JPH0627053A - Refractive index measuring method for soft x-ray transmissive material - Google Patents

Refractive index measuring method for soft x-ray transmissive material

Info

Publication number
JPH0627053A
JPH0627053A JP4179868A JP17986892A JPH0627053A JP H0627053 A JPH0627053 A JP H0627053A JP 4179868 A JP4179868 A JP 4179868A JP 17986892 A JP17986892 A JP 17986892A JP H0627053 A JPH0627053 A JP H0627053A
Authority
JP
Japan
Prior art keywords
pattern
soft
refractive index
ray
transparent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4179868A
Other languages
Japanese (ja)
Other versions
JP3131037B2 (en
Inventor
Toshiyuki Horiuchi
敏行 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP04179868A priority Critical patent/JP3131037B2/en
Publication of JPH0627053A publication Critical patent/JPH0627053A/en
Application granted granted Critical
Publication of JP3131037B2 publication Critical patent/JP3131037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To determine refractive index of soft X-ray transmissive material highly accurately by making a pattern of a material to be measured on a soft X-ray transmissive thin film, transferring the pattern to a substrate to be exposed located closely to the thin film, determining the thickness of pattern having most conspicuous profile, and then calculating refractive index based on the thickness and the wavelength of irradiating light. CONSTITUTION:A soft X-ray transmissive thin film 2 is stretched over a substrate 1 and a first pattern 5 of a soft X-ray transmissive material is formed thereon in order to measure the refractive index. A substrate 7 to be exposed applied with resist 6 is disposed closely to the pattern 5 and irradiated with soft X-ray 8 of wavelength lambdathrough the pattern 5 in a vacuum or in helium gas of reduced pressure. Assuming the thickness of the pattern 5 is (t), refractive index thereof is (n), and refractive index of atmosphere is (n'), the soft X-ray 8 passed through the outside of the pattern 5 interferes with a soft X-ray 8 passed through the inside under a condition of 2(n'-n)t=lambda thus transferring conspicuous second pattern. When the pattern 5 is formed with different thicknesses and the thickness providing a most conspicuous second pattern is determined, refractive index can be determined according to a formula n=n'-lambda/2t.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波長1〜200Åの軟
X線領域で使用されるX線光学材料の、軟X線透過性材
料屈折率測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft X-ray transparent material refractive index measuring method for an X-ray optical material used in a soft X-ray region having a wavelength of 1 to 200 Å.

【0002】[0002]

【従来の技術】波長0.1〜20nmの軟X線は、X線
リソグラフィや材料分析等に使用されている。しかし、
上記波長の軟X線を容易に透過できる固体や液体は存在
せず、大気中であっても数mm〜数10mmの厚さで、
その強度が1%以下に減衰してしまう。
2. Description of the Related Art Soft X-rays having a wavelength of 0.1 to 20 nm are used for X-ray lithography and material analysis. But,
There are no solids or liquids that can easily transmit soft X-rays of the above wavelength, and even in the atmosphere, with a thickness of several mm to several tens mm,
The strength is attenuated to 1% or less.

【0003】このような状況下で、軽元素単体、、例え
ば炭素、ベリリウム、シリコン等や、二酸化シリコン、
窒化シリコン、窒化ほう素、アルミナ、マイラ、ポリイ
ミド等の軽元素化合物からなる厚さ数μm以下の薄膜
は、数10%以上の軟X線透過率が得られることから軟
X線透過性材料と呼ばれる。そしてこれらの薄膜は、X
線リソグラフィ用のX線マスクメンブレンや軟X線を透
過させる真空隔壁材料として使われている。
Under these circumstances, light elements such as carbon, beryllium, silicon, etc., silicon dioxide,
A thin film of a light element compound such as silicon nitride, boron nitride, alumina, mylar, or polyimide having a thickness of several μm or less can obtain a soft X-ray transmittance of several tens% or more, and is therefore a soft X-ray transparent material. be called. And these thin films are
It is used as an X-ray mask membrane for X-ray lithography and as a vacuum barrier rib material that transmits soft X-rays.

【0004】また、特願平2−120552に開示され
ているように、軟X線位相を反転させるパタンを有する
X線マスクを製作したり、発明者の先願による軟X線を
反転させて遮光部を得るX線マスク遮光体重金属パタン
欠落欠陥修正を行うためには、これらの軟X線透過性材
料が不可欠である。
Further, as disclosed in Japanese Patent Application No. 2-120552, an X-ray mask having a pattern for inverting the soft X-ray phase is manufactured, or the soft X-ray according to the inventor's prior application is inverted. These soft X-ray transparent materials are indispensable for repairing defects in X-ray mask light-shielding metal pattern lacking a light-shielding portion.

【0005】また、上記波長帯の軟X線を用いて光学系
を作る場合には、位相を所定量変化させるために、1/
2波長板、1/4波長板等も必要になる。
Further, when an optical system is made by using soft X-rays in the above wavelength band, in order to change the phase by a predetermined amount, 1 /
A two-wave plate and a quarter-wave plate are also required.

【0006】このように、上記波長帯の軟X線に対する
軟X線透過性材料は、極めて重要な用途を有している。
にもかかわらず、上記波長帯の軟X線に対する軟X線透
過性材料の屈折率を測定した結果の発表例は、従来非常
に少なく、H. J. Hagemann,W. Gudat, C. Kunz のディ
・イー・エス・ワイ−レポート、エス・アール−74/
7(DESY-Report, SR-74/7)(1974)に掲載され
た論文に、炭素、マグネシウム、アルミニウム等につい
ての値が示されている等、極めて僅かにすぎない。
As described above, the soft X-ray transparent material for the soft X-rays in the above wavelength band has a very important application.
Nevertheless, there have been very few published examples of the results of measuring the refractive index of a soft X-ray transparent material with respect to soft X-rays in the above-mentioned wavelength band, and HJ Hagemann, W. Gudat, C. Kunz's DiE.・ S-Way Report, S-R-74 /
7 (DESY-Report, SR-74 / 7) (1974), the values for carbon, magnesium, aluminum, etc. are shown, which is extremely small.

【0007】呼称として、軟X線透過性材料とはいって
も、僅か数μmの厚さで透過率が数10%〜数%になっ
てしまうような透過性であり、また、測定したい当該屈
折率は1に非常に近い値である。そのため、屈折量を直
接測定することは非常に難しく、これら軟X線透過性材
料の重要な光学定数である屈折率については、正確かつ
簡便に測定する方法がこれまで存在しなかった。
As a name, even though it is a soft X-ray transparent material, it has such a transmittance that the transmittance becomes a few tens% to a few% with a thickness of only a few μm, and the refractive index to be measured. The rate is very close to 1. Therefore, it is very difficult to directly measure the refraction amount, and there has been no method for accurately and simply measuring the refractive index, which is an important optical constant of these soft X-ray transparent materials.

【0008】可視ないしは遠紫外線領域の波長を有する
光に対しての光学材料の屈折率nを測定するには、従
来、図7に示すような方法が用いられていた。すなわ
ち、屈折率n0が既知でnより大きい光学材料10上
に、屈折率nを測定したい光学材料11を置き、入射光
12を上記屈折率を測定した光学材料11に対し水平に
照射して、上記屈折率n0が既知でnより大きい光学材
料10からの出射光13が観測される角度iを測定し、 n=√(n0 2−sin2i) なる関係式より、測定したい屈折率nを求める。これ
は、全反射の臨界角を利用することによって屈折率を測
定するものである。
Conventionally, a method as shown in FIG. 7 has been used to measure the refractive index n of an optical material for light having a wavelength in the visible or far ultraviolet region. That is, the optical material 11 for which the refractive index n is to be measured is placed on the optical material 10 for which the refractive index n 0 is known and is larger than n, and the incident light 12 is irradiated horizontally to the optical material 11 for which the refractive index is measured. , The angle i at which the emitted light 13 from the optical material 10 whose refractive index n 0 is already known and larger than n is observed is measured, and the refraction to be measured is calculated from the relational expression n = √ (n 0 2 −sin 2 i) Find the rate n. This measures the refractive index by utilizing the critical angle of total internal reflection.

【0009】しかし、上記波長帯の軟X線に関しては、
測定したい軟X線透過性材料の屈折率nが、1よりわず
かに小さく1に非常に近い値であり、真空中や軽元素の
気体中等のように軟X線が減衰しにくい媒質の屈折率よ
り僅かに小さいだけの値であるため、全反射が起こる臨
界角はほとんど90度に近い。また、可視光から遠紫外
光のように、上記波長帯の軟X線を透過する固体材料の
ブロックは存在しない。したがって、上記のような従来
の可視光から遠紫外光の波長の光に対して行われる方法
により、屈折率を測定することはできない。
However, regarding soft X-rays in the above wavelength band,
The refractive index n of the soft X-ray transparent material to be measured is a value slightly smaller than 1 and very close to 1, and the refractive index of a medium in which soft X-rays are not easily attenuated, such as in a vacuum or in a gas of a light element. Since it is only slightly smaller, the critical angle at which total internal reflection occurs is close to 90 degrees. Further, there is no block of solid material that transmits soft X-rays in the above wavelength band, such as visible light to far ultraviolet light. Therefore, the refractive index cannot be measured by the conventional method for light having a wavelength of visible light to far-ultraviolet light as described above.

【0010】このように、軟X線に対する軟X線透過性
材料の屈折率を直接測定することが非常に困難であるた
め、上記の発表論文では、測定しやすい透過率や反射率
の測定値から、Kramers-Kronig の関係式を用いて屈折
率の値を算出している。
As described above, since it is very difficult to directly measure the refractive index of a soft X-ray transparent material with respect to soft X-rays, in the above-mentioned published paper, it is easy to measure the measured values of transmittance and reflectance. Therefore, the value of the refractive index is calculated using the Kramers-Kronig relational expression.

【0011】[0011]

【発明が解決しようとする課題】しかしながら従来技術
は、上記論文のように、透過率や反射率の値から屈折率
を算定する方法で間接的な測定であり、複雑な計算プロ
セスを経て屈折率を算定するため、確度、精度も低い。
例えば上記論文によると、炭素に対し、エネルギが50
0eVから800eV(波長2.41〜1.55nm)
の軟X線屈折率は0.999、エネルギが1KeVから
3KeVまで(波長1.24〜0.413nm)の軟X
線屈折率は1.000である。特願平2−120552
に開示されているように、軟X線位相を反転させるパタ
ンを有するX線マスクを作る場合は、軟X線波長をλと
するとき、 (1−n)d=mλπ (mは奇数の整数) となる軟X線透過性材料の厚さdを求める必要がある
が、軟X線の波長に対し必要とする(1−n)の値が、
上記のように有効数字1桁以下の精度でしか判らないの
では、軟X線透過性材料の厚さdの決めようがない。
However, the conventional technique is an indirect measurement by the method of calculating the refractive index from the values of the transmittance and the reflectance as described in the above paper, and the refractive index is subjected to a complicated calculation process. The accuracy and precision are low as well.
For example, according to the above paper, for carbon, energy is 50
0 eV to 800 eV (wavelength 2.41 to 1.55 nm)
Soft X-ray with a refractive index of 0.999 and energy from 1 KeV to 3 KeV (wavelength 1.24 to 0.413 nm)
The linear refractive index is 1.000. Japanese Patent Application No. 2-120552
In the case of making an X-ray mask having a pattern for inverting the phase of the soft X-ray, as described in US Pat. ), It is necessary to obtain the thickness d of the soft X-ray transparent material, and the value of (1-n) required for the wavelength of the soft X-ray is
As described above, the thickness d of the soft X-ray transparent material cannot be determined unless it is known with a precision of one significant digit or less.

【0012】本発明は、軟X線透過性材料の屈折率を、
直接かつ簡便にしかも高精度で求められる、軟X線透過
性材料の屈折率測定方法を得ることを目的とする。
The present invention determines the refractive index of a soft X-ray transparent material as
An object of the present invention is to obtain a method for measuring the refractive index of a soft X-ray transparent material, which is required directly and simply and with high accuracy.

【0013】[0013]

【課題を解決するための手段】上記目的は、軟X線透過
性材料の薄膜に、屈折率を測定したい軟X線透過性材料
の第1パタンを形成し、上記薄膜に近接または密着させ
て、軟X線に対して感光性を有する材料を付着した被露
光基板を配置し、上記被露光基板を露光したのち現像す
るとき、上記第1パタンの輪郭境界に相当する位置に、
上記軟X線に対して感光性を有する材料が感光されにく
いためにできる第2のパタンが、最も顕著に形成される
上記第1パタンの厚さまたは深さを求め、上記第1パタ
ンの厚さまたは深さと照射X線波長とから、屈折率を算
出することにより達成される。
The above-mentioned object is to form a first pattern of a soft X-ray transparent material whose refractive index is to be measured on a thin film of a soft X-ray transparent material, and bring it into close proximity or close contact with the thin film. When arranging an exposed substrate to which a material having photosensitivity to soft X-rays is attached and exposing and then developing the exposed substrate, a position corresponding to a contour boundary of the first pattern,
The thickness or depth of the first pattern is obtained by finding the thickness or depth of the first pattern in which the second pattern formed most prominently because the material having photosensitivity to the soft X-rays is hard to be exposed. It is achieved by calculating the refractive index from the depth or depth and the irradiation X-ray wavelength.

【0014】[0014]

【作用】本発明では、X線リソグラフィに使用されるX
線マスクメンブレンのような軟X線透過薄膜上に、屈折
率を測定したい軟X線透過性材料でパタンを形成する。
あるいは屈折率を測定したい軟X線透過性材料自体で、
上記X線マスクメンブレンのような軟X線透過薄膜を作
り、上記軟X線透過性薄膜上に上記軟X線透過性材料の
段差パタンを形成する。つぎに、ウェハ等の基板に軟X
線に対し感光性を有する材料を付着させて、上記基板と
上記軟X線透過薄膜または屈折率を測定したい軟X線透
過性材料自体の薄膜とを、近接または密着させ、単色ま
たは単色に近い特定波長の軟X線を照射する。
In the present invention, the X used in X-ray lithography is used.
A pattern is formed on a soft X-ray transparent thin film such as a line mask membrane using a soft X-ray transparent material whose refractive index is to be measured.
Or the soft X-ray transparent material itself whose refractive index you want to measure,
A soft X-ray transparent thin film such as the X-ray mask membrane is formed, and a step pattern of the soft X-ray transparent material is formed on the soft X-ray transparent thin film. Next, soft X on a substrate such as a wafer.
A material having photosensitivity to rays is attached, and the substrate and the soft X-ray transparent thin film or the thin film of the soft X-ray transparent material itself whose refractive index is to be measured are brought into close proximity or in close contact with each other to obtain a monochromatic or nearly monochromatic color. Irradiate with a soft X-ray of a specific wavelength.

【0015】この時、上記軟X線透過性材料で形成した
パタンがある所とない所とで、透過した軟X線の位相が
丁度反転するようになった場合、上記軟X線透過性材料
で形成したパタンの境界では、上記パタンの内側と外側
で常に位相が逆なので、両側の軟X線が互いに打ち消し
合い、透過軟X線強度が非常に低くなる。屈折率を測定
したい軟X線透過性材料自体の薄膜上に段差パタンを形
成した場合も、上記段差パタンの深さによって、透過し
た軟X線の位相が丁度反転するようにした場合、段差パ
タンの境界では上記パタンの内側と外側とで常に位相が
逆なので、両側の軟X線が互いに打ち消し合い、透過軟
X線強度が非常に低くなる。このため、上記屈折率を測
定したい軟X線透過性材料で形成したパタンの境界、ま
たは屈折率を測定したい軟X線透過性材料自体の薄膜上
の段差パタンの境界には、上記軟X線の照射時に感光さ
れにくい部分を生じる。
At this time, when the phase of the transmitted soft X-rays is just reversed between the place where there is a pattern formed of the above-mentioned soft X-ray transparent material and the place where there is no pattern, the above-mentioned soft X-ray transparent material. At the boundary of the pattern formed in step 2, the phases inside and outside the pattern are always opposite, so the soft X-rays on both sides cancel each other out, and the transmitted soft X-ray intensity becomes extremely low. Even when a step pattern is formed on the thin film of the soft X-ray transparent material whose refractive index is to be measured, if the phase of the transmitted soft X-ray is just inverted by the depth of the step pattern, the step pattern will be changed. At the boundary of, the phases are always opposite between the inside and outside of the pattern, so the soft X-rays on both sides cancel each other out, and the transmitted soft X-ray intensity becomes extremely low. Therefore, at the boundary of the pattern formed of the soft X-ray transparent material whose refractive index is to be measured, or at the boundary of the step pattern on the thin film of the soft X-ray transparent material itself whose refractive index is to be measured, the soft X-ray is used. When exposed to, some parts are less likely to be exposed to light.

【0016】屈折率nを測定したい軟X線透過性材料で
形成したパタンの厚さ、または屈折率を測定したい軟X
線透過性材料自体の薄膜上の段差パタンの深さをt、屈
折率n′の雰囲気中で照射する軟X線の波長をλとすれ
ば、上記屈折率nを測定したい軟X線透過性材料で形成
したパタンの厚さ、または屈折率を測定したい軟X線透
過性材料自体の薄膜上の段差パタンの深さによって生じ
る軟X線の位相変化φは、 φ=2π(n′−n)t/λ である。
Thickness of a pattern formed of a soft X-ray transparent material whose refractive index n is to be measured, or soft X whose refractive index is to be measured
Assuming that the depth of the step pattern on the thin film of the radiation transparent material itself is t and the wavelength of the soft X-rays irradiated in the atmosphere of the refractive index n'is λ, the above-mentioned refractive index n is measured for the soft X-ray transparency. The phase change φ of the soft X-ray caused by the thickness of the pattern formed of the material or the depth of the step pattern on the thin film of the soft X-ray transparent material itself whose refractive index is to be measured is φ = 2π (n′−n ) T / λ.

【0017】したがって、φ=πとなる条件は、 2(n′−n)t=λ になる。そのため、軟X線が減衰しにくい、例えば真空
中(n′=1)やヘリウム、水素等の軽元素気体中で、
任意の波長λの軟X線に対し上記tを変えて実験を行
い、上記屈折率を測定したい軟X線透過性材料で形成し
たパタンの境界、または屈折率を測定したい軟X線透過
性材料自体の薄膜上の段差パタンの境界に対応する位置
に、上記軟X線を照射した場合に感光されにくい部分を
最も顕著に生じるtの値を求めれば、上式から測定した
い屈折率nを得ることができる。
Therefore, the condition for φ = π is 2 (n′−n) t = λ. Therefore, soft X-rays are less likely to be attenuated, for example, in a vacuum (n ′ = 1) or in a light element gas such as helium or hydrogen,
Experiments are performed for soft X-rays having an arbitrary wavelength λ while changing the above t, and the boundary of the pattern formed of the soft X-ray transparent material whose refractive index is to be measured, or the soft X-ray transparent material whose refractive index is to be measured. At the position corresponding to the boundary of the step pattern on the thin film of its own, the value of t that most prominently exposes the portion that is difficult to be exposed when the soft X-ray is irradiated is obtained, and the refractive index n to be measured is obtained from the above equation. be able to.

【0018】すなわち、屈折率nは透過率や反射率の値
を求めることもなく、実験で得られる屈折率nを、測定
した軟X線透過性材料で形成したパタンの厚さ、または
屈折率を測定したい軟X線透過性材料自体の薄膜上の段
差パタンの深さの特徴的な値tと照射軟X線の波長λと
から、上記のように簡単に算定することができる。
That is, as for the refractive index n, the thickness of the pattern formed by the soft X-ray transparent material measured, or the refractive index n Can be easily calculated as described above from the characteristic value t of the depth of the step pattern on the thin film of the soft X-ray transparent material itself to be measured and the wavelength λ of the irradiated soft X-ray.

【0019】[0019]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による軟X線透過性材料の屈折率測定
法の一実施例を示す原理説明図、図2は上記実施例の屈
折率測定のために、軟X線位相がπ変化する条件を求め
る方法の説明図、図3は上記屈折率測定のために、X線
透過性薄膜上に厚さを変えて形成した軟X線透過性材料
のパタンを有する試料の部分的拡大図、図4は上記屈折
率測定のために、X線透過性薄膜上に軟X線透過性材料
の段差パタンを形成した試料の部分的拡大図、図5は上
記屈折率測定のために、屈折率を測定したい軟X線透過
性材料で形成した自立する薄膜上に段差パタンを設けた
試料の部分的拡大図、図6は上記屈折率測定のために、
軟X線透過性材料の薄膜上に段差パタンを設けた試料の
部分的拡大図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a principle explanatory view showing an embodiment of a method for measuring the refractive index of a soft X-ray transparent material according to the present invention, and FIG. 2 is a condition for changing the soft X-ray phase by π for the purpose of measuring the refractive index in the above embodiment. FIG. 3 is a partial enlarged view of a sample having a pattern of a soft X-ray transparent material formed on an X-ray transparent thin film with a different thickness for the above refractive index measurement, FIG. 4 is a partially enlarged view of a sample in which a step pattern of a soft X-ray transparent material is formed on an X-ray transparent thin film for the above refractive index measurement, and FIG. 5 shows the refractive index for the above refractive index measurement. FIG. 6 is a partially enlarged view of a sample in which a step pattern is provided on a self-supporting thin film formed of a soft X-ray transparent material to be measured.
FIG. 7 is a partially enlarged view of a sample in which a step pattern is provided on a thin film of a soft X-ray transparent material.

【0020】図1に示すように、X線リソグラフィに使
用するX線マスクと同様に、基板1に軟X線透過性薄膜
2を張る。上記構造を形成するには、基板1の各面に上
記軟X線透過性薄膜2と上記基板1をエッチングする際
の保護膜となる薄膜3を堆積したのち、上記薄膜3の一
部をエッチングで除去し、残った薄膜3をエッチングマ
スクとして基板1の一部をエッチング除去して、軟X線
透過性薄膜2だけを残せばよい。4は上記基板1に付け
たフレームである。
As shown in FIG. 1, a soft X-ray transparent thin film 2 is formed on a substrate 1 in the same manner as an X-ray mask used for X-ray lithography. To form the above structure, the soft X-ray transparent thin film 2 and the thin film 3 serving as a protective film when the substrate 1 is etched are deposited on each surface of the substrate 1, and then a part of the thin film 3 is etched. Then, a part of the substrate 1 is removed by etching using the remaining thin film 3 as an etching mask to leave only the soft X-ray transparent thin film 2. Reference numeral 4 is a frame attached to the substrate 1.

【0021】上記軟X線透過性薄膜2の上に、屈折率を
測定したい軟X線透過材料のパタン5を第1パタンとし
て形成しておく。軟X線透過材料の上記パタン5を形成
するには、あらかじめ上記軟X線透過材料を軟X線透過
性薄膜2上全面に堆積し、その上にリソグラフィ手段に
よってレジストでパタンを作り、上記レジストパタンを
エッチングマスクとして上記全面に堆積した軟X線透過
材料をエッチングすればよい。また、屈折率を測定した
い軟X線透過材料がレジストの場合には、直接上記レジ
ストのパタンをリソグラフィ手段によって作ることがで
きる。
On the soft X-ray transparent thin film 2, a pattern 5 of a soft X-ray transparent material whose refractive index is to be measured is formed as a first pattern. In order to form the pattern 5 of the soft X-ray transparent material, the soft X-ray transparent material is deposited on the entire surface of the soft X-ray transparent thin film 2 in advance, and a pattern is formed on the soft X-ray transparent thin film 2 with a resist by a lithographic means. The soft X-ray transparent material deposited on the entire surface may be etched using the pattern as an etching mask. When the soft X-ray transparent material whose refractive index is to be measured is a resist, the pattern of the resist can be directly formed by a lithographic means.

【0022】上記のように形成した軟X線透過材料のパ
タン5に近接または密着させて、レジスト6を塗布した
被露光基板7を配置し、真空中または減圧したヘリウム
等の気体中で、波長λの軟X線8を上記パタン5を通し
て照射する。
The exposed substrate 7 coated with the resist 6 is placed close to or in close contact with the pattern 5 of the soft X-ray transmitting material formed as described above, and the wavelength is set in a vacuum or a depressurized gas such as helium. A soft X-ray 8 of λ is irradiated through the pattern 5.

【0023】軟X線透過材料のパタン5の厚さをtとし
屈折率をnとするとき、上記のように 2(n′−n)t=λ の条件下では、軟X線透過材料のパタン5の境界に相当
する部分において、軟X線透過材料のパタン5の外部を
通過した軟X線と内部を透過した軟X線とが、軟X線透
過率に相当する強度比で位相が反転した状態で重なり打
ち消し合うため、軟X線8が照射されるにもかかわらず
強度が常に低くなり、上記レジスト6が他の部分に比し
て感光されにくい部分の第2のパタンを形成する。すな
わち、上記関係式を満たす条件下では、レジスト6に到
達する軟X線強度は図1(b)に示すようになる。した
がって、適当な露光時間だけ露光して現像すると、レジ
スト6がポジレジストの場合は、図1(c)に示される
ような断面形状の第2のパタンが転写される。
Assuming that the thickness of the pattern 5 of the soft X-ray transparent material is t and the refractive index is n, the soft X-ray transparent material has a thickness of 2 under the condition of 2 (n'-n) t = λ as described above. In the portion corresponding to the boundary of the pattern 5, the soft X-rays passing through the outside of the pattern 5 of the soft X-ray transmitting material and the soft X-rays passing through the inside of the pattern have an intensity ratio corresponding to the soft X-ray transmittance and a phase. Since they overlap and cancel each other in the inverted state, the intensity is always reduced despite the irradiation of the soft X-rays 8, and the resist 6 forms a second pattern of a portion that is less likely to be exposed to light than other portions. . That is, under the condition that the above relational expression is satisfied, the soft X-ray intensity reaching the resist 6 is as shown in FIG. Therefore, when the resist 6 is a positive resist when exposed and developed for an appropriate exposure time, a second pattern having a cross-sectional shape as shown in FIG. 1C is transferred.

【0024】軟X線透過材料のパタン5の厚さが上記条
件からずれるにしたがい、その輪郭境界に対応する位置
の軟X線強度は他の場所と同じ値に近づき、レジスト6
に転写される第2のパタンの断面形状は、典型的に図2
(c)に示すようにそれぞれイ〜ホのごとく変化する。
したがって、軟X線透過材料のパタン5の厚さを各種類
に変えた試料を用意して、それぞれ露光現像し、図2に
おけるハに対応する、軟X線透過材料のパタン5の境界
に相当する所に、最も顕著な軟X線遮光部を生じたと見
られる条件を探せば、上記式を変形して屈折率nを n=n′−λ/(2t) より求めることができる。
As the thickness of the pattern 5 of the soft X-ray transmitting material deviates from the above condition, the soft X-ray intensity at the position corresponding to the contour boundary approaches the same value as at other places, and the resist 6
The cross-sectional shape of the second pattern transferred to is typically shown in FIG.
As shown in (c), they change like a-e.
Therefore, samples having different thicknesses of the soft X-ray transparent material pattern 5 are prepared, exposed and developed respectively, and correspond to the boundaries of the soft X-ray transparent material pattern 5 corresponding to C in FIG. Then, by searching for the condition that the most prominent soft X-ray shielding portion is generated, the above formula can be modified to obtain the refractive index n from n = n'-λ / (2t).

【0025】真空雰囲気の中で露光を行えばn′=1で
ある。したがって n=1−λ/(2t) より屈折率nを求めればよい。
If exposure is performed in a vacuum atmosphere, n '= 1. Therefore, the refractive index n may be obtained from n = 1-λ / (2t).

【0026】直接測定するのは、屈折率nを測定したい
軟X線透過材料のパタン5の厚さtだけであり、屈折率
nの測定精度は、上記軟X線透過材料のパタン5の厚さ
tの測定精度と、上記厚さtの相違が上記レジスト6に
転写されるパタン形状の相違として検知できる限界とに
依存する。軟X線透過材料のパタン5の厚さtがいくら
の時に、レジスト6のその輪郭境界に相当する所に最も
顕著なX線遮光部を生じたと見なすかは、光学顕微鏡や
電子顕微鏡によってレジスト6に転写されたパタンを上
方から観察すれば、比較的容易に判別できる。また、細
長い軟X線透過材料のパタン5を形成しておき、レジス
ト6のその輪郭境界に相当する所に、上記輪郭境界が転
写されたパタンを有する被露光基板7を、上記パタンの
長手方向に対して垂直に割り、断面の形状を電子顕微鏡
等によって観察すれば、より詳細で、かつ精確に判断す
ることができる。図3に示すように、厚さが色々に変化
した軟X線透過材料のパタン5を有する試料を用いれ
ば、少ない回数の露光や現像によって、位相反転条件を
見出すことも可能である。
Only the thickness t of the pattern 5 of the soft X-ray transparent material whose refractive index n is to be measured is directly measured. The measurement accuracy of the refractive index n is the thickness of the pattern 5 of the above soft X-ray transparent material. The measurement accuracy of the thickness t depends on the limit at which the difference in the thickness t can be detected as the difference in the pattern shape transferred to the resist 6. The thickness t of the pattern 5 of the soft X-ray transmitting material is determined by an optical microscope or an electron microscope to determine whether the most prominent X-ray shielding portion is generated at a position corresponding to the contour boundary of the resist 6. If the pattern transferred to is observed from above, it can be identified relatively easily. In addition, an elongated soft X-ray transmissive material pattern 5 is formed, and an exposed substrate 7 having a pattern to which the contour boundary is transferred is formed at a position corresponding to the contour boundary of the resist 6 in the longitudinal direction of the pattern. It is possible to make a more detailed and accurate determination by dividing it vertically with respect to and observing the cross-sectional shape with an electron microscope or the like. As shown in FIG. 3, if a sample having a pattern 5 of a soft X-ray transmitting material having various thicknesses is used, it is possible to find the phase inversion condition by exposing and developing a small number of times.

【0027】レジスト6に転写される上記第2のパタン
の寸法は、試料と上記被露光基板7との近接間隙によっ
て異なるので、最も顕著な軟X線遮光部を生じる軟X線
透過材料のパタン5の厚さ条件を見いだすには、上記軟
X線透過材料のパタン5の厚さをそれぞれ変えた各試料
について、同じ近接間隔を保証することが必要である
が、同じ試料上に厚さを各種類に変えた軟X線透過材料
のパタン5があれば、同じ近接間隙であることを保証し
やすい。
Since the size of the second pattern transferred to the resist 6 differs depending on the proximity gap between the sample and the substrate 7 to be exposed, the pattern of the soft X-ray transmitting material that produces the most noticeable soft X-ray shielding portion. In order to find the thickness condition of No. 5, it is necessary to guarantee the same proximity interval for each sample in which the thickness of the pattern 5 of the soft X-ray transmitting material is changed, but the thickness on the same sample should be guaranteed. If the pattern 5 of the soft X-ray transmitting material changed to each type is provided, it is easy to guarantee that the adjacent gaps are the same.

【0028】上記のように、同じ試料上に種々厚さを変
えた軟X線透過材料のパタン5を作るには、例えば軟X
線透過材料の膜上にレジストを塗布し、線幅を順次変化
させたパタンを光リソグラフィ等で形成して、レジスト
の残膜厚がパタンの線幅に応じて変化するようにし、上
記残膜厚が順次変化したレジストをエッチングマスクと
して、軟X線透過材料の膜を選択比が比較的小さい条件
でエッチングし、出来上りの軟X線透過材料のパタン5
の厚さが、エッチングマスクにしたレジストの残膜厚に
依存して順次変化するようにすればよい。
As described above, in order to form the pattern 5 of the soft X-ray transmitting material having various thicknesses on the same sample, for example, the soft X-ray is used.
A resist is applied on a film of a line-transmissive material, and a pattern in which the line width is sequentially changed is formed by photolithography or the like so that the residual film thickness of the resist changes according to the line width of the pattern. The soft X-ray transparent material film is etched under the condition that the selection ratio is relatively small by using the resist having the thickness sequentially changed as an etching mask, and the finished soft X-ray transparent material pattern 5 is formed.
The thickness may be sequentially changed depending on the remaining film thickness of the resist used as the etching mask.

【0029】また、軟X線透過性材料の膜上にレジスト
を塗布し、紫外線レンズ縮小投影露光でパタンを形成す
る際に、焦点位置を色々に変化させてパタンを形成して
も、レジストの残膜厚を変化させることができる。上記
残膜厚が順次変化したレジストをエッチングマスクとし
て、軟X線透過性材料の膜を選択比が比較的小さい条件
でエッチングし、出来上りの軟X線透過材料のパタン5
の厚さが、エッチングマスクにしたレジストの残膜厚に
依存して、順次変化するようにすればよいことは明らか
である。
Further, when a resist is applied on a film of a soft X-ray transparent material and a pattern is formed by reducing projection exposure with an ultraviolet lens, even if the focus position is changed variously to form the pattern, The remaining film thickness can be changed. Using the resist having the remaining film thickness sequentially changed as an etching mask, the film of the soft X-ray transparent material is etched under the condition that the selection ratio is relatively small, and the pattern 5 of the finished soft X-ray transparent material is obtained.
It is obvious that the thickness of the film can be changed sequentially depending on the remaining film thickness of the resist used as the etching mask.

【0030】屈折率を測定したい軟X線透過性材料がレ
ジストの場合には、上記残膜厚が順次変化したレジスト
パタンを、そのまま軟X線透過材料のパタン5として用
いればよい。なお、屈折率nを測定したい軟X線透過材
料のパタン5は、図1〜図3に示すような残しパタンで
はなく、図4(a)に示すような抜きパタン、または図
4(b)に示すような段差パタンでもよい。
When the soft X-ray transparent material for which the refractive index is to be measured is a resist, the resist pattern in which the residual film thickness is sequentially changed may be used as it is as the pattern 5 of the soft X-ray transparent material. The pattern 5 of the soft X-ray transparent material whose refractive index n is to be measured is not the remaining pattern as shown in FIGS. 1 to 3 but the removal pattern as shown in FIG. 4A or the pattern as shown in FIG. 4B. A step pattern as shown in FIG.

【0031】上記パタン5の厚さまたは深さを非常に細
かい間隔で変化させて、上記パタン5の境界に相当する
所に、最も顕著な軟X線遮光部を生じたと見られる条件
を探さなくても、上記パタン5の厚さまたは深さを適度
に変えて露光し、その時にできるパタンの厚さまたは深
さを測定して、パタン5の厚さと露光・現像によってで
きるパタンの厚さまたは深さとの関係を調べれば、最も
顕著に軟X線遮光部を生じるであろうと思えるパタン5
の厚さまたは深さを、推測することも可能である。
By changing the thickness or depth of the pattern 5 at very fine intervals, it is not necessary to search for a condition which is considered to have produced the most prominent soft X-ray shielding portion at the position corresponding to the boundary of the pattern 5. Even if the thickness or depth of the pattern 5 is appropriately changed, the exposure is performed, and the thickness or depth of the pattern formed at that time is measured to determine the thickness of the pattern 5 and the thickness of the pattern formed by exposure or development. A pattern 5 that seems to produce the most prominent soft X-ray shielding part when the relationship with the depth is examined.
It is also possible to infer the thickness or depth of.

【0032】ところで以上の方法は、屈折率nを測定し
たい軟X線透過性材料自体で、図1の軟X線透過性薄膜
2のように、基板1に自立した薄膜を張ることができな
い任意の材料に対して適用できる。一方、屈折率nを測
定したい軟X線透過性材料自体で、図1に示す軟X線透
過性薄膜2のように基板1に自立した薄膜を形成できる
材料については、上記屈折率nを測定したい軟X線透過
性材料で基板1に張った薄膜9に、図5(a)、(b)
や図6(a)、(b)に示すような段差パタンを形成し
てもよい。また、図6(a)、(b)の場合には、軟X
線透過性材料で基板1に張った薄膜を貫通するパタンを
設けることも可能である。図5および図6に示した場合
も、図1〜図4に示した実施例と同様に、段差境界部で
上記段差の深さtが前に記した関係を満たす時に軟X線
が遮光され、レジスト6には段差境界部に対応した第2
のパタンを生じることが明らかである。
By the way, in the above method, it is not possible to form a free-standing thin film on the substrate 1 with the soft X-ray transparent material itself whose refractive index n is to be measured, unlike the soft X-ray transparent thin film 2 in FIG. Applicable to any material. On the other hand, for the soft X-ray transparent material itself for which the refractive index n is desired to be measured, for the material capable of forming a free-standing thin film on the substrate 1 like the soft X-ray transparent thin film 2 shown in FIG. 5 (a) and 5 (b) on the thin film 9 stretched on the substrate 1 with the desired soft X-ray transparent material.
Alternatively, a step pattern as shown in FIGS. 6A and 6B may be formed. In addition, in the case of FIGS. 6A and 6B, soft X
It is also possible to provide a pattern that penetrates the thin film stretched on the substrate 1 with a linearly transparent material. In the cases shown in FIGS. 5 and 6, as in the embodiment shown in FIGS. 1 to 4, soft X-rays are shielded when the depth t of the step satisfies the relationship described above at the step boundary portion. , The resist 6 has a second portion corresponding to the step boundary portion.
It is clear that the above pattern is produced.

【0033】屈折率nを測定したい軟X線透過性材料の
薄膜9に形成した段差パタンの厚さまたは深さを、非常
に細かい間隔で変化させて、上記段差パタンの境界に相
当する所に、最も顕著な軟X線遮光部を生じたと見られ
る条件を探せば、その時の段差パタンの厚さまたは深さ
と軟X線の波長とから、屈折率nを求めることができ
る。
The thickness or depth of the step pattern formed on the thin film 9 of the soft X-ray transparent material whose refractive index n is to be measured is changed at very fine intervals so that the step pattern is located at a position corresponding to the boundary of the step pattern. By searching for the condition that the most prominent soft X-ray shielding portion is generated, the refractive index n can be obtained from the thickness or depth of the step pattern and the wavelength of the soft X-ray at that time.

【0034】また、上記薄膜9に形成した段差パタンの
厚さまたは深さを適度の間隔で変えて、露光・現像のの
ち上記境界に相当する位置にできる第2のパタンの厚さ
または深さを測定し、上記段差パタンの厚さまたは深さ
と露光・現像によってできる第2のパタンの厚さまたは
深さとの関係を調べれば、最も顕著に軟X線遮光部を生
じるであろうと思える段差パタンの厚さまたは深さを推
測することもできる。
The thickness or depth of the second pattern formed on the thin film 9 can be changed to a position corresponding to the boundary after exposure and development by changing the thickness or depth of the step pattern at appropriate intervals. Is measured and the relationship between the thickness or depth of the step pattern and the thickness or depth of the second pattern formed by exposure / development is investigated, the step pattern that seems to cause the most noticeable soft X-ray shielding part is obtained. The thickness or depth of can also be inferred.

【0035】また、上記各実施例とも、屈折率nを測定
したい軟X線透過性材料のパタン5または上記軟X線透
過性材料の薄膜9上に設けた段差パタンは、X線透過性
薄膜2または上記軟X線透過性材料で基板1に張った薄
膜9の反対側の面に、形成してもよいことは言うまでも
ない。
In each of the above embodiments, the pattern 5 of the soft X-ray transparent material whose refractive index n is to be measured or the step pattern provided on the thin film 9 of the soft X-ray transparent material is the X-ray transparent thin film. It is needless to say that it may be formed on the opposite surface of the thin film 9 stretched on the substrate 1 with 2 or the soft X-ray transparent material.

【0036】屈折率nを測定したい軟X線透過材料のパ
タン5、または屈折率nを測定したい軟X線透過性材料
の薄膜9上に設けた段差パタンの大きさは任意でよい。
図1では屈折率nを測定したい軟X線透過材料のパタン
5の大きさが、軟X線透過性薄膜2の部分の大きさの数
分の1ないし10分の1程度に描かれているが、説明図
としての見易さを考慮したに過ぎず、軟X線透過材料の
パタン5の大きさは任意でよい。
The pattern 5 of the soft X-ray transparent material whose refractive index n is to be measured or the step pattern provided on the thin film 9 of the soft X-ray transparent material whose refractive index n is to be measured may be of any size.
In FIG. 1, the size of the pattern 5 of the soft X-ray transparent material whose refractive index n is to be measured is drawn to be a fraction to one tenth of the size of the portion of the soft X-ray transparent thin film 2. However, the size of the pattern 5 of the soft X-ray transparent material may be arbitrary, merely considering the ease of viewing as an explanatory diagram.

【0037】また、図3、図4(b)、図5(b)、図
6(b)では、厚さまたは深さが異なるパタンを、ほぼ
等間隔でしかもパタンの大きさと同程度の間隔で並べて
描いてあるが、これらのパタン間隔も任意でよく、必ず
しも等間隔にする必要がないことは明らかである。
Further, in FIGS. 3, 4 (b), 5 (b), and 6 (b), patterns having different thicknesses or depths are arranged at substantially equal intervals and at intervals similar to the size of the patterns. However, it is clear that these pattern intervals may be arbitrary and are not necessarily equal intervals.

【0038】[0038]

【発明の効果】上記のように本発明による軟X線透過性
材料の屈折率測定方法は、軟X線透過性材料の薄膜に、
屈折率を測定したい軟X線透過性材料の第1パタンを形
成し、上記薄膜に近接または密着させて、軟X線に対し
て感光性を有する材料を付着した被露光基板を配置し、
上記被露光基板を露光したのち現像するとき、上記第1
パタンの輪郭境界に相当する位置に、上記軟X線に対し
て感光性を有する材料が感光されにくいためにできる第
2のパタンが、最も顕著に形成される上記第1パタンの
厚さまたは深さを求め、上記第1パタンの厚さまたは深
さと照射X線波長とから、屈折率を算出するものであっ
て、屈折率を測定したい軟X線透過性材料からなる任意
のパタンの厚さがいくらの時に、上記感光性を有する材
料の転写パタンが最も顕著にできるかを調べることで、
軟X線透過性材料の種類を問わず、透過率や反射率等か
ら間接的に求めるのではなく、簡便な方法で高精度に軟
X線透過性材料の屈折率を直接得ることができる。
As described above, the method of measuring the refractive index of the soft X-ray transparent material according to the present invention comprises:
A first pattern of a soft X-ray transparent material whose refractive index is to be measured is formed, and it is placed in proximity to or in close contact with the above thin film, and an exposed substrate to which a material having photosensitivity to soft X-rays is attached,
When the exposed substrate is exposed and then developed, the first
The second pattern formed because the material having photosensitivity to the soft X-rays is hard to be exposed at the position corresponding to the contour boundary of the pattern is formed most remarkably in the thickness or depth of the first pattern. The refractive index is calculated from the thickness or depth of the first pattern and the irradiation X-ray wavelength, and the thickness of an arbitrary pattern made of a soft X-ray transparent material whose refractive index is to be measured. By investigating at what time the transfer pattern of the photosensitive material can be most noticeable,
Regardless of the type of the soft X-ray transparent material, the refractive index of the soft X-ray transparent material can be directly obtained with high precision by a simple method, instead of indirectly obtaining from the transmittance or the reflectance.

【0039】また本発明を用いれば、上記特願平2−1
20552に示されたX線透過材料の輪郭境界を遮光部
とするX線マスクのパタンや、あるいはX線マスク遮光
体重金属パタンの欠落欠陥を補修するための、上記X線
透過材料の欠陥補修パタンの厚さ、深さを、最適に調整
することができ、さらに、X線光学用として、1/4波
長板や1/2波長板等の位相制御部品を製作することが
可能である。
Further, according to the present invention, the above-mentioned Japanese Patent Application No. 2-1
A defect repairing pattern of the X-ray transparent material for repairing an X-ray mask pattern shown in 20552 in which the contour boundary of the X-ray transparent material serves as a light-shielding portion or a defective defect of the X-ray mask light-shielding weight metal pattern. It is possible to optimally adjust the thickness and depth, and it is possible to manufacture a phase control component such as a quarter-wave plate or a half-wave plate for X-ray optics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による軟X線透過性材料の屈折率測定方
法の一実施例を示す説明図で、(a)は測定方法の構成
を示す断面図、(b)はX線透過材料の輪郭境界の軟X
線強度を示す図、(c)は転写パタンの断面形状を示す
図である。
1A and 1B are explanatory views showing an embodiment of a method for measuring a refractive index of a soft X-ray transparent material according to the present invention, wherein FIG. Contour boundary soft X
FIG. 4C is a diagram showing the line strength, and FIG. 6C is a diagram showing the cross-sectional shape of the transfer pattern.

【図2】屈折率測定のために軟X線位相がπ変化する条
件を求める方法の説明図で、(a)は軟X線透過性材料
のパタン厚さが異なる状態を示す図、(b)は上記パタ
ン厚さに伴い輪郭境界の対応位置における軟X線強度を
示す図、(c)はレジストに転写されたパタンの断面形
状をそれぞれ示す図である。
FIG. 2 is an explanatory view of a method for obtaining a condition for changing a soft X-ray phase by π for measuring a refractive index, and FIG. 2A is a diagram showing a state where the pattern thickness of a soft X-ray transparent material is different; 10A is a diagram showing the soft X-ray intensity at the corresponding position of the contour boundary according to the pattern thickness, and FIG. 13C is a diagram showing a cross-sectional shape of the pattern transferred to the resist.

【図3】軟X線透過性薄膜上に厚さを変えて形成した軟
X線透過材料のパタンを有する試料の部分的拡大図であ
る。
FIG. 3 is a partially enlarged view of a sample having a pattern of a soft X-ray transparent material formed on a soft X-ray transparent thin film with varying thickness.

【図4】軟X線透過性薄膜上の軟X線透過性材料の段差
パタンを形成した試料の部分的拡大図で、(a)は抜き
パタンを示す図、(b)は段差パタンを示す図である。
4A and 4B are partially enlarged views of a sample in which a step pattern of a soft X-ray transparent material on a soft X-ray transparent thin film is formed, in which FIG. 4A is a drawing pattern and FIG. 4B is a step pattern. It is a figure.

【図5】屈折率を測定したい軟X線透過性材料の薄膜上
に段差パタンを設けた試料の部分的拡大図で、(a)は
独立パタンを示す図、(b)は段差パタンを示す図であ
る。
5A and 5B are partially enlarged views of a sample in which a step pattern is provided on a thin film of a soft X-ray transparent material whose refractive index is to be measured, FIG. 5A shows an independent pattern, and FIG. 5B shows a step pattern. It is a figure.

【図6】屈折率を測定したい軟X線透過性材料の薄膜に
段差パタンを設けた試料の部分的拡大図で、(a)は独
立パタンを示す図、(b)は段差パタンを示す図であ
る。
6A and 6B are partially enlarged views of a sample in which a step pattern is provided on a thin film of a soft X-ray transparent material whose refractive index is to be measured, FIG. 6A is an independent pattern, and FIG. 6B is a step pattern. Is.

【図7】可視光から遠紫外線に対して用いてきた従来の
屈折率を求める方法を示す説明図である。
FIG. 7 is an explanatory diagram showing a conventional method for obtaining a refractive index that has been used for visible light to far ultraviolet rays.

【符号の説明】[Explanation of symbols]

2 軟X線透過性材料薄膜 5 第1パタン 6 レジスト 7 被露光基板 8 軟X線 9 屈折率を測定したい軟X線透過材料の自立薄膜 2 Soft X-ray transparent material thin film 5 First pattern 6 Resist 7 Substrate to be exposed 8 Soft X-ray 9 Free-standing thin film of soft X-ray transparent material whose refractive index is to be measured

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軟X線透過性材料の薄膜に、屈折率を測定
したい軟X線透過性材料の第1パタンを形成し、上記薄
膜に近接または密着させて、軟X線に対して感光性を有
する材料を付着した被露光基板を配置し、上記被露光基
板を露光したのち現像するとき、上記第1パタンの輪郭
境界に相当する位置に、上記軟X線に対して感光性を有
する材料が感光されにくいためにできる第2のパタン
が、最も顕著に形成される上記第1パタンの厚さまたは
深さを求め、上記第1パタンの厚さまたは深さと照射X
線波長とから、屈折率を算出する軟X線透過性材料の屈
折率測定方法。
1. A thin film of a soft X-ray transparent material is formed with a first pattern of a soft X-ray transparent material whose refractive index is to be measured, and the first pattern is brought into close proximity to or in close contact with the thin film to expose it to a soft X-ray. When a substrate to be exposed to which a material having properties is adhered is arranged, and the substrate to be exposed is exposed and then developed, the substrate has photosensitivity to the soft X-rays at a position corresponding to the contour boundary of the first pattern. The second pattern, which is formed because the material is not easily exposed to light, finds the thickness or depth of the first pattern that is most prominently formed, and determines the thickness or depth of the first pattern and the irradiation X.
A method for measuring the refractive index of a soft X-ray transparent material, which calculates the refractive index from the line wavelength.
【請求項2】軟X線透過性材料の薄膜に、屈折率を測定
したい軟X線透過性材料の第1パタンを形成し、上記薄
膜に近接または密着させて、軟X線に対して感光性を有
する材料を付着した被露光基板を配置し、上記薄膜と上
記第1パタンを通し軟X線を照射して上記被露光基板を
露光現像し、上記第1パタンの輪郭境界に相当する位置
に、上記軟X線に対して感光性を有する材料が感光され
にくいためにできる第2パタンを得る第1工程と、上記
第2パタンの深さまたは高さを求める第2工程とによ
り、異なる膜厚の上記第1パタンに対応する上記第2パ
タンの高さまたは深さを求め、上記第1パタンの厚さま
たは深さおよび上記第2パタンの高さまたは深さの関係
と、上記照射X線波長とから、屈折率を算出する軟X線
透過性材料の屈折率測定方法。
2. A soft X-ray transparent material thin film is formed with a first pattern of a soft X-ray transparent material whose refractive index is to be measured, and the soft X-ray transparent material is brought close to or in close contact with the thin film and is exposed to soft X-rays. The exposed substrate to which a material having a property of adhering is arranged, and the exposed substrate is exposed and developed by irradiating the exposed substrate with soft X-rays through the thin film and the first pattern, and a position corresponding to the contour boundary of the first pattern. In addition, the first step for obtaining the second pattern, which is possible because the material having photosensitivity to the soft X-rays is difficult to be exposed, and the second step for obtaining the depth or height of the second pattern are different. The height or depth of the second pattern corresponding to the first pattern of film thickness is obtained, and the relationship between the thickness or depth of the first pattern and the height or depth of the second pattern, and the irradiation. Refractive index of soft X-ray transparent material for calculating refractive index from X-ray wavelength Constant method.
【請求項3】屈折率を測定したい軟X線透過性材料の薄
膜に段差パタンを形成し、上記薄膜に近接または密接さ
せて、軟X線に対して感光性を有する材料を付着した被
露光基板を配置し、上記被露光基板を露光したのち現像
するとき、上記段差パタンの輪郭境界に相当する位置
に、上記軟X線に対して感光性を有する材料が感光され
にくいためにできるパタンが、最も顕著に形成される上
記段差パタンの厚さまたは深さを求め、上記段差パタン
の厚さまたは深さと照射X線波長とから、屈折率を算出
する軟X線透過性材料の屈折率測定方法。
3. A light-transmitting material having a step pattern formed on a thin film of a soft X-ray transparent material whose refractive index is to be measured, and a step pattern is formed close to or in close contact with the thin film to which a material having photosensitivity to soft X-rays is attached. When a substrate is placed, and the substrate to be exposed is exposed and then developed, a pattern formed because the material having photosensitivity to the soft X-rays is hard to be exposed at a position corresponding to the contour boundary of the step pattern. The refractive index of the soft X-ray transparent material is obtained by calculating the thickness or depth of the step pattern formed most remarkably and calculating the refractive index from the thickness or depth of the step pattern and the irradiation X-ray wavelength. Method.
【請求項4】屈折率を測定したい軟X線透過性材料の薄
膜に段差パタンを形成し、上記薄膜に近接または密接さ
せて、軟X線に対して感光性を有する材料を付着した被
露光基板を配置し、上記段差パタンを通して軟X線を照
射し、上記被露光基板を露光現像して、上記段差パタン
の輪郭境界に相当する位置に、上記軟X線に対して感光
性を有する材料が感光されにくいためにできるパタンを
得る第1工程と、上記パタンの深さまたは高さを求める
第2工程とにより、異なる膜厚の上記段差パタンに対応
する上記パタンの高さまたは深さを求め、上記段差パタ
ンの厚さまたは深さおよび上記パタンの高さまたは深さ
の関係と、上記照射X線波長とから、屈折率を算出する
軟X線透過性材料の屈折率測定方法。
4. An exposure subject to which a step pattern is formed on a thin film of a soft X-ray transparent material whose refractive index is to be measured, and which is brought close to or in close contact with the thin film to which a material sensitive to soft X-rays is attached. A substrate is placed, soft X-rays are irradiated through the step pattern, the exposed substrate is exposed and developed, and a material having photosensitivity to the soft X-ray is provided at a position corresponding to the contour boundary of the step pattern. The pattern height or depth corresponding to the step pattern having different film thickness is determined by the first step for obtaining a pattern that is difficult to be exposed to light and the second step for determining the depth or height of the pattern. A method for measuring the refractive index of a soft X-ray transparent material, which is obtained and the refractive index is calculated from the relationship between the thickness or depth of the step pattern and the height or depth of the pattern, and the irradiation X-ray wavelength.
JP04179868A 1992-07-07 1992-07-07 Method for measuring refractive index of soft X-ray transparent material Expired - Fee Related JP3131037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04179868A JP3131037B2 (en) 1992-07-07 1992-07-07 Method for measuring refractive index of soft X-ray transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04179868A JP3131037B2 (en) 1992-07-07 1992-07-07 Method for measuring refractive index of soft X-ray transparent material

Publications (2)

Publication Number Publication Date
JPH0627053A true JPH0627053A (en) 1994-02-04
JP3131037B2 JP3131037B2 (en) 2001-01-31

Family

ID=16073318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04179868A Expired - Fee Related JP3131037B2 (en) 1992-07-07 1992-07-07 Method for measuring refractive index of soft X-ray transparent material

Country Status (1)

Country Link
JP (1) JP3131037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434217B1 (en) * 2000-10-10 2002-08-13 Advanced Micro Devices, Inc. System and method for analyzing layers using x-ray transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186553A1 (en) 2020-03-17 2021-09-23 三菱電機株式会社 Bearing holding device and air breaker provided with said bearing holding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434217B1 (en) * 2000-10-10 2002-08-13 Advanced Micro Devices, Inc. System and method for analyzing layers using x-ray transmission

Also Published As

Publication number Publication date
JP3131037B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US5631731A (en) Method and apparatus for aerial image analyzer
JP3249154B2 (en) Lateral position measuring apparatus and method in proximity lithographic system
US11131629B2 (en) Apparatus and methods for measuring phase and amplitude of light through a layer
EP1811337A2 (en) Pattern forming method and pattern forming system
US11536654B2 (en) Scatterometer and method of scatterometry using acoustic radiation
NL2010211A (en) Inspection apparatus and method.
TWI293141B (en) Dimension monitoring method and system
US20100215273A1 (en) Methods and devices for characterizing polarization of illumination system
TW201107735A (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US5700602A (en) Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
US6982796B2 (en) Wavefront splitting element for EUV light and phase measuring apparatus using the same
TWI460559B (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
US5830611A (en) Use of diffracted light from latent images in photoresist for optimizing image contrast
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
US7253909B1 (en) Phase shift measurement using transmittance spectra
US8184264B2 (en) Calibration methods and devices useful in semiconductor photolithography
KR20040111091A (en) Method for producing a library
TWI225575B (en) Method and system for phase/amplitude error detection of alternating phase shifting masks in photolithography
JPH0627053A (en) Refractive index measuring method for soft x-ray transmissive material
US8432530B2 (en) Device, method, and system for measuring image profiles produced by an optical lithography system
US7812929B2 (en) Electrostatic chuck with temperature sensing unit, exposure equipment having the same, and method of detecting temperature from photomask
US20040256047A1 (en) Method for correcting surface shape
Scholze et al. Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks
Gupta et al. High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer
JPH03181805A (en) Film thickness measuring apparatus of shifter of phase shift mask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees