニホールド 1 Cylinder 2 Piston 3 Connecting Rod 4 Cylinder Head 5 Spark Plug 6 Intake Port 7 Intake Valve 8 Fuel Injection Valve 9 Exhaust Port 10 Exhaust Valve 11 Valve Spring 12 Spring Bearing 13 Auxiliary Cam 14 Cam 15 Tappet 16 Intake Branch Pipe 17 Intake Collecting Pipe 18 Rotary valve 19 Catalyst 20 Exhaust manifold

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロータリーバルブを備えたミラーサイク
ルを併用したオットーサイクルエンジンの排気浄化方法
において、吸気行程の下死点で、エンジンの排気ガスを
排気弁を通じてシリンダ内に逆流させることを特徴とす
るオットーサイクルエンジンの排気浄化方法。
1. An exhaust gas purification method for an Otto cycle engine that also uses a Miller cycle equipped with a rotary valve, wherein exhaust gas of the engine is caused to flow backward through the exhaust valve into the cylinder at the bottom dead center of the intake stroke. Exhaust purification method for Otto cycle engine.
JP5086689A 1993-03-22 1993-03-22 Exhaust gas purifying method for otto cycle engine Pending JPH06272623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086689A JPH06272623A (en) 1993-03-22 1993-03-22 Exhaust gas purifying method for otto cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086689A JPH06272623A (en) 1993-03-22 1993-03-22 Exhaust gas purifying method for otto cycle engine

Publications (1)

Publication Number Publication Date
JPH06272623A true JPH06272623A (en) 1994-09-27

Family

ID=13893954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086689A Pending JPH06272623A (en) 1993-03-22 1993-03-22 Exhaust gas purifying method for otto cycle engine

Country Status (1)

Country Link
JP (1) JPH06272623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500497A (en) * 2006-08-10 2010-01-07 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500497A (en) * 2006-08-10 2010-01-07 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine

Similar Documents

Publication Publication Date Title
US5224460A (en) Method of operating an automotive type internal combustion engine
US3507261A (en) Method and apparatus for reducing exhaust emissions and improving fuel utilization in internal combustion engines
US4565167A (en) Internal combustion engine
US5161497A (en) Variable valve timing operated engine
US7281527B1 (en) Internal combustion engine and working cycle
US4424790A (en) Method of improving the efficiency of a supercharged diesel engine
US20060021606A1 (en) Internal combustion engine and working cycle
US20050115547A1 (en) Internal combustion engine and working cycle
AU743600B2 (en) Improved internal combustion engine and working cycle
WO1998002653A1 (en) Improved internal combustion engine and working cycle
JPH045457A (en) Otto cycle engine
US3494336A (en) Method and apparatus for reducing exhaust emissions and improving fuel utilization in internal combustion engines
JP3280758B2 (en) Intake device for engine with mechanical supercharger
EP0636777B1 (en) Four-stroke engine
US3625189A (en) Method and apparatus for reducing exhaust emissions and improving fuel utilization in internal combustion engines
US5303686A (en) Method of purifying exhaust gases of an Otto-cycle engine
JPH06272623A (en) Exhaust gas purifying method for otto cycle engine
JP2519110B2 (en) Otto-cycle engine
WO2004059149A1 (en) Method of modifying exhaust valve timing to improve engine performance
EP0057591B1 (en) Internal combustion engine
JPH0642410A (en) Internal combustion engine provided with exhaust gas reflux device
JP2742815B2 (en) Engine intake and exhaust timing control device
JPS60256523A (en) Diesel engine
EP1522690A2 (en) Improved internal combustion engine and working cycle
Bata et al. Variable valve timing for diesel compression ratio control