JPH0627209A - Inspecting method for magnet - Google Patents

Inspecting method for magnet

Info

Publication number
JPH0627209A
JPH0627209A JP14367892A JP14367892A JPH0627209A JP H0627209 A JPH0627209 A JP H0627209A JP 14367892 A JP14367892 A JP 14367892A JP 14367892 A JP14367892 A JP 14367892A JP H0627209 A JPH0627209 A JP H0627209A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
center
magnetic
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14367892A
Other languages
Japanese (ja)
Other versions
JPH07119794B2 (en
Inventor
Kiyoshi Aizawa
清志 合澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14367892A priority Critical patent/JPH07119794B2/en
Publication of JPH0627209A publication Critical patent/JPH0627209A/en
Publication of JPH07119794B2 publication Critical patent/JPH07119794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide an inspecting method for magnet in which center of magnetic field of a multi-pole magnet can be determined easily through measurement, shift from geometrical center can be measured, and defect of magnet material can be determined. CONSTITUTION:When magnetic fluid is encapsulated in a short tubular instrument 6 arranged substantially in parallel along the end face of a yoke 2 in a magnetic space 5 defined between the poles 3, 3' or a multi-pole magnet 1, the magnetic fluid is scattered by the magnetic field to the periphery of a vessel and a dark part 9 is formed in the center thus facilitating determination of the center of the field 5. Consequently, center of the field 5 of an actually operating magnet 1 can be measured easily and positively, assembling work of magnet can be carried out accurately, and reliability of all products can be enhanced by determining the center of the field of each magnet through simple inspection work at the time of mass production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】開示技術は、精密機械装置等に装
備される電磁石によって形成される磁場の設計通りの状
態であるか否か等を簡易に、且つ、正確に測定する技術
分野に属する。
BACKGROUND OF THE INVENTION The disclosed technology belongs to the technical field of easily and accurately measuring whether or not a magnetic field formed by an electromagnet equipped in a precision machine or the like is in a designed state. .

【0002】[0002]

【従来の技術】周知の如く、近代社会は高度に発達した
科学技術に負うところが大であり、特に、近時所謂メカ
トロ技術に代表されるように電磁気システムを装備した
各種の施設装置が各方面で用いられている。
2. Description of the Related Art As is well known, modern society largely depends on highly developed science and technology, and in particular, various facility devices equipped with an electromagnetic system, as represented by so-called mechatronics technology, are widely used in various fields. Used in.

【0003】そして、当然のことながら、メカトロ機能
を装備したハイテク技術は本来の機能を設計通りに発揮
するためには組付設置状態が正確であることが不可欠で
あり、特に、原子力,半導体,医療等の先端技術におい
てはこれらの点が厳しく要求されている。
As a matter of course, in the high-tech technology equipped with the mechatronics function, it is indispensable that the assembly and installation state is accurate in order to exert the original function as designed, and especially, the nuclear power, semiconductor, These points are strictly required in advanced technologies such as medical treatment.

【0004】而して、研究開発用の基礎施設は勿論のこ
と、企業における産業施設にあってもmm単位は勿論の
こと、近時はミクロン単位を超えてサブミクロン単位の
精細度を有する装置施設が不可欠であり、これらの各種
施設、例えば、高エネルギービーム加速蓄積装置等に見
られるように各種の磁石、就中、電磁石が多く用いら
れ、多重極磁石等も装置の特性を高度に上げるべく用い
られている。
Thus, not only basic facilities for research and development, but also industrial facilities of companies, not to mention mm units, recently, devices having a definition of sub-micron units exceeding micron units. Facilities are indispensable, and various magnets, especially electromagnets are often used as seen in these various facilities, for example, high energy beam acceleration storage devices, and multipole magnets also improve the characteristics of the device to a high degree. It is used for all purposes.

【0005】したがって、かかる電磁石の製造組付けは
勿論のこと作動中における種々の原因からの挙動につい
て初期設計通りの高精度の取り合いが常に保たれ維持さ
れていなければならない。
Therefore, it is necessary to always maintain and maintain the high precision as originally designed regarding the behavior from various causes during the operation of manufacturing and assembling the electromagnet.

【0006】そのためには初期製造組付け時の取り合い
は勿論のこと、磁石のヨーク,ポールピースの材質,性
能は言うに及ばず組付けられた磁石からの磁場が設計通
りに形成されることが求められており、例えば、高エネ
ルギービーム加速蓄積装置において、荷電ビームのハン
ドリングに際し多くの多重極磁石が用いられているが、
当該荷電ビームの収束効率を上げ、当該荷電ビームを有
効に作用させるには磁場の中心を特定し、理論軌道に磁
場中心を一致させることが不可欠であるが、従来技術に
よっては磁場中心を正確、且つ、迅速に特定出来る技術
は現出されていなかった。
For this purpose, not only the initial manufacturing and assembling but also the material and performance of the yoke and pole piece of the magnet as well as the magnetic field from the assembled magnet can be formed as designed. For example, in a high energy beam acceleration storage device, many multipole magnets are used for handling a charged beam.
In order to increase the focusing efficiency of the charged beam and to effectively operate the charged beam, it is essential to specify the center of the magnetic field and match the magnetic field center with the theoretical orbit. Moreover, the technology that can be specified quickly has not been revealed.

【0007】例えば、磁場の空間に於ける所定数複数の
マッピングを行う手段が用いられているが、基本的に磁
場空間を所定数複数分割のメッシュ空間にし、各メッシ
ュ点の磁力を測定する必要があり、当然のことながら、
精度を高めるには測定点数、即ち、メッシュ分割数を多
く採る必要があり、作業が極めて煩瑣である欠点があ
り、長時間を要し、測定に熟練を要するという難点があ
った。
For example, a means for performing a predetermined number of mappings in the space of the magnetic field is used, but basically it is necessary to make the magnetic field space into a mesh space of a predetermined number of divisions and measure the magnetic force at each mesh point. And, of course,
In order to improve the accuracy, it is necessary to take a large number of measurement points, that is, the number of mesh divisions, and there is a drawback that the work is extremely complicated, and it takes a long time and requires skill in measurement.

【0008】そして、測定を行うにしても磁場強度の測
定用素子のアクティブエリアが所定の大きさを有してお
り、たとえ、そのアクティブエリアを特定出来たとして
も、磁場勾配の大きな空間を測定する場合にはそのアク
ティブエリア内での平均値を示すために、測定値とその
指示値の位置の関係において不具合が生ずることにな
る。
Even if the measurement is carried out, the active area of the element for measuring the magnetic field strength has a predetermined size, and even if the active area can be specified, the space with a large magnetic field gradient is measured. In this case, since the average value in the active area is shown, a problem occurs in the relationship between the measured value and the position of the indicated value.

【0009】代表的な測定用素子であるホール素子の場
合、指示値の温度依存性が顕著なため、温度管理を厳重
に行う必要があり、恒温室での測定、或いは、ヒータや
サーミスタを組込んだ熱容量の大きなプローブを組立て
て測定することが必須である。
In the case of a hall element, which is a typical measuring element, the temperature dependence of the indicated value is remarkable, so it is necessary to strictly control the temperature. It is essential to assemble and measure a probe with a large heat capacity.

【0010】前者では工場の一角で行うというわけには
いかず、後者を選んだ場合には、プローブの大きさを小
さくするには実行上限度があり、磁場空間の小さな磁石
の態様にあっては測定そのものが限られた範囲でしか行
えず、mm単位の精度でしか磁場中心を決定出来ないと
いう欠点があった。
The former cannot be carried out in one corner of the factory, and when the latter is selected, there is an upper limit of execution in order to reduce the size of the probe, and in the mode of a magnet with a small magnetic field space. The measurement itself can be performed only in a limited range, and the magnetic field center can be determined only with the accuracy of mm unit.

【0011】かかる多重極磁石の磁場の中心の求め方と
して上述の如くホール素子等を介し磁場分布のマッピン
グによる内挿方法が一般的であって、例えば、特開平2
−227684号公報発明に示されている様な磁場中心
測定器等の技術も案出されてはいるが、装置的に超伝導
体等を用いる等実用的でなく、又、コスト的にも高くつ
き、保守管理等の点でも実用的でない不利点がある。
As a method for obtaining the center of the magnetic field of such a multipole magnet, an interpolation method by mapping the magnetic field distribution via the Hall element or the like is generally used, as described in, for example, Japanese Patent Laid-Open No. Hei 2
Although the technology of the magnetic field center measuring device as shown in the invention has been devised, it is not practical such as using a superconductor as a device, and the cost is high. It also has the disadvantage of not being practical in terms of maintenance and maintenance.

【0012】ところで、磁場の計測や測定にはコバルト
等の咸磁性粒子を所定の界面活性剤等を介しシリコン液
等に分散させたコロイド状等の磁性流体を用いた技術が
種々開発されており、例えば、磁性流体の有する複屈折
特性を利用し、磁場強度変化による屈折率変化を位相差
の形で計測して磁束密度分布を求めるような、例えば、
特開昭58−180963号公報発明や特開昭59−1
51071号公報発明等があるが、磁場空間における磁
場中心を決定する技術とは全く異なるものであり、当該
磁場中心の決定や磁場分布に影響する磁石の材質や性状
を判断する技術には転用出来ない不具合がある。
By the way, various techniques have been developed for measuring magnetic fields and using colloidal magnetic fluids in which magnetic particles of cobalt or the like are dispersed in silicon liquid or the like through a predetermined surfactant or the like. , For example, using the birefringence characteristic of a magnetic fluid, to obtain the magnetic flux density distribution by measuring the refractive index change due to the magnetic field strength change in the form of a phase difference,
JP-A-58-180963 JP Invention and JP-A-59-1
Although there is an invention etc., it is completely different from the technique of determining the magnetic field center in the magnetic field space, and can be diverted to the technique of determining the magnetic field center and determining the material and properties of the magnet that affect the magnetic field distribution. There is no defect.

【0013】又、磁場空間における磁性流体のスパイク
状のパターンを硬化剤を用いて固定し、磁場空間から取
り出して磁場分布状態を観察するような、例えば、特開
昭63−205586号公報発明等も開発されている
が、上述同様磁場中心を簡易に、且つ、正確に測定する
ことが出来ないマイナス点がある。
Further, the spike-like pattern of the magnetic fluid in the magnetic field space is fixed by using a curing agent and taken out from the magnetic field space to observe the magnetic field distribution state, for example, the invention disclosed in JP-A-63-205586. Has also been developed, but there is a minus point that the magnetic field center cannot be easily and accurately measured as described above.

【0014】更に、近時薄肉で透明な透磁性の材料で作
製され、短円筒容器内に磁性流体を封入し、磁気テープ
等の磁化形状を直接的に目視して観察し得る簡易な測定
器等は開発されているが、かかる測定器を用いて磁場空
間に於ける磁場の特異点等の検出や磁場分布パターンか
ら磁石性状等を判定することに用いられた例はなく現実
としては前述ホール素子等を介しての磁場分布のマッピ
ングの内挿による方法が一般的唯一の方法である。
Further, a simple measuring instrument which is recently made of a thin and transparent magnetically permeable material, in which a magnetic fluid is enclosed in a short cylindrical container and the magnetized shape of a magnetic tape or the like can be directly visually observed. , Etc. have been developed, but there is no example used to detect singular points of the magnetic field in the magnetic field space or to judge the magnetic properties etc. from the magnetic field distribution pattern using such a measuring instrument. The method by interpolation of mapping of the magnetic field distribution via an element or the like is generally the only method.

【0015】そして、多重極磁石等の製造、及び、組付
けにおける機械的な相対位置関係から理論的な磁場中心
を計算し得るとしても、種々の複合的原因により、当該
中心と実際の磁場中心とは必ずしも一致せず、稼動時に
おけるハンドリングに支障をきたす問題がある。
Even if the theoretical magnetic field center can be calculated from the mechanical relative positional relationship in manufacturing and assembling multipole magnets, etc., due to various complex causes, the magnetic field center and the actual magnetic field center can be calculated. Does not always coincide with the above, and there is a problem that it hinders handling during operation.

【0016】[0016]

【発明の目的】この出願の発明の目的は上述従来技術に
基づく近時各種の精密機械装置設備に多用されている多
重極磁石の磁場の中心、或いは、該中心と磁石の設計上
の中心とのずれ、更には、磁場の形成に影響を有する磁
石の材質や変質等の判別における測定の問題点を解決す
べき技術的課題とし、極めて簡単な手法ながら、合理的
手法により磁場中心の決定、そして、幾何学的の中心と
のずれや磁場に影響を及ぼす材質欠陥等の性状を確実に
測定,判断することが出来るようにして各種産業におけ
る電磁器技術利用分野に益する優れた磁石の検査方法を
提供せんとするものである。
The object of the invention of this application is to define the center of the magnetic field of a multi-pole magnet, or the center of the magnet and the design center of the magnet, which is widely used in various precision mechanical equipments based on the above-mentioned prior art. Deviation, further, the technical problem to be solved in the determination of the material and alteration of the magnet that has an influence on the formation of the magnetic field is a technical issue to be solved, the determination of the center of the magnetic field by a rational method, although it is a very simple method, In addition, it is possible to reliably measure and judge the properties such as the deviation from the geometric center and the material defects that affect the magnetic field. It is intended to provide a method.

【0017】[0017]

【課題を解決するための手段・作用】上述目的に沿い先
述特許請求の範囲を要旨とするこの出願の発明の構成
は、前述課題を解決するために、極めて高精度の稼動,
運転条件を必要とする各種の装置設備にあって装備され
る多重極型の磁石等の磁場の中心を決定するに際し、基
本的に所定の磁性流体を薄肉透明であって透磁性の短円
筒形等の容器に封入した測定器を用い、多重極磁石内の
磁場空間に磁石の端面に沿って略平行姿勢でセットし、
稼動される磁石の磁力により感応する測定器内の磁性流
体中の咸磁性粒子のみが該測定器の容器の周囲に散在
し、感応しないものは残存して視認するに、磁場の中心
においては磁界が存在しないため磁場中心付近の咸磁性
粒子は残存し暗点として視認可能にされ、それにより磁
場の中心が容易に確認され、磁場中心の決定がなされ、
又、記録するにはカメラ等により当該暗点を有する測定
器を撮影するようにし、又、三次元形状測定機等を介し
ての幾何学的中心とのずれを測定し、当該磁石の特性を
検査することが出来、更に、相隣るポールピースから等
距離にある平面に略平行姿勢に測定器をセットし、磁性
流体の面に垂直に磁力が働く部位において磁性流体に変
化は生じない部位から僅かにでも離反するとポールに吸
引力が働いて電磁性粒子がポール方向に移動し、中央付
近に白線等が出現して磁石の軸方向特性の概略が判別出
来、当該白線の直線性の乱れにより磁石の材料や欠陥部
が間接的ながら正確に判別することが出来、製造組付け
時の磁石の検査が確実に、しかも、全ての量産品に対し
て行えるようにした技術的手段を講じたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the structure of the invention of the present application, which is based on the above-mentioned claims and has the above-mentioned object, is operated with extremely high accuracy.
When determining the center of the magnetic field of a multi-pole magnet installed in various equipment that requires operating conditions, basically a predetermined magnetic fluid is thin-walled transparent and magnetically permeable short cylindrical shape. Using a measuring instrument enclosed in a container such as, set in a magnetic field space in the multipole magnet along the end surface of the magnet in a substantially parallel posture,
Only the magnetic particles in the magnetic fluid in the measuring instrument, which are sensitive to the magnetic force of the magnet to be operated, are scattered around the container of the measuring instrument, and those that are not sensitive remain and are visually recognized. Since there is no, magnetic field particles near the magnetic field center remain and are made visible as dark spots, whereby the center of the magnetic field can be easily confirmed and the magnetic field center can be determined.
In addition, in order to record, take a picture of the measuring instrument having the dark point with a camera or the like, and measure the deviation from the geometric center via a three-dimensional shape measuring instrument or the like to determine the characteristics of the magnet. A part that can be inspected, and where the measuring device is set in a posture substantially parallel to a plane equidistant from the adjacent pole pieces, and the magnetic fluid does not change in the part where the magnetic force acts perpendicularly to the surface of the magnetic fluid. Even if it is slightly separated from the above, the attractive force acts on the pole and the electromagnetic particles move in the direction of the pole, a white line appears near the center, and the outline of the axial characteristics of the magnet can be determined, and the linearity of the white line is disturbed. The indirect and accurate identification of magnet materials and defects is made possible by means of the technical measures to ensure reliable inspection of magnets during manufacturing and assembly and for all mass-produced products. It is a thing.

【0018】[0018]

【実施例】次に、この出願の発明の実施例を図面を参照
して説明すれば以下の通りである。
Embodiments of the invention of this application will be described below with reference to the drawings.

【0019】図1に示す実施例は、例えば、SR光発生
装置等の高エネルギービーム加速蓄積装置の荷電ビーム
の収束等に設けられた四重極電磁石の磁場の中心を決定
する態様であり、電磁石1はリング状のヨーク2の内側
に相対向して4つのポールピース3,3' …が一体的に
設けられ、コイル4,4が各々巻装されており、これら
の4つのポールピースにより磁場空間5が形成されてい
る。
The embodiment shown in FIG. 1 is a mode in which the center of the magnetic field of a quadrupole electromagnet provided for focusing a charged beam in a high energy beam acceleration storage device such as an SR light generator is determined. The electromagnet 1 is integrally provided with four pole pieces 3, 3 ′ inside the ring-shaped yoke 2 so as to face each other, and the coils 4 and 4 are wound around each of them. A magnetic field space 5 is formed.

【0020】而して、6は磁性流体式の測定器であり、
図3に示す様に、適宜の透明樹脂等薄肉の透明材質製で
あって非磁性の容器7が背面にはアルミ製の薄板,表面
には透視用の透明樹脂製のパネルが一体的に添着されて
容器を形成し、内部には、例えば、シリコン液にコバル
ト等の咸磁性粒子をコロイド状に分散した磁性流体8が
密封状に収納されている。
6 is a magnetic fluid type measuring instrument,
As shown in FIG. 3, a non-magnetic container 7 made of a thin transparent material such as an appropriate transparent resin is integrally attached to a thin aluminum plate on the back surface and a transparent resin panel on the front surface. Thus, a container is formed, and a magnetic fluid 8 in which, for example, magnetic colloid particles such as cobalt are dispersed in silicon liquid in a colloidal form is contained in a sealed state.

【0021】尚、かかる測定器6はこの出願の時点にお
いて、前述した磁性体の磁化形状の目視を磁性流体の濃
淡で視認することが出来るものであって市販されている
ものである。
At the time of the filing of this application, the measuring instrument 6 is a commercially available instrument that allows the visual observation of the magnetized shape of the magnetic material as described above based on the density of the magnetic fluid.

【0022】而して、該磁石1の磁場5の中心は前述し
たホール素子を介しての磁場分布のマッピング内挿法に
より概略的には決定されるものの、実装設備として必ず
しも設計位置に一致しているとは限らず、したがって、
高エネルギービーム加速蓄積装置の稼動に際しては荷電
ビームの収束に設計通り高精度の効果を与えることが出
来かねるために、当該磁場5の中心を決定するべく測定
器6を当該図1に示す様に、適宜の透磁性体製のスペー
サ等を介しポールピース3,3' においてヨーク2の端
面に沿って略平行姿勢でヨーク2と測定器6との中心が
略一致するようにセットし、各コイル4,4…に通電し
てポールピース3,3' を励磁し、磁場5を形成する。
Thus, although the center of the magnetic field 5 of the magnet 1 is roughly determined by the mapping interpolation method of the magnetic field distribution through the above-mentioned Hall element, it does not always coincide with the design position as mounting equipment. Not always, therefore,
When the high energy beam accelerating and accumulating device is operated, it is impossible to give a highly accurate effect to the convergence of the charged beam as designed. Therefore, as shown in FIG. 1, the measuring device 6 is used to determine the center of the magnetic field 5. , The pole pieces 3 and 3 ′ are set so that the centers of the yoke 2 and the measuring device 6 are substantially parallel to each other along the end surface of the yoke 2 via an appropriate magnetically permeable spacer or the like. The pole pieces 3, 3'are excited by energizing 4, 4, ... And a magnetic field 5 is formed.

【0023】そこで、磁力線は測定器6の容器内を透過
し磁性流体8内の咸磁性粒子は磁力に引かれて容器周囲
に集中していくが、磁場の中心付近では周知の如く磁力
が作用しないために、咸磁性粒子はスポット的に残置
し、したがって、容器の周囲は淡色になり、中心部分は
黒色になり、軸方向直角断面において、当該黒色部分が
磁場5の中心であると決定することが出来る。
Therefore, the magnetic lines of force pass through the container of the measuring device 6 and the magnetic particles in the magnetic fluid 8 are attracted by the magnetic force and concentrate around the container. However, as is well known, the magnetic force acts near the center of the magnetic field. In order not to do so, the magnetic particles are left as spots, and therefore, the periphery of the container becomes light-colored, the central portion becomes black, and it is determined that the black portion is the center of the magnetic field 5 in the cross section perpendicular to the axial direction. You can

【0024】したがって、測定器の表面側の透明樹脂プ
レートに適宜の格子状目盛を付すことにより磁石1の磁
場5の中心を測定して決定することが出来る。
Therefore, the center of the magnetic field 5 of the magnet 1 can be measured and determined by attaching an appropriate grid scale to the transparent resin plate on the surface side of the measuring instrument.

【0025】このようにして測定器6の磁性流体8の残
置暗点9により四重極磁石1の磁場5の中心が正確に決
定されることが出来る。
In this way, the center of the magnetic field 5 of the quadrupole magnet 1 can be accurately determined by the residual dark spot 9 of the magnetic fluid 8 of the measuring device 6.

【0026】尚、不測にして該ポールピース3,3' …
に対するコイル4の結線にミスがあるような場合には極
性の設定が異なるようになるために暗点が現出されず、
したがって、コイル4の結線ミス等も即応的に判定する
ことが出来る。
Incidentally, the pole pieces 3, 3 '...
If there is a mistake in the connection of the coil 4 with respect to, the dark point will not appear because the polarity setting will be different,
Therefore, it is possible to promptly determine a connection mistake of the coil 4 or the like.

【0027】又、図2に示す様に、測定器6を見込む方
向にカメラ(テレビカメラを含む)10をセットするこ
とにより記録保存を可能にし、又、当該磁石1の磁場5
の中心を幾何学的に求めることも出来る。
Further, as shown in FIG. 2, by setting a camera (including a television camera) 10 in a direction in which the measuring instrument 6 is viewed, recording and storage are enabled, and the magnetic field 5 of the magnet 1 is set.
The center of can also be obtained geometrically.

【0028】そして、得られた磁場5の中心を該カメラ
10による撮影画像からの幾何学的な中心と実際に決定
された磁場の中心とを比較対比することにより、実際の
磁場の中心と幾何学的な中心とのずれを測定することが
可能となる。
Then, the center of the obtained magnetic field 5 is compared with the center of the actually determined magnetic field by comparing the geometric center of the image captured by the camera 10 with the center of the actually determined magnetic field. It is possible to measure the deviation from the scientific center.

【0029】尚、設計変更的には、立ち姿勢にせず横に
した姿勢にした場合であっても、実質的に奏する作用効
果に変りないことは勿論のことである。
Incidentally, it goes without saying that the design change does not substantially change the working effect even when the body is laid down instead of standing.

【0030】次に、図4,図5に示す実施例において
は、マルチポール磁石1の横方向に対する検査の態様で
あり、相隣るポールピース3,3、或いは、3' ,3'
から等距離にある平面(図4においては磁石1の中心軸
を通る平面、及び、垂直面)では磁力が当該平面に垂直
に働くことにより測定器6の磁性流体8には変化は生じ
ないが、これらの平面から少し離隔した部位ではポール
方向に引き寄せられる磁力が中心軸上付近で生ずること
により、当該平面内の中心軸垂直方向に相当する位置の
中心として咸磁性粒子がポール方向に移動し、そのため
に測定器6の中央付近に淡色(例えば、白色)の線9'
が図5に示す様に出現する。
Next, in the embodiment shown in FIGS. 4 and 5, the inspection is performed in the lateral direction of the multi-pole magnet 1, and the adjacent pole pieces 3, 3 or 3 ', 3'.
In a plane equidistant from (a plane passing through the central axis of the magnet 1 in FIG. 4 and a vertical plane), the magnetic force acts perpendicularly to the plane, so that the magnetic fluid 8 of the measuring instrument 6 does not change. , In a part slightly separated from these planes, magnetic force attracted in the pole direction is generated in the vicinity of the central axis, so that the magnetic particles move in the pole direction as the center of the position in the plane corresponding to the direction perpendicular to the central axis. , For that purpose, a light-colored (for example, white) line 9 ′ is provided near the center of the measuring device 6.
Appears as shown in FIG.

【0031】したがって、当該白線9' を観察(或い
は、カメラにより撮影する)によって磁石1の軸方向の
およその特性を判別することが可能となる。
Therefore, it is possible to determine the approximate characteristics of the magnet 1 in the axial direction by observing (or photographing with a camera) the white line 9 '.

【0032】例えば、白線9' が真直状でなければ、磁
石材料が軸方向に於いて何らかの欠陥を有しているもの
との判断が可能であり、応急の対応策を講ずることが出
来る。
For example, if the white line 9'is not straight, it can be judged that the magnet material has some defects in the axial direction, and an emergency measure can be taken.

【0033】尚、この出願の発明の実施態様は上述各実
施例に限るものでないことは勿論であり、例えば、磁石
については高エネルギービーム加速蓄積装置以外にも半
導体製造装置や医療装置等にも適用出来ること等種々の
態様が採用可能である。
Of course, the embodiment of the invention of this application is not limited to the above-mentioned embodiments. For example, the magnet can be applied to not only the high energy beam acceleration storage device but also the semiconductor manufacturing device, medical device, etc. Various aspects such as applicability can be adopted.

【0034】又、設計変更的には多重極磁石は4極以外
にも6極,8極等適用可能であり、測定器の容器につい
ては短円筒状に限らないことは勿論のことである。
Further, in terms of design modification, the multipole magnet can be applied to 6 poles, 8 poles, etc. in addition to 4 poles, and it goes without saying that the container of the measuring instrument is not limited to the short cylindrical shape.

【0035】[0035]

【発明の効果】以上、この出願の発明によれば、基本的
に各種の精密機械装置設備等に多用されている多重極磁
石等の電磁石において、各ポールピースにより形成され
る磁場が、その中心を設計通りに有しているか否かが当
該装置設備の稼動を理論通り,設計通りに行ううえで極
めて重要であるが、機械装置的な幾何学的な中心が必ず
しも実稼動中の磁石の磁場の中心とは限らない場合が多
いことから、この出願の発明によれば簡単な手法で確実
に磁場の中心の決定され、又、磁場中における磁性流体
の状況により磁石の材料の変質や欠陥等の性状が正確に
判断され、良好な対応が出来るという優れた効果が奏さ
れる。
As described above, according to the invention of this application, in an electromagnet such as a multi-pole magnet which is basically frequently used in various precision machinery and equipment, the magnetic field formed by each pole piece has its center. It is extremely important to perform the operation of the equipment according to the theory and as designed, whether or not it has as designed, but the geometric center of mechanical equipment is not always the magnetic field of the magnet in actual operation. In many cases, the center of the magnetic field is not limited to the center of the magnetic field. Therefore, according to the invention of this application, the center of the magnetic field can be reliably determined by a simple method. The excellent effect of being able to accurately judge the property of and to make a good response is exhibited.

【0036】そして、磁場の中心が測定決定されること
から実稼動において荷電粒子の収束等の作用が設計通り
に行え、高性能の稼動を期待することが出来るという優
れた効果が奏される。
Since the center of the magnetic field is measured and determined, the action such as the convergence of the charged particles can be performed as designed in actual operation, and an excellent effect that high-performance operation can be expected is exhibited.

【0037】又、実際の磁場の中心と幾何学的な中心と
を比較対比し両者のずれを測定することにより、組付け
の変更や据付け姿勢等のチェックを適宜に行えるという
効果があり、更に、当該磁石の特性を簡易に経時的に測
定し検査することが出来、装置設備の本来的な性能を初
期設計状態通りに引き出すことが出来るという効果があ
る。
Further, by comparing and comparing the actual center of the magnetic field and the geometrical center and measuring the difference between them, there is an effect that it is possible to appropriately change the assembly and check the installation posture and the like. The characteristics of the magnet can be easily measured and inspected over time, and the original performance of the equipment can be brought out according to the initial design state.

【0038】そして、在来の如く同一サイズの磁石を量
産するような場合に個々に全て磁場分布測定が必要であ
り、極めて多くの工数を要し、作業が煩瑣であったもの
がこの出願の発明によれば、全数について予備的に検査
を行い、その概要を把握することが出来るのでサンプリ
ング的に所定数の磁場を測定することで、正確な品質、
及び、当該品質に対する信頼性を高めて量産供給が可能
となる利点がある。
In the conventional case where magnets of the same size are mass-produced, it is necessary to measure the magnetic field distributions individually, which requires an extremely large number of man-hours, and the work is complicated. According to the invention, it is possible to preliminarily inspect all the pieces and to grasp the outline thereof. Therefore, by measuring a predetermined number of magnetic fields in a sampling manner, accurate quality,
Further, there is an advantage that the reliability of the quality can be improved and mass production can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明の1実施例の模式正面図であ
る。
FIG. 1 is a schematic front view of an embodiment of the invention of this application.

【図2】同、断面図である。FIG. 2 is a sectional view of the same.

【図3】同、測定器の斜視図である。FIG. 3 is a perspective view of the measuring device.

【図4】別の実施例の部分切截模式斜視図である。FIG. 4 is a partial cutaway schematic perspective view of another embodiment.

【図5】同、測定器の磁性流体の状況斜視図である。FIG. 5 is a perspective view of the magnetic fluid of the measuring device.

【符号の説明】[Explanation of symbols]

8 磁性流体 6 測定器 3,3' ポール 1 多重極磁石 5 磁場 8 Magnetic fluid 6 Measuring device 3, 3'pole 1 Multipole magnet 5 Magnetic field

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非磁性で薄肉透明材質製の容器に磁性流体
を封入した測定器を多重極磁石の磁場内にセットして磁
場状態を測定する磁石の検査方法において、上記測定器
を多重極磁石の端面に沿って略平行姿勢で磁場空間中に
セットし磁場中心を決定するようにすることを特徴とす
る磁石の検査方法。
1. A magnet inspection method for measuring a magnetic field state by setting a measuring instrument in which a magnetic fluid is enclosed in a container made of a non-magnetic thin thin transparent material in a magnetic field of a multi-pole magnet. A method for inspecting a magnet, wherein the magnet is set in a magnetic field space in a substantially parallel posture along the end surface of the magnet to determine the center of the magnetic field.
【請求項2】上記測定器をカメラにより撮影することを
特徴とする特許請求の範囲第1項記載の磁石の検査方
法。
2. The method for inspecting a magnet according to claim 1, wherein the measuring device is photographed by a camera.
【請求項3】非磁性で薄肉透明材質製の容器に磁性流体
を封入した測定器を多重極磁石の磁場内にセットして磁
場状態を測定する磁石の検査方法において、上記測定器
を多重極磁石の端面に沿って略平行姿勢で磁場空間中に
セットし、併せて幾何学的に中心を決定し、而して双方
の決定した中心の相互のずれを測定するようにすること
を特徴とする磁石の検査方法。
3. A magnet inspection method for measuring a magnetic field state by setting a measuring instrument in which a magnetic fluid is enclosed in a container made of a non-magnetic thin thin transparent material in a magnetic field of a multi-pole magnet. It is characterized in that the magnet is set in a magnetic field space in a substantially parallel posture along the end face of the magnet, and the centers are geometrically determined, and the deviation between the two determined centers is measured. How to inspect magnets.
【請求項4】非磁性で薄肉透明材質製の容器に磁性流体
を封入した測定器を多重極磁石の磁場内にセットして磁
場状態を測定する磁石の検査方法において、上記測定器
を多重極磁石の相隣るポールピースから等距離にある平
面に平行姿勢であって磁石の中心軸近傍にて磁場空間中
にセットし磁石性状を測定するようにすることを特徴と
する磁石の検査方法。
4. A magnet inspection method for measuring a magnetic field state by setting a measuring instrument in which a magnetic fluid is enclosed in a container made of a non-magnetic thin thin transparent material in a magnetic field of a multi-pole magnet. A magnet inspection method characterized in that the magnet is set in a magnetic field space in the vicinity of the central axis of the magnet in a posture parallel to a plane equidistant from adjacent pole pieces of the magnet and the magnet property is measured.
JP14367892A 1992-05-11 1992-05-11 Magnet inspection method Expired - Lifetime JPH07119794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14367892A JPH07119794B2 (en) 1992-05-11 1992-05-11 Magnet inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14367892A JPH07119794B2 (en) 1992-05-11 1992-05-11 Magnet inspection method

Publications (2)

Publication Number Publication Date
JPH0627209A true JPH0627209A (en) 1994-02-04
JPH07119794B2 JPH07119794B2 (en) 1995-12-20

Family

ID=15344400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14367892A Expired - Lifetime JPH07119794B2 (en) 1992-05-11 1992-05-11 Magnet inspection method

Country Status (1)

Country Link
JP (1) JPH07119794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455249A (en) * 2019-06-24 2019-11-15 中国科学院高能物理研究所 Multipole magnet alignment method based on three coordinate measuring machine
CN112908663A (en) * 2019-11-19 2021-06-04 中核(天津)科技发展有限公司 Method for improving magnetic eccentricity of annular magnet, annular magnet fixed with centering ring and application of annular magnet
CN116165583A (en) * 2023-04-20 2023-05-26 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455249A (en) * 2019-06-24 2019-11-15 中国科学院高能物理研究所 Multipole magnet alignment method based on three coordinate measuring machine
CN112908663A (en) * 2019-11-19 2021-06-04 中核(天津)科技发展有限公司 Method for improving magnetic eccentricity of annular magnet, annular magnet fixed with centering ring and application of annular magnet
CN116165583A (en) * 2023-04-20 2023-05-26 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor
CN116165583B (en) * 2023-04-20 2023-08-04 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor

Also Published As

Publication number Publication date
JPH07119794B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
EP0775917B1 (en) Superconducting quantum interference device fluxmeter and nondestructive inspection apparatus
US20070120556A1 (en) Magnetic position sensor for a mobile object with limited linear travel
JP2009294062A (en) Magnetic signal measuring method and magnetic signal measuring instrument
JPH0627209A (en) Inspecting method for magnet
JP3235400B2 (en) Magnetic position sensor
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
EP2902777B1 (en) Electron gun abnormality detector and electron gun abnormality detection method
EP3081932A1 (en) Apparatus and method of inspecting defect of steel plate
JP3196296B2 (en) Hydrogen gas detector
Kreutzbruck et al. Adapted gmr array used in magnetic flux leakage inspection
Vervaeke Inline magnet inspection using fast high resolution MagCam magnetic field mapping and analysis
JP5070673B2 (en) Magnetic measurement apparatus and method
GB2466849A (en) Defect detection using magnetic field and particles
JPH0635128Y2 (en) Position detector
JPH1026608A (en) Nondestructive inspecting method
Brela et al. Characterization of magnetic actuators by measuring of magnetic stray fields with GMR-sensors
JP3166987B2 (en) Current sensor
Groenland et al. Measurement system for two-dimensional magnetic field distributions, applied to the investigation of recording head fields
Goj et al. Electromagnetic changer for AFM-tips
JPH0529199U (en) Magnetic shield device for electronic devices
JP5476584B2 (en) Current direction and density measurement method, display method, and measurement display device
Vervaeke 2.3. 1 Magnetic field camera for fast-high resolution inline magnet inspection
WO2022185655A1 (en) Sensing device
EP4139084B1 (en) Portable meter for measuring a force generated by a magnetic apparatus
JPH07120436A (en) Nondestructive examination device