JPH06271358A - Silicon nitride-based sintered compact - Google Patents

Silicon nitride-based sintered compact

Info

Publication number
JPH06271358A
JPH06271358A JP5057055A JP5705593A JPH06271358A JP H06271358 A JPH06271358 A JP H06271358A JP 5057055 A JP5057055 A JP 5057055A JP 5705593 A JP5705593 A JP 5705593A JP H06271358 A JPH06271358 A JP H06271358A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
grains
particles
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5057055A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Shinichi Yamagata
伸一 山形
Takehisa Yamamoto
剛久 山本
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5057055A priority Critical patent/JPH06271358A/en
Priority to TW82108632A priority patent/TW275650B/zh
Priority to US08/138,346 priority patent/US5424256A/en
Priority to SG1996005175A priority patent/SG43189A1/en
Priority to EP93117039A priority patent/EP0615963B1/en
Priority to DE69317254T priority patent/DE69317254T2/en
Priority to KR1019930026821A priority patent/KR970001266B1/en
Publication of JPH06271358A publication Critical patent/JPH06271358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon nitride-based sintered compact excellent in mechanical characteristics and relatively easy to produce. CONSTITUTION:This silicon nitride-based sintered compact contains columnar grains and isometric grains of Si3N4 and sialon and fine dispersed grains dispersed in a grain boundary phase in voids. The average minor axis size of the columnar grains is <=0.3mum and the average major axis size is <=5mum. The average grain diameter of the isometric grain is <=0.5mum and that of the fine dispersed grains is <=0.03mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は常温において優れた機械
的強度を有し、生産性、コスト面において優れた窒化珪
素系焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which has excellent mechanical strength at room temperature and is excellent in productivity and cost.

【0002】[0002]

【従来の技術】従来、窒化珪素の強度向上を得るため
に、様々な方法が試みられてきた。
2. Description of the Related Art Conventionally, various methods have been tried in order to improve the strength of silicon nitride.

【0003】例えば窒化珪素単相材料としては特開昭6
1−91065号や特開平2−44066号に開示され
ているように等粒のα’−サイアロン〔一般式Mx(S
i,Al)12(O,N)16、M:Mg,Ca,Li及び
希土類元素〕と柱状のβ’−サイアロン(β型窒化ケイ
素を含む)との結晶相の組合せ、複合した結晶相を生成
させることにより強度等の機械的特性の向上を示したも
のがある。しかし実施例でも明らかなように各焼結体の
強度特性が曲げ強度で100Kg/mm2を安定して超
える焼結体製法はいずれもホットプレス法によるもので
あり、工業的に安定して高い強度特性を得るまでに至っ
ていない。
For example, as a silicon nitride single-phase material, Japanese Patent Laid-Open No.
As disclosed in JP-A-1-91065 and JP-A-2-44066, a uniform grain size of α'-sialon [general formula M x (S
i, Al) 12 (O, N) 16 , M: Mg, Ca, Li and rare earth elements] and a columnar β′-sialon (including β-type silicon nitride) in a combination of crystal phases, and a composite crystal phase Some of them have been shown to have improved mechanical properties such as strength. However, as is apparent from the examples, all the sintered body manufacturing methods in which the strength characteristics of each sintered body stably exceed 100 kg / mm 2 in terms of bending strength are hot pressing methods, and are industrially stable and high. It has not yet reached the strength characteristics.

【0004】複合材料においては例えば特開平4−20
2059に示されるように短軸径0.05〜3μm、ア
スペクト比3〜20の窒化珪素、サイアロンに1〜50
0nmの微粒子が分散させている例示がある。実施例の
強度は最高167kg/mm2であるものの粗大な窒化
珪素を含むことがあるため強度劣化をまねく可能性があ
り、ワイブル係数も9程度で、安定して高い強度特性を
得ることはできない。
In the case of a composite material, for example, Japanese Patent Laid-Open No. 4-20
2059, silicon nitride having a minor axis diameter of 0.05 to 3 μm and an aspect ratio of 3 to 20 and 1 to 50 for sialon.
There is an example in which fine particles of 0 nm are dispersed. Although the strength of the example is 167 kg / mm 2 at the maximum, it may contain coarse silicon nitride, which may cause strength deterioration, and the Weibull coefficient is about 9, so that stable high strength characteristics cannot be obtained. .

【0005】また特開平4−295056に示されるよ
うに柱状組織を持つ窒化珪素の粒界相に異種粒子を分散
させた例もある。この焼結体の場合、最大粒径は短軸径
が2μmから3.5μm、長さが10μmから、14μ
mもあるためマトリックス自身が破壊源となり、実施例
の強度は最高158kg/mm2であり、また焼成温度
も1800℃以上であることから生産性、コストの面か
ら十分であるとはいえない。
There is also an example in which different kinds of particles are dispersed in a grain boundary phase of silicon nitride having a columnar structure as disclosed in Japanese Patent Laid-Open No. 4-295056. In the case of this sintered body, the maximum particle diameter is from 2 μm to 3.5 μm for minor axis diameter and 10 μm for length,
Since the matrix itself is a source of destruction due to the presence of m, the maximum strength of the example is 158 kg / mm 2 , and the firing temperature is 1800 ° C. or higher, which is not sufficient in terms of productivity and cost.

【0006】[0006]

【発明が解決しようとする課題】本発明は、機械的特性
が優れており、かつ、生産が比較的容易な窒化珪素系焼
結体を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a silicon nitride-based sintered body which has excellent mechanical properties and is relatively easy to produce.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明は焼結体がSi34、サイアロンの内少なく
とも1種以上からなる柱状粒子、等軸状粒子と、更に間
隙の粒界相に微細分散粒、例えばTi化合物を含み、焼
結体の柱状粒子の短軸径の平均粒径が0.3μm以下、
長軸径が平均5.0μm以下であり、等軸粒の平均粒径
が0.5μm以下、分散粒子の平均粒径が0.03μm
以下であることを特徴とする窒化珪素系焼結体である。
In order to solve the above-mentioned problems, the present invention provides a sintered body having columnar particles made of at least one of Si 3 N 4 and sialon, equiaxed particles, and a gap. The grain boundary phase contains finely dispersed particles, for example, a Ti compound, and the average particle diameter of the minor axis of the columnar particles of the sintered body is 0.3 μm or less,
The major axis diameter is 5.0 μm or less on average, the equiaxed particles have an average particle diameter of 0.5 μm or less, and the dispersed particles have an average particle diameter of 0.03 μm.
The following is a silicon nitride-based sintered body characterized by the following.

【0008】本発明は、JISR−1601に準拠した
3点曲げ強度が容易に170kg/mm2以上の特性を
有する強度が安定して得られる他、高い衝撃値、疲労特
性を得ることができ、コスト、生産性等の機械的特性に
優れた窒化珪素を提供することである。
According to the present invention, the three-point bending strength in accordance with JISR-1601 can be easily obtained with stable strength having a characteristic of 170 kg / mm 2 or more, and high impact value and fatigue characteristics can be obtained. It is to provide silicon nitride excellent in mechanical properties such as cost and productivity.

【0009】一般に窒化珪素の強度の劣化の原因の1つ
として組織の内部に存在する粒界相の問題がある。この
粒界相は窒化珪素セラミックスを焼結して得る場合には
不可避なものである焼結助剤からなるガラス質からなっ
ており、一般に窒化珪素のマトリックスと比べその脆性
は高い。そのためこのような粒界相に応力集中を受けた
場合、焼結体の強度が低下する原因となっていた。
Generally, one of the causes of the deterioration of the strength of silicon nitride is the problem of the grain boundary phase existing inside the structure. This grain boundary phase is made of a glassy material containing a sintering aid which is inevitable when obtained by sintering silicon nitride ceramics, and is generally more brittle than a silicon nitride matrix. Therefore, when stress concentration is applied to such a grain boundary phase, it has been a cause of lowering the strength of the sintered body.

【0010】本発明は上記の問題に対して詳細に検討を
行ったところ微細な柱状粒、等軸粒とその間隙の粒界相
に分散しているTi化合物の3つの混在した微細組織を
発現することにより、粒界相面積が増加しガラス相の相
対的量が減少するので粒界での脆性を低減化でき、高強
度かつ疲労特性、耐衝撃性に優れた焼結体を得ることが
できる知見を得た。
In the present invention, when the above problems were examined in detail, three columnar fine grains, equiaxed grains and a Ti compound dispersed in the grain boundary phase of the interstices between the grains were developed. By doing so, the grain boundary phase area increases and the relative amount of the glass phase decreases, so brittleness at the grain boundaries can be reduced, and it is possible to obtain a sintered body with high strength, fatigue properties, and impact resistance. Got knowledge that can be obtained.

【0011】このように粒界相の厚みを低減する方法の
1つに特開昭2−70715に公開されているように柱
状粒、等軸粒からなる微細な組織を作製し、厚みを低減
させる方法があり高強度を達成している。しかし、α粒
を微細にするためには原料粉末にα率の高い微細な粉末
を使用する必要があり、また、焼結中にβ率を高めなけ
れば強度の特性は得られないことから、β粒の大きさも
焼結中に2.0μm以上の大きさになるため窒化珪素だ
けの微細化を行い、粒界相の厚みを低減するには限界が
あった。
One of the methods for reducing the thickness of the grain boundary phase is to reduce the thickness by producing a fine structure composed of columnar grains and equiaxed grains as disclosed in JP-A-2-70715. There is a method to achieve high strength. However, in order to make the α grains fine, it is necessary to use a fine powder having a high α ratio as the raw material powder, and since the strength property cannot be obtained unless the β ratio is increased during sintering, Since the β-grain size also becomes 2.0 μm or more during sintering, there is a limit in reducing the thickness of the grain boundary phase by refining only silicon nitride.

【0012】しかし、本発明の焼結体は前記の様な微細
な等軸、柱状粒の充填だけではなく、更に微細なTi化
合物を粒界相に分散させており、ガラス相の厚みを低減
させている他、これらのTi化合物によって等軸、柱状
粒の大きさも制御しているため機械的特性に優れた焼結
体を得たと考えられる。
However, in the sintered body of the present invention, not only the fine equiaxed and columnar grains are packed as described above, but also a finer Ti compound is dispersed in the grain boundary phase to reduce the thickness of the glass phase. In addition to the above, the Ti compound also controls the size of the equiaxed and columnar grains, and it is considered that a sintered body having excellent mechanical properties was obtained.

【0013】更に上記効果を発揮するには柱状粒の短軸
が平均粒径0.3μm以下、長軸径が平均5.0μm以
下、等軸粒の平均粒径が0.5μm以下の焼結体からな
るこことが必要である。共に、それぞれの上限値を超え
ると組織が不均一になり、粒子自体が破壊源となり強度
を低下させる可能性があるだけではなく、充填密度の低
下をまねいたり、粒界相の厚みが大きくなり、強度の低
下を招く可能性がある。
Further, in order to exert the above effects, sintering is performed in which the short axis of the columnar grains has an average grain size of 0.3 μm or less, the long axis diameter has an average grain size of 5.0 μm or less, and the equiaxed grains have an average grain size of 0.5 μm or less. It must consist of the body. In both cases, if the respective upper limit values are exceeded, the structure becomes non-uniform, and the particles themselves may become the source of destruction and reduce the strength, as well as lead to a decrease in packing density and an increase in the thickness of the grain boundary phase. , There is a possibility of causing a decrease in strength.

【0014】また分散粒子であるTi化合物は、平均粒
径0.03μm以下である。これより大きくなると粒子
間の間隙に存在する粒界相中に存在する以外に3重点や
等軸粒と同じ大きさで存在する量が多くなり粒界相のガ
ラス相の相対量を減少させることができず高強度が得ら
れない。また、Ti化合物をこの粒径以下におさえるこ
とによって組織全体の粒成長抑制効果の役割をはたし、
微細で均一な組織を発現できる。
The Ti compound, which is the dispersed particles, has an average particle size of 0.03 μm or less. When it is larger than this, the amount of the triplet or the same size as the equiaxed grain exists in addition to the grain boundary phase existing in the gap between the grains, and the relative amount of the glass phase of the grain boundary phase decreases. Cannot be obtained and high strength cannot be obtained. Further, by controlling the Ti compound to have a grain size not more than this, it plays a role of suppressing grain growth of the entire structure,
A fine and uniform tissue can be expressed.

【0015】また、本発明ではこのTi化合物はTiN
に換算して焼結体組織に占める割合で0.05〜2体積
%存在することが必要である。0.05体積%未満では
前記高強度効果が発揮されず、強度の向上がみられず、
2.0体積%を超えるとTi化合物同士が凝集し欠陥を
形成したり、また、Ti化合物の存在により焼結性を著
しく悪化させるため窒化珪素組織に不均一部を引き起こ
すために優れた機械的特性が得られない。また、これら
のTi化合物はX線回折法測定では少なくともTiNを
含んでいると考えられる。
In the present invention, the Ti compound is TiN.
It is necessary to be present in an amount of 0.05 to 2% by volume in terms of the structure of the sintered body. If it is less than 0.05% by volume, the high strength effect is not exhibited, and the strength is not improved,
If it exceeds 2.0% by volume, the Ti compounds aggregate with each other to form defects, and the presence of the Ti compound significantly deteriorates the sinterability, so that a non-uniform portion is generated in the silicon nitride structure, which is an excellent mechanical property. The characteristics cannot be obtained. In addition, these Ti compounds are considered to contain at least TiN by X-ray diffraction measurement.

【0016】本発明焼結体を得るための窒化珪素粉末は
Ti化合物の存在により必ずしもα率の高く粒径の微細
な粉末を用いる必要はない、またTi化合物は例えば酸
化チタンなどの市販されている粉末を出発原料として焼
結中にTi化合物を得ることが可能である。酸化チタン
を用いる場合には、上記サイズのTi化合物を形成させ
るために酸化チタン粉末は一次粒径0.05μm以下で
あることが望ましい。
As the silicon nitride powder for obtaining the sintered body of the present invention, it is not always necessary to use a powder having a high α ratio and a fine grain size due to the presence of the Ti compound, and the Ti compound is commercially available such as titanium oxide. It is possible to obtain a Ti compound during sintering from powders that have been used as starting materials. When titanium oxide is used, the titanium oxide powder preferably has a primary particle size of 0.05 μm or less in order to form a Ti compound having the above size.

【0017】本発明の組織を得るためには、焼結助剤に
窒化珪素表面に存在するSiO2とできるだけ低温で液
相を生成する助剤、例えばMgO、CeO2、CaO、
スピネルなどを用い、1600℃以下で非酸化性雰囲気
中、焼結することによって得ることができ、この温度で
は窒化珪素で昇華分解を抑えるために用いる加圧雰囲気
で焼結を行う必要がないので、設備面でバッチ炉焼結炉
などの加圧雰囲気炉を用いることは必要ではなく、プシ
ャー式、ベルト式の連続焼結炉などの大量生産に適した
炉を用いることができる。さらには熱間静水圧プレス
(HIP)などを用いることなく、容易に高強度焼結体
を得ることができるので本発明はコスト、生産性に非常
にすぐれた焼結体を提供できる。
In order to obtain the structure of the present invention, SiO 2 present on the surface of silicon nitride and an auxiliary agent which forms a liquid phase at a temperature as low as possible, such as MgO, CeO 2 , CaO, etc.
It can be obtained by sintering using spinel or the like at a temperature of 1600 ° C. or lower in a non-oxidizing atmosphere. At this temperature, it is not necessary to perform sintering in a pressurized atmosphere used to suppress sublimation decomposition of silicon nitride. In terms of equipment, it is not necessary to use a pressurized atmosphere furnace such as a batch furnace sintering furnace, and a furnace suitable for mass production such as a pusher type or belt type continuous sintering furnace can be used. Furthermore, since a high-strength sintered body can be easily obtained without using a hot isostatic press (HIP) or the like, the present invention can provide a sintered body excellent in cost and productivity.

【0018】[0018]

【実施例】以下、実施例によって本発明を具体的に説明
する。 実施例1 市販されている平均粒径0.7μmのSi34とY,A
l、Mgの元素を持つ化合物をそれぞれ酸化物重量換算
比で、更に分散粒子の原料として1次粒径15nmの酸
化チタンの各粉末をTiNの体積換算比で他の焼結体組
織全体で占める割合を1として体積比で表1のように配
合し、エタノール中、100時間、ナイロン製ボールミ
ルにて湿式混合した後、3000kg/cm2でCIP
成形した。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 Commercially available Si 3 N 4 having an average particle size of 0.7 μm and Y, A
Compounds having the elements of 1 and Mg are respectively occupied by the oxide weight conversion ratio, and each powder of titanium oxide having a primary particle diameter of 15 nm as a raw material of the dispersed particles is occupied by the whole sintered body structure in the TiN volume conversion ratio. The mixture was blended as shown in Table 1 in a volume ratio with a ratio of 1, and wet-mixed in ethanol for 100 hours using a nylon ball mill, and then CIP was performed at 3000 kg / cm 2 .
Molded.

【0019】[0019]

【表1】 [Table 1]

【0020】表1で得られた成形体をN2ガス1気圧中
で1500℃、4時間、一次焼結した後、次に同じくN
2ガス1000気圧中、1575℃で1時間二次焼結し
た。得られた焼結体は、3×4×40mm相当の抗析試
験片に切り出し、#800ダイヤモンド砥石により切削
加工仕上げをした後、JISR1601に準拠して3点
曲げ強度を15本ずつ実施した。なお結晶相はX線回折
法により、各結晶相比のピーク高さから算出し、結晶平
均粒は焼結体の任意の一断面をラッピング加工した後8
0℃HF:HNO3=2:1のエッチング液により30
分エッチング加工した後、倍率5000倍にて走査型電
子顕微鏡で観察した。また、分散粒については任意の位
置で透過型電子顕微鏡観察を行って平均粒径を求めた。
The compacts obtained in Table 1 were subjected to primary sintering at 1500 ° C. for 4 hours in 1 atm of N 2 gas, and then N
Secondary sintering was performed at 1575 ° C. for 1 hour in 1000 atm of 2 gases. The obtained sintered body was cut into an anti-segregation test piece of 3 × 4 × 40 mm, cut and finished with a # 800 diamond grindstone, and then subjected to 15-point three-point bending strength in accordance with JIS R1601. The crystal phase was calculated from the peak height of each crystal phase ratio by the X-ray diffraction method, and the crystal average grain was 8 after lapping an arbitrary cross section of the sintered body.
30 at 0 ° C HF: HNO 3 = 2: 1 etching solution
After minute etching processing, it was observed with a scanning electron microscope at a magnification of 5000 times. The dispersed particles were observed by a transmission electron microscope at an arbitrary position to obtain the average particle size.

【0021】表2に得られた焼結体の二次焼結の密度と
二次焼結後のα−β結晶相比、平均曲げ強度とワイブル
係数を示す。同時に得られた柱状、等軸粒の平均粒径、
分散粒子の平均粒径を示す。
Table 2 shows the density of the secondary sintering of the obtained sintered body, the α-β crystal phase ratio after the secondary sintering, the average bending strength and the Weibull coefficient. Columnar shape obtained at the same time, average particle size of equiaxed grains,
The average particle size of the dispersed particles is shown.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】実施例2 実施例1に用いた同じ粉末を用い表3に示す組成のもの
をN2ガス中で、表4に示す条件で一次焼結した後、同
じく表4の条件で二次焼結を行った。なお、二次焼結は
一次焼結後引き続き二次焼結の条件で焼結してもよい
し、一次焼結後室温になった試料を二次焼結の条件で焼
結してもよい。得られた焼結体は実施例1と同様に二次
焼結密度、3点曲げ強度、α−β比、ワイブル係数、柱
状、等軸粒の平均粒径、分散粒子の平均粒径を求めた。
その結果を表5に示す。
Example 2 Using the same powder as used in Example 1, the composition shown in Table 3 was first sintered in N 2 gas under the conditions shown in Table 4, and then the secondary powder was also produced under the conditions shown in Table 4. Sintering was performed. The secondary sintering may be performed under the condition of secondary sintering after the primary sintering, or the sample that has reached room temperature after the primary sintering may be sintered under the condition of secondary sintering. . For the obtained sintered body, the secondary sintering density, the three-point bending strength, the α-β ratio, the Weibull coefficient, the columnar shape, the average particle diameter of equiaxed particles, and the average particle diameter of dispersed particles were obtained in the same manner as in Example 1. It was
The results are shown in Table 5.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【表7】 [Table 7]

【0029】実施例3 次に表6に示す三組の組成において、組成を一定にして
酸化チタンの一次粒径のみを変化させて、1500℃で
一次焼結、1600℃、N2ガス500気圧中で二次焼
結を行った。得られた焼結体は実施例1と同様に二次焼
結密度、3点曲げ強度、α−β比、ワイブル係数、柱
状、等軸粒の平均粒径、分散粒子の平均粒径を求めた。
その結果を表7に示す。
Example 3 Next, among the three compositions shown in Table 6, the composition was kept constant and only the primary particle diameter of titanium oxide was changed, and primary sintering was performed at 1500 ° C., 1600 ° C., and N 2 gas was 500 atm. Secondary sintering was performed therein. For the obtained sintered body, the secondary sintering density, the three-point bending strength, the α-β ratio, the Weibull coefficient, the columnar shape, the average particle diameter of equiaxed particles, and the average particle diameter of dispersed particles were obtained in the same manner as in Example 1. It was
The results are shown in Table 7.

【0030】[0030]

【表8】 [Table 8]

【0031】[0031]

【表9】 [Table 9]

【0032】[0032]

【表10】 [Table 10]

【0033】実施例4 表8に示す組成の材料を1500℃で常圧焼結を行った
後、1575℃、N2ガス1000気圧中で二次焼結を
行った。この焼結体をシャルビー衝撃試験、疲労強度試
験に供した。
Example 4 Materials having the compositions shown in Table 8 were subjected to atmospheric pressure sintering at 1500 ° C., and then secondary sintering was performed at 1575 ° C. and 1000 atm of N 2 gas. This sintered body was subjected to a Charby impact test and a fatigue strength test.

【0034】シャルピー衝撃試験はJIS1601、無
溝の試験片を用いて、シャルピー容量1.5kgfc
m、衝撃速度0.76m/secの条件で行った。疲労
測定には小野式回転曲げ疲労(評価部=φ6mm、両端
固定部=φ8mm、標点間距離=12mm)試験を行っ
た。試料の寸法を図2、試験機の概念を図3に示す。シ
ャルピー衝撃試験の結果を表12に疲労試験の結果を図
1に示す。
The Charpy impact test uses JIS 1601, a grooveless test piece, and has a Charpy capacity of 1.5 kgfc.
m and an impact velocity of 0.76 m / sec. An Ono-type rotary bending fatigue (evaluation part = φ6 mm, both ends fixed part = φ8 mm, gauge length = 12 mm) test was performed for fatigue measurement. The dimensions of the sample are shown in FIG. 2, and the concept of the tester is shown in FIG. The results of the Charpy impact test are shown in Table 12, and the results of the fatigue test are shown in FIG.

【0035】[0035]

【表11】 [Table 11]

【0036】[0036]

【表12】 [Table 12]

【0037】この結果より本発明の材料は従来の材料と
比較して高い衝撃値、疲労強度を持つことが理解され
る。
From these results, it is understood that the material of the present invention has higher impact value and fatigue strength than the conventional materials.

【0038】[0038]

【発明の効果】以上、説明したように、本発明によれ
ば、特に常温において優れた機械的強度を有する窒化珪
素系焼結体が得られる。
As described above, according to the present invention, a silicon nitride-based sintered body having excellent mechanical strength, especially at room temperature, can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】回転曲げ疲労強度を示すグラフFIG. 1 is a graph showing rotational bending fatigue strength.

【図2】回転曲げ疲労試験片の形状の説明図FIG. 2 is an explanatory view of the shape of a rotating bending fatigue test piece.

【図3】回転曲げ疲労試験機の概念図[Fig. 3] Conceptual diagram of rotary bending fatigue tester

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼結体がSi34、サイアロンの内少な
くとも1種以上からなる柱状粒子と、等軸状粒子と間隙
の粒界相に分散した微細分散粒を含み、焼結体の柱状粒
子の短軸径の平均粒径が0.3μm以下、長軸径の平均
径が5μm以下であり、等軸粒の平均粒径が0.5μm
以下、分散粒子の平均粒径が0.03μm以下であるこ
とを特徴とする窒化珪素系焼結体。
1. A sintered body comprising columnar particles made of at least one of Si 3 N 4 and sialon, equiaxed particles and finely dispersed particles dispersed in a grain boundary phase in a gap, The average particle diameter of the minor axis diameter of the columnar particles is 0.3 μm or less, the average diameter of the major axis diameter is 5 μm or less, and the average particle diameter of the equiaxed particles is 0.5 μm.
Hereinafter, the average particle diameter of dispersed particles is 0.03 μm or less, a silicon nitride-based sintered body.
【請求項2】 微細分散粒がTi化合物であることを特
徴とする請求項1記載の窒化珪素系焼結体。
2. The silicon nitride based sintered body according to claim 1, wherein the finely dispersed particles are a Ti compound.
【請求項3】 Ti化合物はTiNに換算して他の焼結
体組織の体積を1とした場合、0.05〜2体積%であ
ることを特徴とする請求項2記載の窒化珪素系焼結体。
3. The silicon nitride-based firing according to claim 2, wherein the Ti compound is 0.05 to 2% by volume when the volume of the other sintered body structure is converted to TiN to 1. Union.
JP5057055A 1993-03-17 1993-03-17 Silicon nitride-based sintered compact Pending JPH06271358A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5057055A JPH06271358A (en) 1993-03-17 1993-03-17 Silicon nitride-based sintered compact
TW82108632A TW275650B (en) 1993-03-17 1993-10-18
US08/138,346 US5424256A (en) 1993-03-17 1993-10-18 Silicon nitride sintered body
SG1996005175A SG43189A1 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
EP93117039A EP0615963B1 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
DE69317254T DE69317254T2 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
KR1019930026821A KR970001266B1 (en) 1993-03-17 1993-12-08 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5057055A JPH06271358A (en) 1993-03-17 1993-03-17 Silicon nitride-based sintered compact

Publications (1)

Publication Number Publication Date
JPH06271358A true JPH06271358A (en) 1994-09-27

Family

ID=13044763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5057055A Pending JPH06271358A (en) 1993-03-17 1993-03-17 Silicon nitride-based sintered compact

Country Status (2)

Country Link
JP (1) JPH06271358A (en)
TW (1) TW275650B (en)

Also Published As

Publication number Publication date
TW275650B (en) 1996-05-11

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
Li et al. Preparation and mechanical properties of SiC-AlN ceramic alloy
EP0629181B1 (en) SiA1ON COMPOSITES AND METHOD OF PREPARING THE SAME
KR970001266B1 (en) Silicon nitride sintered body
US5100847A (en) Super tough monolithic silicon nitride
CA2060241C (en) Silicon nitride sintered body and process for producing the same
US5449649A (en) Monolithic silicon nitride having high fracture toughness
JP3395247B2 (en) Silicon nitride based sintered body
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPH08733B2 (en) Heat shock resistant silicon nitride sintered body and method for producing the same
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
EP0454780B1 (en) Super tough monolithic silicon nitride
JPH06271358A (en) Silicon nitride-based sintered compact
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JP2890849B2 (en) Method for producing silicon nitride sintered body
JP3970629B2 (en) Low thermal expansion ceramics and method for producing the same
JPH0812443A (en) Superplastic silicon nitride sintered compact
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP4500515B2 (en) Parts for semiconductor manufacturing equipment and mirrors for length measurement
JP2783711B2 (en) Silicon nitride sintered body
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production