JPH06271399A - Method and apparatus for pulling up single crystal - Google Patents

Method and apparatus for pulling up single crystal

Info

Publication number
JPH06271399A
JPH06271399A JP6224893A JP6224893A JPH06271399A JP H06271399 A JPH06271399 A JP H06271399A JP 6224893 A JP6224893 A JP 6224893A JP 6224893 A JP6224893 A JP 6224893A JP H06271399 A JPH06271399 A JP H06271399A
Authority
JP
Japan
Prior art keywords
gas
melt
nitrogen
single crystal
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6224893A
Other languages
Japanese (ja)
Inventor
Takeshi Yamauchi
剛 山内
Katsuhiko Nakai
克彦 中居
Masamichi Okubo
正道 大久保
Kiyoshi Kojima
清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Siltronic Japan Corp
Original Assignee
Nippon Steel Corp
NSC Electron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NSC Electron Corp filed Critical Nippon Steel Corp
Priority to JP6224893A priority Critical patent/JPH06271399A/en
Publication of JPH06271399A publication Critical patent/JPH06271399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently improve quality by recovering the gaseous N2 released from an Si melt surface right above the Si melt surface and reusing this gas at the time of blowing the gaseous N2, into the Si melt and solutionzing N2. CONSTITUTION:This apparatus 1 for pulling up an N2-doped single crystal is produced by disposing a heater 2, a graphite shell 3, a quartz crucible 4, a gaseous N2 introducing pipe 5, a gaseous N2, recovering pipe 6, etc. The gaseous N2 is blown from an introducing pipe 5 into the melt in the crucible 4. The gas from the melt surface is recovered from the recovering pipe 6 having a cover 8. After the recovered gas is recovered into a recovering device 10 having a storage tank, the supply gas from an N2 cylinder 11 is mixed therewith and the gaseous mixture is supplied into the melt through a purifying device 12 while the supply rate is adjusted by a flowmeter 13 and a pressure gage 14. The gas is thus reused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素ドーピングをした
メルトからのSi単結晶の引上げに関する。
FIELD OF THE INVENTION This invention relates to the pulling of Si single crystals from nitrogen-doped melts.

【0002】[0002]

【従来の技術】チョクラルスキー法による引上げSi単
結晶中に窒素をドーピングさせることによって、単結晶
から得られたウエハ中の結晶欠陥又は転位の発生が防げ
ることが知られている。
2. Description of the Related Art It is known that by doping nitrogen into a pulled Si single crystal by the Czochralski method, generation of crystal defects or dislocations in a wafer obtained from the single crystal can be prevented.

【0003】特開昭60−251190号公報には、引
上げSi単結晶中に窒素をドーピングさせるために、S
iメルト中に窒化珪素を添加して窒素を溶解させること
が記載されている。しかしながら、Siメルト中に最大
に窒素を溶解させようとすれば、固体状の窒化珪素がメ
ルト中に残留し、これが、引上げ単結晶中に巻き込まれ
て生成した単結晶に転位が発生する。
Japanese Laid-Open Patent Publication No. 60-251190 discloses that S is used for doping a pulled Si single crystal with nitrogen.
It is described that silicon nitride is added to i-melt to dissolve nitrogen. However, if it is attempted to dissolve nitrogen into the Si melt to the maximum extent, solid silicon nitride remains in the melt, and this is caught in the pulled single crystal to generate dislocations in the generated single crystal.

【0004】また、特開平4−108685号公報に
は、引上げSi単結晶中に窒素をドーピングするに当た
って、メルト中への窒素の溶解をガス供給パイプを用い
てN2ガスを供給することによって行うことが開示され
ており、これによって、融液の上向きの流れを生じて重
元素が容器の底部に濃化する重力偏析現象が生じること
がないとしている。
Further, in JP-A-4-108685, in doping nitrogen into a pulled Si single crystal, dissolution of nitrogen in the melt is carried out by supplying N 2 gas using a gas supply pipe. It is disclosed that the gravity segregation phenomenon in which the upward flow of the melt is generated and the heavy elements are concentrated at the bottom of the container is not thereby caused.

【0005】しかしながら、同公報に開示されているN
2 ガス吹込みは、吹き込まれたガスの大部分が融液表面
から放出され、吹込みガスの融液中への溶解効率が悪く
無駄になるばかりではなく、装置周辺がN2 ガスが富化
され、器具の窒化等による設備の劣化が生じるという問
題がある。
However, the N disclosed in the publication is
With 2 gas injection, most of the injected gas is discharged from the surface of the melt, and the efficiency of dissolution of the injected gas in the melt is poor and not only wasted, but the surrounding area of the device is enriched with N 2 gas. Therefore, there is a problem that equipment is deteriorated due to nitriding of equipment.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、チョ
クラルスキー法による窒素ドーピングSi単結晶引上げ
に際してのSiメルト中への窒素ガスの吹込みに当たっ
て、窒素のメルト中への溶解効率を上げるための手段を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the dissolution efficiency of nitrogen in a melt by blowing nitrogen gas into the Si melt when pulling a nitrogen-doped Si single crystal by the Czochralski method. To provide the means for that.

【0007】[0007]

【課題を解決するための手段】本発明は、Siメルト中
に窒素ガスを吹込んで窒素を固溶せしめるに際して、メ
ルト表面から放出される窒素ガスをSiメルト表面直上
で回収し、この回収ガスを再使用する単結晶中への窒素
のドーピング方法である。
According to the present invention, when nitrogen gas is blown into a Si melt to dissolve nitrogen therein, the nitrogen gas released from the melt surface is recovered immediately above the Si melt surface, and the recovered gas is collected. This is a method of doping nitrogen into a single crystal to be reused.

【0008】本発明に使用する窒素ガスとしては、純窒
素ガスの他、容易に分解して窒素を形成するシランガス
をも使用できる。
As the nitrogen gas used in the present invention, besides pure nitrogen gas, silane gas which is easily decomposed to form nitrogen can be used.

【0009】メルト中への窒素ガスの添加は、単結晶引
上げ前に行なった後、単結晶引上げを開始しても良い
し、また、単結晶引上げ中であっても良い。
The nitrogen gas may be added to the melt before the pulling of the single crystal, and then the pulling of the single crystal may be started or during the pulling of the single crystal.

【0010】さらに、本発明の方法を実施するための装
置として、上下可動のメルト内に浸漬可能なガス供給管
と、同ガス供給管近傍のメルト表面上方に、近傍に浮上
ガス回収のためのカバーと同カバーにガス回収装置に連
結したガス導出管を連結した回収装置を設けたものを使
用できる。
Further, as an apparatus for carrying out the method of the present invention, a gas supply pipe which can be immersed in a vertically movable melt, and a floating gas recovery system near the gas supply pipe, above the melt surface, and in the vicinity, are provided. It is possible to use a cover and a cover provided with a recovery device connected to a gas outlet pipe connected to the gas recovery device.

【0011】[0011]

【作用】窒素含有ガスの吹込み自体比較的簡単であり、
吹込みガスは泡状となって浮き上がるので、簡単に回収
し再利用することができ、窒素ガス供給時間でメルト中
の窒素濃度を調整する。
[Function] The blowing of the nitrogen-containing gas itself is relatively simple,
The blown gas floats as bubbles and can be easily collected and reused. The nitrogen concentration in the melt is adjusted by the nitrogen gas supply time.

【0012】[0012]

【実施例】図1は、本発明を適用したチョクラルスキー
法による引上げ装置1を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a pulling device 1 by the Czochralski method to which the present invention is applied.

【0013】同図において、2はグラファイト外殻3中
に嵌合した石英るつぼ4の外周に配置した加熱装置を示
す。5は石英るつぼ4中のSiメルトM中にN2 ガスを
吹込むための送入管である。6は、N2 ガス送入管5の
近傍に配置され、その下端にメルト中で泡立つN2 ガス
を回収するカバー8を有するN2 ガス回収管である。送
入管5と回収管6はフランジ7によって、装置壁9に真
空シールして取付けられている。N2 ガス回収管6を経
た回収ガスは、貯蔵タンクを有する回収装置10に一旦
回収された後、N2 ボンベ11からの供給ガスと混合さ
れ、純化装置12を経て、流量計13と圧力計14によ
って供給量を調整しつつメルトM中に供給され再利用さ
れる。
In the figure, reference numeral 2 denotes a heating device arranged on the outer periphery of a quartz crucible 4 fitted in a graphite shell 3. Reference numeral 5 is a feed pipe for blowing N 2 gas into the Si melt M in the quartz crucible 4. Reference numeral 6 denotes an N 2 gas recovery pipe which is arranged in the vicinity of the N 2 gas inlet pipe 5 and which has a cover 8 at its lower end for recovering N 2 gas bubbled in the melt. The inlet pipe 5 and the recovery pipe 6 are attached to the apparatus wall 9 by vacuum sealing with a flange 7. The recovered gas that has passed through the N 2 gas recovery pipe 6 is once recovered by a recovery device 10 having a storage tank, then mixed with the supply gas from the N 2 cylinder 11, and passed through a purifier 12 to a flow meter 13 and a pressure gauge. It is supplied into the melt M and is reused while adjusting the supply amount by 14.

【0014】この装置を用いて、40kgのメルトM中
に、18リットル/分の割合で送入管5からN2 ガスを
24分間供給した。この供給の過程で回収管6から、1
6リットル/分の割合で、メルト表面からガスを回収し
た。回収ガスと、ボンベ11からのガスの混合比は、
8:1の割合であり、全使用量は48リットルであっ
た。
Using this apparatus, 40 kg of melt M was supplied with N 2 gas from the inlet pipe 5 at a rate of 18 liters / minute for 24 minutes. From the recovery pipe 6 during this supply process,
Gas was recovered from the melt surface at a rate of 6 liters / minute. The mixing ratio of the recovered gas and the gas from the cylinder 11 is
The ratio was 8: 1 and the total amount used was 48 liters.

【0015】この混合ガスの使用によるメルト中の窒素
の含有量は1.4×1018atoms/ccであり、N
2 ガスのメルト中への含有利用率は0.1%であった。
The nitrogen content in the melt due to the use of this mixed gas is 1.4 × 10 18 atoms / cc, and N
The content utilization rate of the two gases in the melt was 0.1%.

【0016】N2 ガスの供給後、送入・回収管を取り外
したのち、上部開口15から種結晶を下げてメルト中に
浸漬し、30kgの単結晶を引き上げた。育成した単結
晶中には何等の転位もなく、ドープされた窒素量は、結
晶頭部で0.02ppm、結晶尾部で0.08ppmで
あって、何れの箇所もウエハに加工したのちの酸化膜耐
圧の劣化防止に十分な量であった。引上げ後の炉内治具
には窒化物の形成は認められなかった。
After supplying the N 2 gas and removing the feeding / recovering pipe, the seed crystal was lowered from the upper opening 15 and immersed in the melt to pull up 30 kg of the single crystal. There was no dislocation in the grown single crystal, and the amount of doped nitrogen was 0.02 ppm at the crystal head and 0.08 ppm at the crystal tail, and the oxide film after processing the wafer at any location The amount was sufficient to prevent the deterioration of pressure resistance. Nitride formation was not observed in the furnace jig after pulling.

【0017】図2は、上記の要領で、メルト中にN2
スを供給したときの供給時間とメルト中の窒素濃度とS
iウエハ中の窒素濃度の関係を示す。
FIG. 2 shows the supply time when the N 2 gas was supplied into the melt, the nitrogen concentration in the melt and the S in the above manner.
The relationship of nitrogen concentration in the i-wafer is shown.

【0018】Siウエハ中の窒素濃度はSiメルト中の
窒素濃度に偏析係数(窒素の場合k=7×10-4)を乗
じる。
The nitrogen concentration in the Si wafer is obtained by multiplying the nitrogen concentration in the Si melt by the segregation coefficient (k = 7 × 10 −4 for nitrogen).

【0019】同図において、Xは窒素の固溶限界線を示
す。この限界線を超える領域C、つまりSiメルト中の
窒素が6.0×1018atoms/cc以上ではメルト
中にSi3 4 が形成し、無転位の単結晶を得ることが
できないことが判明した。このX以下の領域で、単結晶
育成初期において転位の発生もなく引上げを行なうこと
ができる。しかしながら、単結晶育成とともに窒素が偏
析して固溶限界を超えるために、引上げ単結晶インゴッ
トに転位が発生することが判明した。メルト40kgか
ら30kgの単結晶を育成する場合、メルト中の窒素濃
度限界線YとXとの間の領域Bでは、前述の偏析減少に
よるメルト中の窒素が固溶限界を超えるために、引上げ
単結晶インゴットに転位が発生した。転位の発生がない
単結晶を育成するには、窒素濃度はY以下の領域Aにな
るように、引上げ前のメルト中の窒素濃度を調整しなけ
ればならないことが判明した。
In the figure, X indicates a solid solution limit line of nitrogen. In the region C exceeding this limit line, that is, when the nitrogen in the Si melt is 6.0 × 10 18 atoms / cc or more, Si 3 N 4 is formed in the melt, and it was found that a dislocation-free single crystal cannot be obtained. did. In the region of X or less, the pulling can be performed without generating dislocations in the initial stage of single crystal growth. However, it was found that dislocation occurs in the pulled single crystal ingot because nitrogen segregates and exceeds the solid solution limit as the single crystal grows. When growing a single crystal of 40 kg to 30 kg of melt, in the region B between the nitrogen concentration limit lines Y and X in the melt, the nitrogen in the melt exceeds the solid solution limit due to the decrease in segregation, and therefore the pulling single crystal is used. Dislocations occurred in the crystal ingot. In order to grow a single crystal free from dislocations, it has been found that the nitrogen concentration in the melt before pulling must be adjusted so that the nitrogen concentration is in the region A of Y or less.

【0020】得られた単結晶から作製したSiウエハを
用いて200個の円形のMOSダイオードを作製した。
MOSダイオードの電極半径は5mmφ、酸化膜厚20
nmである。このMOSダイオードに高電圧を印加した
場合のリーク電流を測定した。リーク電流が1μA/c
2 の時の印加電圧が8MV/cm以上のMOSダイオ
ードをCモード合格のものとした。このCモード合格の
MOSダイオードの個数をウエハ上の全MOSダイオー
ド個数で割った比率をCモード合格率とした。
200 circular MOS diodes were produced using the Si wafer produced from the obtained single crystal.
Electrode radius of MOS diode is 5mmφ, oxide film thickness is 20
nm. The leakage current when a high voltage was applied to this MOS diode was measured. Leak current is 1μA / c
A MOS diode having an applied voltage of 8 MV / cm or more at m 2 was determined to pass the C mode. The ratio obtained by dividing the number of MOS diodes that passed the C mode by the total number of MOS diodes on the wafer was defined as the C mode pass rate.

【0021】表1に単結晶育成速度を1.0〜1.5m
m/分としたときの単結晶中の窒素のドープ量とCモー
ド合格率との関係を示した。
Table 1 shows the single crystal growth rate of 1.0 to 1.5 m.
The relationship between the doping amount of nitrogen in the single crystal and the C-mode passing rate when m / min is shown.

【0022】[0022]

【表1】 これによって、Siウエハ中の窒素濃度に依存して、C
モード合格率が変化することが判明した。さらに、N濃
度が高いほどCモード合格率が高いことが判る。
[Table 1] As a result, depending on the nitrogen concentration in the Si wafer, C
It was found that the mode pass rate changed. Further, it can be seen that the higher the N concentration, the higher the C-mode pass rate.

【0023】[0023]

【発明の効果】本発明によって以下の効果を奏する。The present invention has the following effects.

【0024】(1)メルト中に窒素ガスの直接吹き込み
に際しての吹込みガスの無駄がなくなり、また、周辺機
器への窒化がなくなり、機器寿命が増大する。
(1) The blowing gas is not wasted when nitrogen gas is directly blown into the melt, and nitriding to peripheral equipment is eliminated, so that the life of the equipment is increased.

【0025】(2)メルトへの窒素の固溶の効率が高く
なり、このため、単結晶に窒素を効果的にドーピングさ
せることができる。
(2) The efficiency of solid solution of nitrogen in the melt is increased, so that the single crystal can be effectively doped with nitrogen.

【0026】(3)メルト中に窒素が均一に固溶し、メ
ルト中に重力偏析が生じることがなく高い品位のドープ
単結晶が得られる。
(3) Nitrogen is uniformly solid-dissolved in the melt, and a high-quality doped single crystal is obtained without gravity segregation in the melt.

【0027】(4)メルト中に固溶しなかった過剰の窒
素ガスを回収し、循環再使用することができる。
(4) Excess nitrogen gas not dissolved in the melt can be recovered and reused by circulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施態様を示す。1 illustrates an embodiment of the present invention.

【図2】 メルト中にN2 ガスを供給したときの供給時
間とメルト中の窒素濃度の関係を示す。
FIG. 2 shows the relationship between the supply time and the nitrogen concentration in the melt when N 2 gas is supplied into the melt.

【符号の説明】[Explanation of symbols]

1 引上げ装置 2 加熱装置 3 グラファイト外殻 4 石英るつぼ 5 N2 ガス送入管 6 N2 ガス回収管 7 取付けフランジ 8 回収カバー 9 装置壁 10 回収装置 11 N2 ボンベ 12 純化装置 13 流量計 14 圧力計 15 上部開口 M メルト1 Pulling device 2 Heating device 3 Graphite outer shell 4 Quartz crucible 5 N 2 gas inlet pipe 6 N 2 gas recovery pipe 7 mounting flange 8 recovery cover 9 device wall 10 recovery device 11 N 2 cylinder 12 purification device 13 flowmeter 14 pressure 15 upper openings M melt

フロントページの続き (72)発明者 大久保 正道 山口県光市大字島田3434番地 ニッテツ電 子株式会社内 (72)発明者 小島 清 山口県光市大字島田3434番地 ニッテツ電 子株式会社内Front page continuation (72) Inventor Masamichi Okubo 3434 Shimada, Hikari City, Yamaguchi Prefecture, Nittetsu Denshi Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Siメルト中に窒素ガスを吹込んで窒素
を固溶せしめるに際して、メルト表面から放出される窒
素ガスをSiメルト表面直上で回収し、再使用する窒素
ドーピング単結晶引上げ方法。
1. A method for pulling a nitrogen-doped single crystal in which, when nitrogen gas is blown into a Si melt to dissolve nitrogen therein, the nitrogen gas released from the melt surface is recovered immediately above the Si melt surface and reused.
【請求項2】 上下動可能なドーピングガス供給管と、
同ガス供給管近傍のメルト表面上方に、浮上ガス回収の
ためのカバーと同カバーにガス回収装置に連結したガス
導出管を連結したドーピングガス回収装置を有する単結
晶引上げ装置。
2. A vertically movable doping gas supply pipe,
A single crystal pulling apparatus having a cover for recovering a floating gas and a doping gas recovery device connected to a gas recovery pipe connected to the gas recovery device above the melt surface near the gas supply pipe.
JP6224893A 1993-03-22 1993-03-22 Method and apparatus for pulling up single crystal Pending JPH06271399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224893A JPH06271399A (en) 1993-03-22 1993-03-22 Method and apparatus for pulling up single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224893A JPH06271399A (en) 1993-03-22 1993-03-22 Method and apparatus for pulling up single crystal

Publications (1)

Publication Number Publication Date
JPH06271399A true JPH06271399A (en) 1994-09-27

Family

ID=13194655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224893A Pending JPH06271399A (en) 1993-03-22 1993-03-22 Method and apparatus for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPH06271399A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322491A (en) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer and silicon single crystal wafer
DE19823962A1 (en) * 1998-05-28 1999-12-02 Wacker Siltronic Halbleitermat Method of manufacturing a single crystal
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide
WO2003027362A1 (en) * 2001-09-28 2003-04-03 Memc Electronic Materials, Inc. Process for preparing an arsenic-doped single crystal silicon using a submersed dopant feeder
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6843848B2 (en) 2000-03-24 2005-01-18 Siltronic Ag Semiconductor wafer made from silicon and method for producing the semiconductor wafer
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
US7922817B2 (en) 2008-04-24 2011-04-12 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing apparatus
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042576A (en) * 1996-09-12 2011-03-03 Siltronic Ag Method of manufacturing silicon semiconductor wafer having low defect density
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
JPH11322491A (en) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd Production of silicon single crystal wafer and silicon single crystal wafer
DE19823962A1 (en) * 1998-05-28 1999-12-02 Wacker Siltronic Halbleitermat Method of manufacturing a single crystal
EP0962555A1 (en) * 1998-05-28 1999-12-08 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process for producing a single crystal
US6228164B1 (en) 1998-05-28 2001-05-08 WACKER SILTRONIC GESELLSCHAFT FüR HALBLEITERMATERIALIEN AG Process for producing a single crystal
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
US6843848B2 (en) 2000-03-24 2005-01-18 Siltronic Ag Semiconductor wafer made from silicon and method for producing the semiconductor wafer
JP4561000B2 (en) * 2001-05-31 2010-10-13 住友金属工業株式会社 Method for producing silicon carbide (SiC) single crystal
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide
US7132091B2 (en) 2001-09-28 2006-11-07 Memc Electronic Materials, Inc. Single crystal silicon ingot having a high arsenic concentration
WO2003027362A1 (en) * 2001-09-28 2003-04-03 Memc Electronic Materials, Inc. Process for preparing an arsenic-doped single crystal silicon using a submersed dopant feeder
US7922817B2 (en) 2008-04-24 2011-04-12 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing apparatus
US8696811B2 (en) 2008-04-24 2014-04-15 Memc Electronic Materials, Inc. Method for feeding arsenic dopant into a silicon crystal growing apparatus
CN106400106A (en) * 2016-08-31 2017-02-15 内蒙古中环光伏材料有限公司 Method and device for improving uniformity of axial resistivity of czochralski monocrystalline silicon

Similar Documents

Publication Publication Date Title
JPH06271399A (en) Method and apparatus for pulling up single crystal
JP3551867B2 (en) Silicon focus ring and manufacturing method thereof
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
US20070095274A1 (en) Silicon wafer and method for producing same
US7955582B2 (en) Method for producing crystallized silicon as well as crystallized silicon
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
US8501140B2 (en) Method and apparatus for purifying metallurgical silicon for solar cells
WO2006137180A1 (en) Apparatus for producing semiconductor single crystal
JPH034515B2 (en)
JP4335489B2 (en) Method for producing silicon melt
US7628854B2 (en) Process for producing silicon single crystal
JPH1160379A (en) Production of non-dislocation silicon single crystal
JPH1143396A (en) Silicon single crystal, its production and apparatus for production
JP3085567B2 (en) Polycrystalline recharge apparatus and recharge method
JP4710429B2 (en) Semiconductor single crystal manufacturing equipment
JP3832536B2 (en) Method for producing silicon single crystal and pulling machine
US7442251B2 (en) Method for producing silicon single crystals and silicon single crystal produced thereby
US10150675B2 (en) Method for producing polycrystalline silicon
JP4075385B2 (en) Seed crystal of gallium nitride single crystal and growth method thereof
JPS6197187A (en) Device for recovering inert gas for pulling device of single crystal
HU177270B (en) Process for diminishing nitrogen content of steels containing less than 0,25 weight-procent of carbon producing them in basic converter
JP3709307B2 (en) Silicon single crystal manufacturing method and manufacturing apparatus
JP2003221296A (en) Apparatus and method for producing single crystal
JP4122696B2 (en) Method for manufacturing an epitaxial wafer
US6350314B1 (en) Process for producing nitrogen-doped semiconductor wafers