WO2021186553A1 - Bearing holding device and air breaker provided with said bearing holding device - Google Patents

Bearing holding device and air breaker provided with said bearing holding device Download PDF

Info

Publication number
WO2021186553A1
WO2021186553A1 PCT/JP2020/011734 JP2020011734W WO2021186553A1 WO 2021186553 A1 WO2021186553 A1 WO 2021186553A1 JP 2020011734 W JP2020011734 W JP 2020011734W WO 2021186553 A1 WO2021186553 A1 WO 2021186553A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
holding device
mounting hole
bearing holding
sheet metal
Prior art date
Application number
PCT/JP2020/011734
Other languages
French (fr)
Japanese (ja)
Inventor
悠平 永島
一輝 高村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/011734 priority Critical patent/WO2021186553A1/en
Priority to JP2022508658A priority patent/JP7239058B2/en
Priority to CN202080098347.8A priority patent/CN115280451A/en
Publication of WO2021186553A1 publication Critical patent/WO2021186553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/02Details

Definitions

  • the present disclosure relates to a bearing holding device applied to an aerial circuit breaker, and an aerial circuit breaker using the bearing holding device.
  • a bearing is assembled in a housing having a thickness equal to or greater than the axial thickness of the bearing, and a shaft is supported to realize a rotational motion.
  • the bearing holding device used as a device having a bearing positioning and holding function for rotatably supporting the shaft in the opening / closing mechanism is the axial thickness of the bearing in order to realize the weight reduction of the whole device.
  • a sheet metal frame which is thinner than the above, is used for bearing holding.
  • the bearing is inserted into the Jikuke, which is thicker than the sheet metal frame, and then assembled to the sheet metal frame to position and hold the bearing. (See, for example, Patent Document 1).
  • the present disclosure has been made in order to solve the above-mentioned problems, and it is possible to firmly receive a load without increasing the number of parts for a sheet metal frame whose plate thickness is thinner than the axial thickness of the bearing. It is possible to obtain a bearing holding device that can reduce the number of assembly steps and has a highly reliable bearing positioning and holding function. Further, an air circuit breaker using this bearing holding device is obtained.
  • the bearing holding device includes a bearing, a stepped shaft rotatably held by the bearing, and a sheet metal frame having a thickness equal to or less than the axial thickness of the bearing and provided with a bearing mounting hole for mounting the bearing.
  • the bearing has an outer ring, an inner ring inside the outer ring, an inner surface facing the insertion direction of the stepped shaft, and an outer surface opposite the inner surface, and the stepped shaft is at the end. It has a stepped portion and a small diameter portion formed by reducing the diameter through the stepped portion, and the small diameter portion is inserted into the inner ring until the stepped portion abuts on the inner ring on the inner side surface side of the bearing.
  • the bearing holding device according to the present disclosure is attached to the circuit breaker main body.
  • the bearing holding device even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, the assembly man-hours can be reduced, and the assembly can be performed. It is possible to prevent deterioration of accuracy. Further, according to the aerial circuit breaker provided with the bearing holding device according to the present disclosure, it is possible to reduce the weight of the product and improve the reliability of the product by reducing the number of parts.
  • FIG. 5 is a perspective view in which a drawer frame in a state in which the circuit breaker main body in the aerial circuit breaker according to the first embodiment of the present disclosure is pulled out from the drawer frame is partially cut. It is a perspective view which cut a part of the drawer frame in the state which the circuit breaker main body is inserted into the drawer frame in the air circuit breaker which concerns on Embodiment 1 of this disclosure.
  • FIG. 5 is a side sectional view showing a trip state in which the closing spring of the circuit breaker main body is released in the air circuit breaker according to the first embodiment of the present disclosure.
  • FIG. 1 is a perspective view of the aerial circuit breaker according to the first embodiment
  • FIG. 2 shows a part of the drawer frame in a state where the circuit breaker main body of the aerial circuit breaker according to the first embodiment is pulled out from the drawer frame.
  • a perspective view FIG. 3 is a perspective view in which the circuit breaker main body of the circuit breaker according to the first embodiment is partially cut
  • FIG. 4 is an aerial view according to the first embodiment.
  • FIG. 5 is a side sectional view showing an off state in which charging of the aerial circuit breaker according to the first embodiment is completed
  • FIG. It is a side sectional view which shows the on state of the aerial circuit breaker which concerns on.
  • the aerial circuit breaker 300 is composed of a circuit breaker main body 100 that opens and closes an electric circuit, and a drawer frame 200 that houses the circuit breaker main body 100 so that it can be pulled out.
  • the circuit breaker main body 100 is covered with a housing 101 including a mold case 101a and a mold cover 101b, and a drawer mechanism 15 for pulling out the circuit breaker main body 100 from the drawer frame 200 is provided at the lower part of the housing 101. ing.
  • an ON button 11 for operating the charge arm 24 in the side sectional view shown in FIG. 4 to insert the movable contactor 43 and a trip latch 31 in the side sectional view shown in FIG. 4 are operated for movable contact.
  • An OFF button 12 for pulling out the child 43 and a handle 13 for manually accumulating the closing spring 17 in the side sectional view shown in FIG. 4 are provided.
  • An insertion hole 14 into which a drawer handle (not shown) used when pulling out the circuit breaker main body 100 is provided is provided on the front surface of the drawer mechanism 15.
  • the drawer frame 200 is provided with a telescopic drawer rail 200a to which the circuit breaker main body 100 is attached at one end. As shown in FIG. 3, the circuit breaker main body 100 is inserted into the drawer frame 200. Normally, the circuit breaker main body 100 is used in a state of being inserted into the drawer frame 200.
  • the drawer handle inserted from the insertion hole 14 from the inserted state of the circuit breaker body 100 shown in FIG. (Not shown) is rotated. From the state of FIG. 3, the circuit breaker main body 100 moves in the direction of arrow E and is pulled out from the drawer frame 200 to a predetermined position. After that, by pulling out the circuit breaker main body 100 from the drawer frame 200, the drawer state shown in FIG. 1 is obtained.
  • the housing 101 is composed of a mold case 101a and a mold cover 101b.
  • the camshaft 21 is rotatably supported by the sheet metal frame 2 (shown in FIG. 2) on the housing 101.
  • the charging cam 22 and the ratchet 23 are fixed around the cam shaft 21, and a cam side roller 22a is provided between the charging cam 22 and the ratchet 23. It has a circumferential cam surface 22b.
  • a charging arm 24 that rotates with the fixed shaft 24a as a fulcrum, and an arm-side roller 24b is provided at one end of the charging arm 24 to rotate the circumferential cam surface 22b of the charging cam 22.
  • An operating surface 24c is formed on the upper surface of the middle abdomen of the charge arm 24, and as shown in FIGS. 4, 5, and 6, the shape is such that the radius of curvature changes toward the right side of the drawing. ..
  • a spring chip pin 24d is provided at the other end of the charge arm 24.
  • a guide plate 18 for holding the charging spring 17 is fixed to the housing 101, and the guide plate 18 has an elongated hole 18a.
  • a spring break pin 24d penetrates the elongated hole 18a so that it can move along the elongated hole 18a, and moves along the elongated hole 18a to store the input spring 17.
  • a first closed latch 25 is rotatably attached to the fixed shaft 24a on the fixed shaft 24a, has a latch-side roller 25a on the middle abdomen, and forms two working surfaces on one end surface thereof. Can engage with the cam-side roller 22a.
  • One of the working surfaces is a regulating surface extending in the vertical direction at the right end in FIG. 4 of the first closed latch 25, and when the cam-side roller 22a abuts on this surface, the charging cam 22 rotates further. It regulates.
  • the other one of the working surfaces is an allowable surface extending diagonally downward to the left from the lower end of the regulation surface in FIG. 4, and when the cam-side roller 22a abuts on this surface, the charging cam 22 is counterclockwise. Allows rotation of. At the start of energization of the closing spring 17, the cam-side roller 22a engages with the allowable surface as shown in FIG.
  • a second closed latch 26 that rotates about a fixed shaft 26a is provided above the first closed latch 25, and the lower end of the second closed latch 26 engages with the latch-side roller 25a. It has a side protruding portion and a stepped engaging portion formed below the side protruding portion, and the upper end portion of the second close latch 26 engages with a close bar 27 having a partially D-cut shape. There is. Further, the second closed latch 26 receives a force in the counterclockwise direction in FIG. 4 by a return spring (not shown). The close bar 27 is turned on (rotated clockwise) manually by the ON button 11 or by a solenoid or the like.
  • FIG. 4 shows the close plate 56 fixed to the close bar 27 (shown in FIG. 4) by rotating the close plate 56 via the rail detection lever 51, the shaft 53, the interlocking plate 54, and the push-up lever 55.
  • the closing bar 27 is driven to release the closing spring 17.
  • the main shaft 28, which will be described later, is rotatably supported by a sheet metal frame 2 (shown in FIG. 2) fixed to the housing 101.
  • the input toggle link mechanism 29 is configured by connecting two links, a first link 29a and a second link 29b, by a central pin 29d, and a main shaft on the second link 29b side by a pin 29c. It is connected to a second link arm 28b (shown in FIG. 7) fixed to 28.
  • a link-side roller 29e that is rotatably supported is provided around the center pin 29d, and is in a positional relationship of contacting the operating surface 24c when the closing toggle link mechanism 29 is in the bent state.
  • a link lever 30 rotatably supported by the fixed shaft 30a is provided above the closing toggle link mechanism 29, and the first link 29a side of the closing toggle link mechanism 29 is connected to one end side by a pin 30b.
  • a lever-side roller 30c rotatably provided is provided in the middle portion of the link lever 30, and a trip latch 31 rotatably supported by the fixed shaft 26a is provided on the left side of the lever-side roller 30c in FIG. There is.
  • the trip latch 31 has a side surface portion engaged with the lever side roller 30c and an upper end portion engaged with a trip bar 32 having a partially D-cut shape. A directional rotational force is given.
  • the trip bar 32 is designed to be tripped (rotated counterclockwise) manually by the OFF button 12 or by a solenoid or the like.
  • the ratchet 23 is rotated counterclockwise by manually pushing down the handle 13 in the direction of arrow D, and is coaxially fixed by the cam shaft 21 for charging.
  • the cam 22 is rotated counterclockwise, the arm-side roller 24b supported by the left end of the charge arm rolls along the circumferential cam surface 22b, so that the arm-side roller 24b moves to the left in FIG.
  • the charge arm 24 rotates clockwise around the fixed shaft 24a, and the spring cap pin 24d provided at the other end moves downward in FIG. 4, and the charging spring 17 is stored.
  • the second closed latch 26 receives a counterclockwise force by a return spring (not shown), the side protruding portion at the lower end of the second closed latch 26 comes into contact with the latch side roller 25a, which is shown in FIG.
  • the first closed latch 25 is pushed clockwise to rotate the first closed latch 25 clockwise, but the lower surface of the first closed latch 25 on one end side, that is, the allowable surface and the cam side roller 22a are in contact with each other. Therefore, the cam-side roller 22a serves as a stopper, and the first closed latch 25 is held in a non-rotatable state.
  • the cam-side roller 22a separates from the lower surface on one end side of the first closed latch 25, that is, the allowable surface.
  • the first closed latch 25 rotates clockwise
  • the latch side roller 25a rotates clockwise and comes off from the side protrusion of the lower end of the second closed latch 26, and the lower end of the second closed latch 26. Free.
  • the second close latch 26 is rotated counterclockwise by the return spring, and when the upper end of the second close latch 26 exceeds the close bar 27 and moves to the left of the close bar 27, the first close latch 26 is closed.
  • the latch-side roller 25a of the latch 25 engages with the engaging portion at the lower end of the second closed latch 26 to stop the movement of the second closed latch 26.
  • the close bar 27 is rotated counterclockwise by a return spring (not shown) to enter the second state (the state of the close bar 27 in FIG. 6), and the second close. Even if a clockwise rotational force acts on the latch 26, it functions as a stop against it.
  • the closing toggle link mechanism 29 Since the closing toggle link mechanism 29 does not bend beyond a predetermined bending state, it is in the state shown in FIG.
  • the charging cam 22 is rotated substantially once by pushing down the handle 13 several times, and finally in the state shown in FIG. 5, that is, the position where the arm-side roller 24b of the charging arm 24 is slightly before the maximum radius of the charging cam 22. Is reached, the cam-side roller 22a again comes into contact with the end surface of the first closed latch 25, that is, the regulation surface, and is in a stopped state. After that, even if the handle 13 is further pushed down, the ratchet 23 only idles, the charging cam 22 does not rotate, and the charging spring 17 is completed.
  • the spring force of the input spring 17 pushes the spring break pin 24d upward to exert a counterclockwise force on the charge arm 24. Since this force is transmitted to the charging cam 22 via the arm-side roller 24b, the cam-side roller 22a pushes the end surface of the first closed latch 25, that is, the regulation surface counterclockwise, and as a result, the first The latch-side roller 25a of the close latch 25 pushes the lower end engaging portion of the second close latch 26 to the left to rotate the second close latch 26 clockwise, but the upper end of the second close latch 26
  • the close bar 27 serves as a stopper at the portion to prevent the second close latch 26 from rotating clockwise.
  • the cam-side roller 22a rotates in the same direction while rotating the first close latch 25 in the counterclockwise direction, and the charging cam 22 also rotates in the same direction, so that it is supported by the left end of the charge arm 24.
  • the arm-side roller 24b falls into the stepped portion of the circumferential cam surface 22b of the charging cam 22, and the charging arm 24 rotates counterclockwise as shown in FIG. 6 due to the releasing force of the closing spring 17, and the operating surface 24c thereof. Raises the link side roller 29e of the input toggle link mechanism 29.
  • the link on the left side of the closing toggle link mechanism 29 moves upward and tries to rotate the link lever 30 clockwise, but the lever side roller 30c comes into contact with the trip latch 31, and the trip latch 31 is moved by the trip bar 32. Since the counterclockwise movement is locked, the closing toggle link mechanism 29 extends to the right and rotates the second link arm 28b counterclockwise to move the movable contact 43 to the right. In the state shown in FIG. 6, the contact 43a and the contact 44a provided on the conductor 44 are turned on.
  • the closing toggle link mechanism 29 is pushed to the left by the pressing force of the pressure contact spring 45, and a clockwise rotational force is applied to the link lever 30 via the pin 30b to push the lever side roller 30c.
  • the trip latch 31 is pressed counterclockwise through the trip latch 31, but the trip latch 31 is prevented from rotating counterclockwise by the trip bar 32.
  • FIG. 7 is a front view of the main shaft 28, which is an example of a shaft in an aerial circuit breaker.
  • an insulating link arm 28a and a second link arm 28b having the same shape as the insulating link arm 28a are fixed to the main shaft 28.
  • the insulating link arm 28a and the second link arm 28b are provided with pins 42 and 29c for driving the links, respectively.
  • the main shaft 28 is a stepped shaft having a stepped portion 28c at both ends in the axial direction and a small diameter portion 28d formed by reducing the diameter via the stepped portion 28c.
  • the small diameter portion 28d of the main shaft 28 is fixed to a bearing attached to the sheet metal frame 2 and is rotatably supported.
  • shafts such as the main shaft 28 and the cam shaft 21 are rotatably supported by bearings attached to the sheet metal frame 2 fixed to the housing 101 as part of the components of the opening / closing mechanism. Has been done.
  • FIG. 8 is a diagram showing the configuration of the bearing holding device 1 according to the first embodiment.
  • 8 (a) is an exploded perspective view of the bearing holding device 1
  • FIG. 8 (b) is an enlarged view of a portion shown by the alternate long and short dash line A in FIG. 8 (a).
  • FIG. 8C is an enlarged schematic view of the bearing 4 on the left side in FIG. 8A.
  • FIG. 9 is a side view of the sheet metal frame 2 of the bearing holding device 1 on the outer wall surface side.
  • FIG. 10 is a perspective view showing the bearing holding device 1.
  • FIG. 11 is a cross-sectional view of the bearing holding device 1 at the position of the alternate long and short dash line B shown in FIG.
  • the bearing holding device 1 includes a bearing 4, a stepped shaft 3 rotatably held by the bearing 4, and a sheet metal frame 2 provided with a bearing mounting hole 2a for mounting the bearing 4.
  • the bearing 4 has an outer ring 4a and an inner ring 4b inside the outer ring 4a.
  • the inner ring 4b can rotate with an extremely small resistance with respect to the outer ring 4a.
  • the bearing 4 has an inner side surface 4c facing the insertion direction of the stepped shaft 3 and an outer side surface 4d opposite to the inner side surface 4c.
  • the sheet metal frame 2 is a pair having a thickness equal to or less than the thickness of the bearing 4 in the axial direction, fixed to the housing 101, and arranged to face each other.
  • the sheet metal frame 2 has an inner wall surface 2c on the side where the bearing 4 is mounted, and an outer wall surface 2d on the opposite side of the inner wall surface 2c in the thickness direction.
  • the bearing mounting hole 2a penetrating the sheet metal frame 2 has an inner diameter corresponding to the outer ring 4a of the bearing 4.
  • the circumferential surface 2e of the bearing mounting hole 2a has a claw portion 2b extending in the axial direction from the mounting hole edge portion 2f on the outer wall surface 2d side. The claw portion 2b abuts on the outer ring 4a on the outer surface 4d side of the bearing 4 to hold the bearing 4, and regulates the movement of the bearing 4 outward from the claw portion 2b.
  • the bearing mounting hole 2a and the claw portion 2b are integrally molded by press working. As a result, the number of processing steps does not increase, and the strength of the claw portion 2b can be increased.
  • the stepped shaft 3 has a stepped portion 3a at both end portions in the axial direction and a small diameter portion 3b formed with a reduced diameter via the stepped portion 3a, respectively.
  • the small diameter portion 3b is inserted into the inner ring 4b of the bearing 4 until the step portion 3a abuts on the inner ring 4b on the inner side surface 4c side of the bearing 4.
  • the stepped shaft 3 is rotatably held by fixing the small diameter portion 3b to the inner ring 4b of the bearing 4.
  • the stepped shaft 3 is a typical shaft configuration example, corresponds to a shaft such as the main shaft 28, and has a function of a rotating shaft like a shaft such as the main shaft 28.
  • the stepped portion 3a of the stepped shaft 3 corresponds to the stepped portion 28c of the main shaft 28, and the small diameter portion 3b of the stepped shaft 3 corresponds to the small diameter portion 28d of the main shaft 28.
  • the charging cam, arm, and the like are not shown.
  • the bearing holding device can be similarly configured when a charging cam, an arm, or the like is attached to the stepped shaft, and has the same function.
  • FIG. 8 shows a state in which the sheet metal frame 2 has only one bearing mounting hole for mounting the bearing. In the bearing holding device, when a plurality of bearing mounting holes are mounted on one sheet metal frame, it can be configured in the same manner and has the same function.
  • the claw portion 2b is discontinuously provided at a plurality of locations along the mounting hole edge portion 2f of the bearing mounting hole 2a, and sandwiches the outer ring 4a of the bearing 4.
  • the stability of holding the bearing 4 can be improved by providing the bearing mounting holes 2a at a plurality of locations at substantially equal intervals along the mounting hole edge 2f.
  • FIG. 9 shows an example in which claw portions 2b are provided at three locations along the mounting hole edge portion 2f.
  • the bearing 4 is inscribed in the bearing mounting hole 2a provided in the sheet metal frame 2, so that the movement of the bearing 4 in the radial direction is restricted.
  • the outer ring 4a of the bearing 4 abuts on the claw portion 2b on the outer wall surface 2d side of the sheet metal frame 2, the inner ring 4b of the bearing 4 abuts on the stepped portion 3a of the stepped shaft 3, and the bearing 4 has the claw portion of the bearing mounting hole 2a.
  • the bearing 4 is positioned and held.
  • the shape of the claw portion 2b does not matter as long as it can sandwich the outer ring 4a of the bearing 4 and regulate the movement of the bearing 4 in the direction outward from the claw portion 2b.
  • the claw portion 2b is provided on the outer wall surface 2d side so as to be flush with the outer wall surface 2d. Since the claw portion 2b and the outer wall surface 2d are flush with each other, the claw portion 2b does not interfere with the parts arranged outside the sheet metal frame, so that the degree of freedom in designing the parts layout and the like is increased.
  • the bearing 4 Since the thickness of the sheet metal frame 2 is less than or equal to the thickness of the bearing 4 in the axial direction, the bearing 4 is inserted into the bearing mounting hole 2a when the bearing 4 is mounted in the bearing mounting hole 2a until the outer ring 4a abuts on the claw portion 2b. Only the portion to be in contact with the circumferential surface 2e of the bearing mounting hole 2a. That is, in a state where the bearing 4 is mounted in the bearing mounting hole 2a, only a part of the outer ring 4a is inscribed in the circumferential surface 2e of the bearing mounting hole 2a in the axial direction. The portion of the bearing 4 other than a part thereof is exposed to the outside of the inner wall surface 2c of the sheet metal frame 2 on the side where the claw portion 2b is not provided.
  • the bearing holding device 1 is attached to the housing 101 of the circuit breaker main body 100.
  • the bearing holding device even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of assembly accuracy.
  • the aerial circuit breaker provided with the bearing holding device according to the first embodiment the weight of the product can be reduced and the reliability can be improved by reducing the number of parts.
  • FIG. 12 is a cross-sectional view of the bearing holding device 102 according to the second embodiment corresponding to the position of the alternate long and short dash line B shown in FIG. Note that FIG. 12 is a cross-sectional view of the bearing holding device 102 according to the second embodiment, which corresponds to the case where the claw portions are provided at three positions along the mounting hole edge portion 2f as shown in FIG.
  • the sheet metal frame 202 has an inner wall surface 202c on the side where the bearing 4 is mounted and an outer wall surface 202d on the opposite side of the inner wall surface 202c in the thickness direction.
  • a claw portion 202b extending in the axial direction from the mounting hole edge portion 202f on the outer wall surface 202d side is provided.
  • the claw portion 202b is located on the outer wall surface 202d side from the outer wall surface 202d. It has a structure that protrudes outward.
  • the bearing 4 is mounted by shifting in the thrust direction toward the outer wall surface 202d side of the sheet metal frame 202. That is, the contact surface between the outer ring 4a of the bearing 4 and the circumferential surface 202e of the bearing mounting hole 202a becomes large. Thereby, when a load is generated on the stepped shaft 3, the stress generated on the sheet metal frame 202 and the bearing 4 can be reduced.
  • the claw portion 202b is discontinuously provided at a plurality of locations along the mounting hole edge portion 202f of the bearing mounting hole 202a.
  • the shape of the claw portion 202b does not matter as long as it can sandwich the outer ring 4a of the bearing 4 and regulate the movement of the bearing 4 in the direction outward from the claw portion 202b.
  • the bearing mounting hole 202a and the claw portion 202b are integrally molded by press working.
  • the configuration other than the claw portion 202b of the sheet metal frame 202 is the same as the bearing holding device according to the first embodiment.
  • the aerial circuit breaker using the bearing holding device according to the second embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
  • the bearing holding device even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of bearing accuracy.
  • the claws since the claws have a structure that projects outward from the outer wall surface of the sheet metal frame, the contact surface between the bearing and the bearing mounting hole becomes large, and the stress generated between the sheet metal frame and the bearing can be reduced, resulting in a product life. Can be improved.
  • the aerial circuit breaker using the bearing holding device according to the second embodiment it is possible to reduce the weight of the product and improve the reliability and the life of the product by reducing the number of parts.
  • Embodiment 3 The bearing holding device according to the third embodiment and the aerial circuit breaker using the bearing holding device will be described with reference to FIG. In the third embodiment, the description of the same or corresponding parts as the first embodiment of the present disclosure will be omitted. Hereinafter, the points different from the first embodiment of the bearing holding device according to the third embodiment will be described with reference to the drawings.
  • FIG. 13 is an enlarged perspective view of a bearing mounting hole 203a in the sheet metal frame 203 of the bearing holding device according to the third embodiment corresponding to the portion indicated by the alternate long and short dash line A shown in FIG. 8A.
  • the sheet metal frame 203 extends in the axial direction from the mounting hole edge portion 203f on the outer wall surface side of the sheet metal frame 203 on the circumferential surface 203e of the bearing mounting hole 203a. It has a claw portion 203b and dents 203 g formed at both ends of the root of the claw portion 203b.
  • the bearing mounting hole 203a, the claw portion 203b, and the recess 203g are integrally molded by two-step press working. First, the bearing mounting hole 203a and the recess 203g are simultaneously molded by press working. Next, the claw portion 203b is molded by press working. By molding the recess 203g at the same time as the bearing mounting hole 203a before molding the claw portion 203b, the stress generated when molding the claw portion 203b can be concentrated on the recess 203g. Compared with the case where the recess 203g is not molded, it is possible to prevent the bearing mounting hole 203a from being deformed due to the stress generated around the claw portion 203b.
  • the bearing 4 is sandwiched together with the claw portion 203b of the bearing mounting hole 203a and the stepped portion 3a of the stepped shaft 3. Further, the stability of holding the bearing 4 can be improved by providing the bearing mounting holes 203a at a plurality of locations at substantially equal intervals along the mounting hole edge portions 203f.
  • the claw portion 203b can be provided on the same plane as the outer wall surface of the sheet metal frame 203 as in the bearing holding device 1 according to the first embodiment. In this case, since the claw portion does not interfere with the parts arranged outside the sheet metal frame, the degree of freedom in designing the parts layout and the like is increased.
  • the claw portion 203b can be provided so as to project outward from the outer wall surface of the sheet metal frame 203.
  • the contact surface between the bearing and the bearing mounting hole becomes large, the stress generated in the sheet metal frame and the bearing can be reduced, and the product life can be improved.
  • the bearing mounting hole 203a, the claw portion 203b, and the recess 203g are integrally molded by two-step press working in the same manner.
  • the configuration other than the recess 203g formed at the root of the claw portion 203b of the sheet metal frame 203 is the same as the bearing holding device according to the first embodiment or the second embodiment.
  • the aerial circuit breaker using the bearing holding device according to the third embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
  • the bearing holding device as in the first embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing positioning and holding function can be performed without increasing the number of parts. As a result, the assembly man-hours can be reduced and the deterioration of assembly accuracy can be prevented. Further, by providing recesses at both ends of the claw portion in the sheet metal frame, it is possible to prevent deformation of the bearing mounting hole due to stress generated during molding of the claw portion. As a result, it is possible to prevent improper mounting of the bearing.
  • the weight of the product can be reduced and the assembly man-hours can be reduced by reducing the number of parts, the deformation of the bearing mounting hole can be prevented, and the weight and reliability of the product can be reduced. It is possible to improve the sex.
  • Embodiment 4 A bearing holding device according to the fourth embodiment and an aerial circuit breaker using the bearing holding device will be described with reference to FIGS. 14 and 15.
  • the description of the same or corresponding parts as the first embodiment of the present disclosure will be omitted.
  • the points different from the first embodiment of the bearing holding device according to the fourth embodiment will be described with reference to the drawings.
  • FIG. 14 is a perspective view of the bearing holding device 104 according to the fourth embodiment as viewed from the inner wall surface 204c side of the sheet metal frame 204.
  • FIG. 15 is a cross-sectional view showing the bearing holding device 104 according to the fourth embodiment.
  • the sheet metal frame 204 has an inner wall surface 204c on the side where the bearing 4 is mounted and an outer wall surface 204d on the opposite side of the inner wall surface 204c in the thickness direction. ..
  • the sheet metal frame 204 is formed with a bearing mounting hole 204a and a claw portion 204b extending axially from the outer wall surface 204d side of the sheet metal frame 204 on the circumferential surface 204e of the bearing mounting hole 204a.
  • the bearing mounting hole 204a and the claw portion 204b are integrally molded by press working.
  • the claws are provided.
  • the portion 204b has a brim shape that is continuous along the mounting hole edge portion 204f on the circumferential surface 204e of the bearing mounting hole 204a. That is, the shape of the claw portion 204b is such that the outer circumference of the disk having a hole in the center is connected to the mounting hole edge portion 204f on the outer wall surface 204d side.
  • the claw portion 204b having a continuous brim shape has a large contact surface with the bearing 4, it is possible to reduce the stress generated in the claw portion 204b when a load is generated on the stepped shaft 3.
  • the movement of the bearing 4 in the swing direction can be more strongly regulated, and the holding property can be improved.
  • the claw portion 204b is provided on the outer wall surface 204d side of the sheet metal frame 204 so as to be flush with the outer wall surface 204d.
  • the claw portion 204b does not interfere with the parts arranged outside the sheet metal frame, so that the degree of freedom in designing the parts layout and the like is increased.
  • the configuration other than the sheet metal frame 204 is the same as the bearing holding device according to the first embodiment.
  • the aerial circuit breaker using the bearing holding device according to the fourth embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
  • the bearing holding device as in the first embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing positioning and holding function can be performed without increasing the number of parts. As a result, the assembly man-hours can be reduced and the deterioration of assembly accuracy can be prevented. Further, since the contact surface between the claw portion of the bearing mounting hole and the bearing is large, it is possible to reduce the stress generated in the claw portion when a load is generated on the stepped shaft. Compared with the bearing holding device according to the first embodiment, the movement of the bearing in the swing direction can be more strongly regulated, and the holding property can be improved.
  • the weight of the product can be reduced and the assembly man-hours can be reduced by reducing the number of parts, the holding property for the bearing can be improved, and the weight and reliability of the product can be reduced. It is possible to improve the sex.
  • Embodiment 5 The bearing holding device according to the fifth embodiment and the aerial circuit breaker using the bearing holding device will be described with reference to FIGS. 16 and 17. In the fifth embodiment, the description of the same components or corresponding parts as those in the fourth embodiment of the present disclosure will be omitted. Hereinafter, the points different from the fourth embodiment of the bearing holding device according to the fifth embodiment will be described with reference to the drawings.
  • FIG. 16 is a perspective view showing the bearing holding device 105 according to the fifth embodiment.
  • FIG. 17 is a cross-sectional view at the position of the alternate long and short dash line C shown in FIG.
  • the sheet metal frame 205 has an inner wall surface 205c on the side where the bearing 4 is mounted and an outer wall surface 205d on the opposite side of the inner wall surface 205c in the thickness direction.
  • the sheet metal frame 205 is formed with a bearing mounting hole 205a and a claw portion 205b extending in the axial direction from the outer wall surface 205d side of the sheet metal frame 205 on the circumferential surface 205e of the bearing mounting hole 205a.
  • the claw portion 205b has a continuous brim shape along the mounting hole edge portion 205f.
  • the bearing mounting hole 205a and the claw portion 205b are integrally molded by press working.
  • the claw portion 205b is on the outer wall surface 205d side.
  • the structure is such that the outer wall surface 205d projects outward. That is, the claw portion 205b has a shape that protrudes outward from the outer wall surface 205d and the outer periphery of the disk having a hole in the center is connected to the mounting hole edge portion 205f on the outer wall surface 205d side.
  • the bearing 4 is mounted by shifting in the thrust direction toward the outer wall surface 205d of the sheet metal frame 205. That is, the contact surface between the outer ring 4a of the bearing 4 and the circumferential surface 205e of the bearing mounting hole 205a becomes large. As a result, when a load is generated on the stepped shaft 3, the stress generated on the sheet metal frame 205 and the bearing 4 can be reduced.
  • the configuration other than the sheet metal frame 205 is the same as the bearing holding device according to the fourth embodiment.
  • the aerial circuit breaker using the bearing holding device according to the fifth embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the fourth embodiment.
  • the bearing holding device even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of bearing accuracy. Further, since the contact surface between the claw portion of the bearing mounting hole and the bearing is large, it is possible to reduce the stress generated in the claw portion when a load is generated on the stepped shaft. Compared with the bearing holding device according to the first embodiment, the movement of the bearing in the swing direction can be more strongly regulated, and the holding property can be improved.
  • the claws have a structure that projects outward from the outer wall surface of the sheet metal frame, the contact surface between the bearing and the bearing mounting hole becomes large, and the stress generated between the sheet metal frame and the bearing can be reduced, resulting in a product life. Can be improved.
  • the aerial circuit breaker using the bearing holding device according to the fifth embodiment it is possible to reduce the weight of the product and improve the reliability and the life of the product by reducing the number of parts.

Abstract

Provided is a bearing holding device that can hold a bearing without increasing the number of components even with a sheet metal frame that is thinner than the thickness of the bearing in the axial direction thereof. A bearing holding device 1 according to the present disclosure is provided with: a bearing 4; a stepped shaft 3 that is rotatably held by the bearing 4; and a sheet metal frame 2 that has a thickness that is equal to or less than the thickness of the bearing 4 in the axial direction thereof and is provided with a bearing mounting hole 2a in which the bearing 4 is mounted. The bearing 4 includes an outer ring 4b and an inner ring 4a. The stepped shaft 3 includes a step part 3a at an end section thereof, and a small diameter part 3b formed to have a contracted diameter by way of the step part 3a. The small diameter part 3b is inserted into the inner ring 4a until the step part 3a runs up against the inner ring 4a of an inner surface 4c side of the bearing 4. A claw part 2b is provided at a circumferential surface 2e of the bearing mounting hole 2a, the claw part 2b extending in an axial direction from a mounting hole edge 2f of an outer wall surface 2d side of the sheet metal frame 2 and abutting the outer ring 4a at an outer surface 4d side of the bearing 4.

Description

ベアリング保持装置およびこのベアリング保持装置を備えた気中遮断器Bearing holding device and air circuit breaker equipped with this bearing holding device
 本開示は、気中遮断器に適用されるベアリング保持装置、並びに該ベアリング保持装置を用いた気中遮断器に関するものである。 The present disclosure relates to a bearing holding device applied to an aerial circuit breaker, and an aerial circuit breaker using the bearing holding device.
 一般的にベアリングは、ベアリングの軸方向の厚みと同等以上の厚みを持ったハウジングに組付け、シャフトを支持することで、回転運動を実現している。
 一方、気中遮断器では、開閉機構におけるシャフトを回転自在に支持するベアリングの位置決めおよび保持機能を有する装置として用いられるベアリング保持装置は、装置全体の軽量化を実現するため、ベアリングの軸方向厚みに比べ板厚が薄い板金フレームがベアリング保持用に用いられる。板金フレームにベアリングを直接挿入しようとすると、軸の首振り方向に対して動きを拘束することが難しいため、板金フレームにベアリングの位置決めおよび保持機能を持たせることは難しかった。
 従来の気中遮断器では、ベアリング軸の首振りを抑制するために、ベアリングを板金フレームよりも十分厚みを持ったジクウケに挿入した後、板金フレームに組付けることで、ベアリングの位置決め且つ保持をしている(例えば、特許文献1参照)。
Generally, a bearing is assembled in a housing having a thickness equal to or greater than the axial thickness of the bearing, and a shaft is supported to realize a rotational motion.
On the other hand, in the air breaker, the bearing holding device used as a device having a bearing positioning and holding function for rotatably supporting the shaft in the opening / closing mechanism is the axial thickness of the bearing in order to realize the weight reduction of the whole device. A sheet metal frame, which is thinner than the above, is used for bearing holding. When an attempt is made to insert the bearing directly into the sheet metal frame, it is difficult to restrain the movement in the swing direction of the shaft, so that it is difficult to give the sheet metal frame a bearing positioning and holding function.
In the conventional air circuit breaker, in order to suppress the swing of the bearing shaft, the bearing is inserted into the Jikuke, which is thicker than the sheet metal frame, and then assembled to the sheet metal frame to position and hold the bearing. (See, for example, Patent Document 1).
実開平5-69843Actual Kaihei 5-69843
 特許文献1に係る遮断器において、板金フレーム(特許文献1における機構フレーム)にベアリングを組み付ける際に、ベアリングを挿入して保持するジクウケが必須であるため、部品点数が多くなり、製品重量と組立工数が増加した欠点がある。また、組立工数の増加に伴って、公差積上げにより組付け精度が悪化する問題があった。 In the circuit breaker according to Patent Document 1, when assembling a bearing to a sheet metal frame (mechanical frame in Patent Document 1), it is essential to insert and hold the bearing, so that the number of parts increases, and the product weight and assembly There is a drawback that the man-hours have increased. Further, as the assembly man-hours increase, there is a problem that the assembly accuracy deteriorates due to the accumulation of tolerances.
 本開示は、上述のような課題を解決するためになされたものであり、ベアリングの軸方向厚みに比べ板厚が薄い板金フレームに対して部品点数を増やすことなく、荷重をしっかりと受けることができると共に、組み立て工数が削減でき、信頼性が高いベアリングの位置決めおよび保持の機能を持たせるベアリング保持装置を得るものである。
 また、このベアリング保持装置を用いた気中遮断器を得るものである。
The present disclosure has been made in order to solve the above-mentioned problems, and it is possible to firmly receive a load without increasing the number of parts for a sheet metal frame whose plate thickness is thinner than the axial thickness of the bearing. It is possible to obtain a bearing holding device that can reduce the number of assembly steps and has a highly reliable bearing positioning and holding function.
Further, an air circuit breaker using this bearing holding device is obtained.
 本開示に係るベアリング保持装置は、ベアリングと、ベアリングに回転自在に保持される段付きシャフトと、厚みがベアリングの軸方向の厚み以下であり、ベアリングを取り付けるベアリング取付け孔が設けられた板金フレームとを備え、ベアリングは、外輪と、外輪の内側の内輪と、段付きシャフトの挿入方向に対向する内側面と、内側面の反対側の外側面とを有し、段付きシャフトは、端部に段差部と、段差部を介して縮径形成された小径部とを有し、段差部がベアリングの内側面側の内輪に突き当たるまで小径部が内輪に挿入されており、板金フレームは、ベアリングを取付ける側の内壁面、および厚み方向において内壁面の反対側の外壁面を有し、ベアリング取付け孔は、ベアリング取付け孔の円周面において、外壁面側の取付け孔縁部から軸方向に向かって延伸し、ベアリングの外側面側の外輪に当接するツメ部を有する。
 また、本開示に係る気中遮断器は、遮断器本体に本開示に係るベアリング保持装置が取り付けられている。
The bearing holding device according to the present disclosure includes a bearing, a stepped shaft rotatably held by the bearing, and a sheet metal frame having a thickness equal to or less than the axial thickness of the bearing and provided with a bearing mounting hole for mounting the bearing. The bearing has an outer ring, an inner ring inside the outer ring, an inner surface facing the insertion direction of the stepped shaft, and an outer surface opposite the inner surface, and the stepped shaft is at the end. It has a stepped portion and a small diameter portion formed by reducing the diameter through the stepped portion, and the small diameter portion is inserted into the inner ring until the stepped portion abuts on the inner ring on the inner side surface side of the bearing. It has an inner wall surface on the mounting side and an outer wall surface on the opposite side of the inner wall surface in the thickness direction, and the bearing mounting holes are axially oriented from the mounting hole edge on the outer wall surface side on the circumferential surface of the bearing mounting holes. It has a claw portion that extends and abuts on the outer ring on the outer surface side of the bearing.
Further, in the aerial circuit breaker according to the present disclosure, the bearing holding device according to the present disclosure is attached to the circuit breaker main body.
 本開示に係るベアリング保持装置によれば、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 また、本開示に係るベアリング保持装置を備えた気中遮断器によれば、部品点数の削減により製品の軽量化、および製品の信頼性向上を図ることができる。
According to the bearing holding device according to the present disclosure, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, the assembly man-hours can be reduced, and the assembly can be performed. It is possible to prevent deterioration of accuracy.
Further, according to the aerial circuit breaker provided with the bearing holding device according to the present disclosure, it is possible to reduce the weight of the product and improve the reliability of the product by reducing the number of parts.
本開示の実施の形態1に係る気中遮断器の斜視図である。It is a perspective view of the air circuit breaker which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る気中遮断器における遮断器本体が引出枠から引出しされた状態の引出枠を一部カットした斜視図である。FIG. 5 is a perspective view in which a drawer frame in a state in which the circuit breaker main body in the aerial circuit breaker according to the first embodiment of the present disclosure is pulled out from the drawer frame is partially cut. 本開示の実施の形態1に係る気中遮断器における遮断器本体が引出枠に挿入された状態の引出枠を一部カットした斜視図である。It is a perspective view which cut a part of the drawer frame in the state which the circuit breaker main body is inserted into the drawer frame in the air circuit breaker which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る気中遮断器における遮断器本体の投入バネが放勢したトリップ状態を示す側面断面図である。FIG. 5 is a side sectional view showing a trip state in which the closing spring of the circuit breaker main body is released in the air circuit breaker according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る気中遮断器における遮断器本体のチャージが完了したオフ状態を示す側面断面図である。It is a side sectional view which shows the off state which the charge of the circuit breaker main body is completed in the air circuit breaker which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る気中遮断器における遮断器本体のオン状態を示す側面断面図である。It is a side sectional view which shows the on state of the circuit breaker main body in the air circuit breaker which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る気中遮断器におけるメインシャフトの正面図である。It is a front view of the main shaft in the aerial circuit breaker which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係るベアリング保持装置の分解斜視図である。It is an exploded perspective view of the bearing holding device which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係るベアリング保持装置の板金フレームの外壁面側の側面図である。It is a side view of the outer wall surface side of the sheet metal frame of the bearing holding device which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係るベアリング保持装置の斜視図である。It is a perspective view of the bearing holding device which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係るベアリング保持装置を示す断面図である。It is sectional drawing which shows the bearing holding device which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態2に係るベアリング保持装置を示す断面図である。It is sectional drawing which shows the bearing holding device which concerns on Embodiment 2 of this disclosure. 本開示の実施の形態3係るベアリング保持装置の板金フレームのベアリング取付け孔の拡大斜視図である。It is an enlarged perspective view of the bearing mounting hole of the sheet metal frame of the bearing holding device which concerns on Embodiment 3 of this disclosure. 本開示の実施の形態4に係るベアリング保持装置における板金フレームを示す斜視図である。It is a perspective view which shows the sheet metal frame in the bearing holding device which concerns on Embodiment 4 of this disclosure. 本開示の実施の形態4に係るベアリング保持装置を示す断面図である。It is sectional drawing which shows the bearing holding device which concerns on Embodiment 4 of this disclosure. 本開示の実施の形態5に係るベアリング保持装置の斜視図である。It is a perspective view of the bearing holding device which concerns on Embodiment 5 of this disclosure. 本開示の実施の形態5に係るベアリング保持装置を示す断面図である。It is sectional drawing which shows the bearing holding device which concerns on Embodiment 5 of this disclosure.
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same reference numerals are given to the same components.
実施の形態1.
 図1は実施の形態1に係る気中遮断器の斜視図、図2は実施の形態1に係る気中遮断器の遮断器本体が引出枠から引出しされた状態の引出枠を一部カットした斜視図、図3は実施の形態1に係る気中遮断器の遮断器本体が引出枠に挿入された状態の引出枠を一部カットした斜視図、図4は実施の形態1に係る気中遮断器の投入バネが放勢したトリップ状態を示す側面断面図、図5は実施の形態1に係る気中遮断器のチャージが完了したオフ状態を示す側面断面図、図6は実施の形態1に係る気中遮断器のオン状態を示す側面断面図である。
Embodiment 1.
FIG. 1 is a perspective view of the aerial circuit breaker according to the first embodiment, and FIG. 2 shows a part of the drawer frame in a state where the circuit breaker main body of the aerial circuit breaker according to the first embodiment is pulled out from the drawer frame. A perspective view, FIG. 3 is a perspective view in which the circuit breaker main body of the circuit breaker according to the first embodiment is partially cut, and FIG. 4 is an aerial view according to the first embodiment. A side sectional view showing a trip state in which the closing spring of the circuit breaker is released, FIG. 5 is a side sectional view showing an off state in which charging of the aerial circuit breaker according to the first embodiment is completed, and FIG. It is a side sectional view which shows the on state of the aerial circuit breaker which concerns on.
 図1において、気中遮断器300は、電路を開閉する遮断器本体100と、遮断器本体100を引出し可能に収納する引出枠200で構成されている。遮断器本体100は、モールドケース101aとモールドカバー101bとからなる筐体101で覆われており、筐体101の下部には遮断器本体100を引出枠200から引き出すための引出機構15が設けられている。筐体101の正面には、図4に示す側面断面図におけるチャージアーム24を動作させ可動接触子43を投入させるONボタン11と、図4に示す側面断面図におけるトリップラッチ31を動作させ可動接触子43を引きはずすOFFボタン12、図4に示す側面断面図における投入バネ17を手動で蓄勢するハンドル13が設けられている。 In FIG. 1, the aerial circuit breaker 300 is composed of a circuit breaker main body 100 that opens and closes an electric circuit, and a drawer frame 200 that houses the circuit breaker main body 100 so that it can be pulled out. The circuit breaker main body 100 is covered with a housing 101 including a mold case 101a and a mold cover 101b, and a drawer mechanism 15 for pulling out the circuit breaker main body 100 from the drawer frame 200 is provided at the lower part of the housing 101. ing. On the front surface of the housing 101, an ON button 11 for operating the charge arm 24 in the side sectional view shown in FIG. 4 to insert the movable contactor 43 and a trip latch 31 in the side sectional view shown in FIG. 4 are operated for movable contact. An OFF button 12 for pulling out the child 43 and a handle 13 for manually accumulating the closing spring 17 in the side sectional view shown in FIG. 4 are provided.
引出機構15の正面には、遮断器本体100を引き出す時に使用する引出ハンドル(図示せず)が挿入される挿入孔14が設けられている。
 引出枠200には、一端で遮断器本体100が取付けられる伸縮可能な引出レール200aが設けられている。
 図3に示すように、遮断器本体100が引出枠200に挿入される。通常、遮断器本体100は、引出枠200に挿入された状態で使用される。
An insertion hole 14 into which a drawer handle (not shown) used when pulling out the circuit breaker main body 100 is provided is provided on the front surface of the drawer mechanism 15.
The drawer frame 200 is provided with a telescopic drawer rail 200a to which the circuit breaker main body 100 is attached at one end.
As shown in FIG. 3, the circuit breaker main body 100 is inserted into the drawer frame 200. Normally, the circuit breaker main body 100 is used in a state of being inserted into the drawer frame 200.
 遮断器本体100のメンテナンスなどの事情により、遮断器本体100を引出枠200から引き出す必要が生じた場合には、図3に示す遮断器本体100の挿入状態から挿入孔14より挿入した引出ハンドル(図示せず)を回転させる。図3の状態から遮断器本体100が矢印E方向に移動して引出枠200から所定の位置まで引き出される。その後、遮断器本体100を引出枠200から引き出すことにより図1に示す引き出し状態となる。 When it becomes necessary to pull out the circuit breaker body 100 from the drawer frame 200 due to circumstances such as maintenance of the circuit breaker body 100, the drawer handle inserted from the insertion hole 14 from the inserted state of the circuit breaker body 100 shown in FIG. (Not shown) is rotated. From the state of FIG. 3, the circuit breaker main body 100 moves in the direction of arrow E and is pulled out from the drawer frame 200 to a predetermined position. After that, by pulling out the circuit breaker main body 100 from the drawer frame 200, the drawer state shown in FIG. 1 is obtained.
 次に、遮断器本体100の開閉機構について述べる。
 図4、図5、図6に示すように、筐体101は、モールドケース101aとモールドカバー101bとで構成されている。カムシャフト21は、筐体101に回転可能に板金フレーム2(図2に示す)に支持されている。このカムシャフト21を軸として、チャージ用カム22とラチェット23が固定されており、チャージ用カム22とラチェット23との間にはカム側ローラ22aが設けられており、チャージ用カム22の外周は円周カム面22bとなっている。
Next, the opening / closing mechanism of the circuit breaker main body 100 will be described.
As shown in FIGS. 4, 5 and 6, the housing 101 is composed of a mold case 101a and a mold cover 101b. The camshaft 21 is rotatably supported by the sheet metal frame 2 (shown in FIG. 2) on the housing 101. The charging cam 22 and the ratchet 23 are fixed around the cam shaft 21, and a cam side roller 22a is provided between the charging cam 22 and the ratchet 23. It has a circumferential cam surface 22b.
 チャージ用カム22の上方には、固定軸24aを支点として回転するチャージアーム24があり、チャージアーム24の一端にはアーム側ローラ24bが設けられ、チャージ用カム22の円周カム面22bを転接することによりチャージ用カム22により固定軸24aを支点としてチャージアーム24と共に回転駆動される。チャージアーム24の中腹部上面には作動面24cが形成されており、図4、図5、図6に示すように、図の右方に向けて曲率半径が変化するような形状とされている。チャージアーム24の他端にはバネカケピン24dが設けられている。 Above the charging cam 22, there is a charging arm 24 that rotates with the fixed shaft 24a as a fulcrum, and an arm-side roller 24b is provided at one end of the charging arm 24 to rotate the circumferential cam surface 22b of the charging cam 22. When they come into contact with each other, they are rotationally driven by the charging cam 22 together with the charging arm 24 with the fixed shaft 24a as a fulcrum. An operating surface 24c is formed on the upper surface of the middle abdomen of the charge arm 24, and as shown in FIGS. 4, 5, and 6, the shape is such that the radius of curvature changes toward the right side of the drawing. .. A spring chip pin 24d is provided at the other end of the charge arm 24.
 チャージ用カム22の右方には、投入バネ17を保持するガイド板18が筐体101に固定されており、ガイド板18は長孔18aを有する。長孔18aにはバネカケピン24dが長孔18aに沿って移動できるように貫通しており、長孔18aに沿って移動して投入バネ17を蓄勢する。 On the right side of the charging cam 22, a guide plate 18 for holding the charging spring 17 is fixed to the housing 101, and the guide plate 18 has an elongated hole 18a. A spring break pin 24d penetrates the elongated hole 18a so that it can move along the elongated hole 18a, and moves along the elongated hole 18a to store the input spring 17.
 固定軸24aには、第1のクローズラッチ25が固定軸24aに回転可能に装着されており、中腹部にラッチ側ローラ25aを有すると共に、一端側の端面に2つの作用面を形成し、これらがカム側ローラ22aと係合し得るようにされている。作用面の1つは、第1のクローズラッチ25の図4において右端の上下方向に延びる規制面で、この面にカム側ローラ22aが当接したとき、チャージ用カム22のそれ以上の回動を規制するものである。作用面の他の1つは、図4において、上記規制面の下端から左斜め下方向に延びる許容面で、この面にカム側ローラ22aが当接したとき、チャージ用カム22の反時計方向の回動を許容するものである。なお、投入バネ17の蓄勢開始時には、カム側ローラ22aは図5に示すように、許容面と係合するようになされている。 A first closed latch 25 is rotatably attached to the fixed shaft 24a on the fixed shaft 24a, has a latch-side roller 25a on the middle abdomen, and forms two working surfaces on one end surface thereof. Can engage with the cam-side roller 22a. One of the working surfaces is a regulating surface extending in the vertical direction at the right end in FIG. 4 of the first closed latch 25, and when the cam-side roller 22a abuts on this surface, the charging cam 22 rotates further. It regulates. The other one of the working surfaces is an allowable surface extending diagonally downward to the left from the lower end of the regulation surface in FIG. 4, and when the cam-side roller 22a abuts on this surface, the charging cam 22 is counterclockwise. Allows rotation of. At the start of energization of the closing spring 17, the cam-side roller 22a engages with the allowable surface as shown in FIG.
 第1のクローズラッチ25から上方には、固定軸26aを中心に回転する第2のクローズラッチ26が設けられ、第2のクローズラッチ26の下端にはラッチ側ローラ25aに係合する。側面突出部と、その下方に形成された段部状の係合部を有し、第2のクローズラッチ26の上端部は一部がDカット形状となっているクローズバー27に係合している。
 また、第2のクローズラッチ26は図示しない復帰バネによって図4において反時計方向に力を受けている。クローズバー27はONボタン11による手動あるいはソレノイド等によりオン操作(時計方向に回転)されるようになっている。
A second closed latch 26 that rotates about a fixed shaft 26a is provided above the first closed latch 25, and the lower end of the second closed latch 26 engages with the latch-side roller 25a. It has a side protruding portion and a stepped engaging portion formed below the side protruding portion, and the upper end portion of the second close latch 26 engages with a close bar 27 having a partially D-cut shape. There is.
Further, the second closed latch 26 receives a force in the counterclockwise direction in FIG. 4 by a return spring (not shown). The close bar 27 is turned on (rotated clockwise) manually by the ON button 11 or by a solenoid or the like.
 また、図2に示すように、引出枠200の側面内側に、遮断器本体100の引き出し状態を検出するためのレール検出レバー51が設けられている。クローズバー27(図4に示す)に固着されたクローズプレート56を、レール検出レバー51、シャフト53、連動プレート54および押上げレバー55を介してクローズプレート56を回動させることにより、図4に示すクローズバー27を駆動して投入バネ17が放勢する。 Further, as shown in FIG. 2, a rail detection lever 51 for detecting the withdrawn state of the circuit breaker main body 100 is provided inside the side surface of the drawer frame 200. FIG. 4 shows the close plate 56 fixed to the close bar 27 (shown in FIG. 4) by rotating the close plate 56 via the rail detection lever 51, the shaft 53, the interlocking plate 54, and the push-up lever 55. The closing bar 27 is driven to release the closing spring 17.
 後述するメインシャフト28は、筐体101に固定された板金フレーム2(図2に示す)に回転可能に支持されている。
 図4に示すように、投入トグルリンク機構29は、第1リンク29aと第2リンク29bの2本のリンクが中心ピン29dにより連結して構成され、第2リンク29b側はピン29cによりメインシャフト28に固定された第2リンク用アーム28b(図7に示す)に連結される。
 中心ピン29dを中心として周囲には、回転可能に支持されるリンク側ローラ29eが設けられ、投入トグルリンク機構29が屈曲状態にある時は作動面24cに当接する位置関係にある。
The main shaft 28, which will be described later, is rotatably supported by a sheet metal frame 2 (shown in FIG. 2) fixed to the housing 101.
As shown in FIG. 4, the input toggle link mechanism 29 is configured by connecting two links, a first link 29a and a second link 29b, by a central pin 29d, and a main shaft on the second link 29b side by a pin 29c. It is connected to a second link arm 28b (shown in FIG. 7) fixed to 28.
A link-side roller 29e that is rotatably supported is provided around the center pin 29d, and is in a positional relationship of contacting the operating surface 24c when the closing toggle link mechanism 29 is in the bent state.
 投入トグルリンク機構29の上方には、固定軸30aに回転可能に支持されるリンクレバー30が設けられ、一端側にピン30bにより投入トグルリンク機構29の第1リンク29a側が連結される。リンクレバー30の中腹部に回転可能に設けたレバー側ローラ30cが設けられ、図4においてレバー側ローラ30cの左方には、固定軸26aに回転可能に支持されるトリップラッチ31が設けられている。トリップラッチ31は、側面部がレバー側ローラ30cに係合すると共に、上端部は一部がDカット形状となっているトリップバー32に係合しており、図示しない復帰バネによって図4において時計方向の回転力が与えられている。トリップバー32はOFFボタン12による手動あるいはソレノイド等によりトリップ操作(反時計方向に回転)されるようになっている。 A link lever 30 rotatably supported by the fixed shaft 30a is provided above the closing toggle link mechanism 29, and the first link 29a side of the closing toggle link mechanism 29 is connected to one end side by a pin 30b. A lever-side roller 30c rotatably provided is provided in the middle portion of the link lever 30, and a trip latch 31 rotatably supported by the fixed shaft 26a is provided on the left side of the lever-side roller 30c in FIG. There is. The trip latch 31 has a side surface portion engaged with the lever side roller 30c and an upper end portion engaged with a trip bar 32 having a partially D-cut shape. A directional rotational force is given. The trip bar 32 is designed to be tripped (rotated counterclockwise) manually by the OFF button 12 or by a solenoid or the like.
 次に投入バネ17の蓄勢動作及び接点投入動作について述べる。投入バネ17が放勢した図4のトリップ状態において、ハンドル13を手動操作によって矢印Dの方向に押し下げることによりラチェット23を反時計方向に回転させてカムシャフト21で同軸に固定されているチャージ用カム22を反時計方向に回転させると、チャージアームの左端に支持されたアーム側ローラ24bがその円周カム面22bに沿って転動するため、アーム側ローラ24bが図5において左方に移動する結果、チャージアーム24が固定軸24aを中心に時計方向に回動し、その他端に設けられたバネカケピン24dが図4において下方に移動して投入バネ17が蓄勢される。 Next, the energy accumulation operation and the contact charging operation of the closing spring 17 will be described. In the trip state of FIG. 4 in which the closing spring 17 is released, the ratchet 23 is rotated counterclockwise by manually pushing down the handle 13 in the direction of arrow D, and is coaxially fixed by the cam shaft 21 for charging. When the cam 22 is rotated counterclockwise, the arm-side roller 24b supported by the left end of the charge arm rolls along the circumferential cam surface 22b, so that the arm-side roller 24b moves to the left in FIG. As a result, the charge arm 24 rotates clockwise around the fixed shaft 24a, and the spring cap pin 24d provided at the other end moves downward in FIG. 4, and the charging spring 17 is stored.
 一方、第2のクローズラッチ26は図示しない復帰バネによって反時計方向の力を受けているため、第2のクローズラッチ26の下端の側面突出部がラッチ側ローラ25aに当接し、これを図5において右方に押し、第1のクローズラッチ25を時計方向に回転させようとするが、第1のクローズラッチ25の一端側の下面、即ち許容面とカム側ローラ22aとが当接状態にあるため、カム側ローラ22aがストッパとなって第1のクローズラッチ25は回転できない状態に保持される。 On the other hand, since the second closed latch 26 receives a counterclockwise force by a return spring (not shown), the side protruding portion at the lower end of the second closed latch 26 comes into contact with the latch side roller 25a, which is shown in FIG. The first closed latch 25 is pushed clockwise to rotate the first closed latch 25 clockwise, but the lower surface of the first closed latch 25 on one end side, that is, the allowable surface and the cam side roller 22a are in contact with each other. Therefore, the cam-side roller 22a serves as a stopper, and the first closed latch 25 is held in a non-rotatable state.
 投入バネ17の蓄勢動作が続き、チャージ用カム22が更に反時計方向に回転すると、カム側ローラ22aが第1のクローズラッチ25の一端側の下面、即ち許容面から離れる。この時、第1のクローズラッチ25が時計方向に回転し、ラッチ側ローラ25aが時計方向に回転して第2のクローズラッチ26の下端の側面突出部から外れ、第2のクローズラッチ26の下端をフリーにする。
 これにより第2のクローズラッチ26は復帰バネによって反時計方向に回転し、第2のクローズラッチ26の上端がクローズバー27を超えて、クローズバー27の左方へ動いたとき、第1のクローズラッチ25のラッチ側ローラ25aが第2のクローズラッチ26の下端の係合部と係合し、第2のクローズラッチ26の動きを止める。
 この時、第2のクローズラッチ26の上端部では、クローズバー27が図示しない復帰バネによって反時計方向に回転して第2の状態(図6のクローズバー27の状態)となり、第2のクローズラッチ26に時計方向の回転力が作用しても、それに対するストップとして機能する。
When the charging spring 17 continues to accumulate energy and the charging cam 22 further rotates counterclockwise, the cam-side roller 22a separates from the lower surface on one end side of the first closed latch 25, that is, the allowable surface. At this time, the first closed latch 25 rotates clockwise, the latch side roller 25a rotates clockwise and comes off from the side protrusion of the lower end of the second closed latch 26, and the lower end of the second closed latch 26. Free.
As a result, the second close latch 26 is rotated counterclockwise by the return spring, and when the upper end of the second close latch 26 exceeds the close bar 27 and moves to the left of the close bar 27, the first close latch 26 is closed. The latch-side roller 25a of the latch 25 engages with the engaging portion at the lower end of the second closed latch 26 to stop the movement of the second closed latch 26.
At this time, at the upper end of the second close latch 26, the close bar 27 is rotated counterclockwise by a return spring (not shown) to enter the second state (the state of the close bar 27 in FIG. 6), and the second close. Even if a clockwise rotational force acts on the latch 26, it functions as a stop against it.
 投入バネ17の蓄勢動作が更に続き、チャージアーム24の時計方向回転で、その作動面24cが図5の下方に動き、投入トグルリンク機構29のリンク側ローラ29eから離れようとする。投入トグルリンク機構29の屈曲力でリンク側ローラ29eは、作動面24cの下方への動きに追従し、投入トグルリンク機構29の図5において左側のリンクを引き下げる。このため、投入トグルリンク機構29の他端のピン30bが下方に動くため、リンクレバー30が反時計方向に回転し、レバー側ローラ30cも反時計方向に回転する。
 この結果、トリップラッチ31は復帰バネによって時計方向に回転する。トリップラッチ31がトリップバー32を超えて、その右方に動いたとき、トリップラッチ31の凹部(図5)にレバー側ローラ30cが係合すると共に、トリップバー32は図示しない復帰バネによって時計方向に回転し、トリップラッチ31に反時計方向の回転力が作用しても、それに対するストッパとして機能する。
The accumulator operation of the charging spring 17 continues, and the clockwise rotation of the charge arm 24 causes the operating surface 24c to move downward in FIG. 5 to move away from the link-side roller 29e of the charging toggle link mechanism 29. Due to the bending force of the closing toggle link mechanism 29, the link side roller 29e follows the downward movement of the operating surface 24c and pulls down the link on the left side in FIG. 5 of the closing toggle link mechanism 29. Therefore, since the pin 30b at the other end of the closing toggle link mechanism 29 moves downward, the link lever 30 rotates counterclockwise, and the lever side roller 30c also rotates counterclockwise.
As a result, the trip latch 31 is rotated clockwise by the return spring. When the trip latch 31 exceeds the trip bar 32 and moves to the right, the lever-side roller 30c engages with the recess (FIG. 5) of the trip latch 31, and the trip bar 32 is clockwise due to a return spring (not shown). Even if a counterclockwise rotational force acts on the trip latch 31, it functions as a stopper against it.
 投入トグルリンク機構29は、所定の屈曲状態以上には屈曲しないため、図5の状態となる。チャージ用カム22は、ハンドル13の数回の押し下げ操作によりほぼ1回転して最終的に図5の状態、即ちチャージアーム24のアーム側ローラ24bがチャージ用カム22の最大半径の僅か手前の位置に達し、カム側ローラ22aが再び第1のクローズラッチ25の端面、即ち規制面に当接して停止した状態となる。
 その後は、更にハンドル13を押し下げても、ラチェット23が空転するのみで、チャージ用カム22は回転せず、投入バネ17の蓄勢が完了する。
Since the closing toggle link mechanism 29 does not bend beyond a predetermined bending state, it is in the state shown in FIG. The charging cam 22 is rotated substantially once by pushing down the handle 13 several times, and finally in the state shown in FIG. 5, that is, the position where the arm-side roller 24b of the charging arm 24 is slightly before the maximum radius of the charging cam 22. Is reached, the cam-side roller 22a again comes into contact with the end surface of the first closed latch 25, that is, the regulation surface, and is in a stopped state.
After that, even if the handle 13 is further pushed down, the ratchet 23 only idles, the charging cam 22 does not rotate, and the charging spring 17 is completed.
 図5の状態では、投入バネ17の放勢力によってバネカケピン24dを上方に押し、チャージアーム24に反時計方向の力を及ぼす。この力はアーム側ローラ24bを介してチャージ用カム22に伝達されるため、カム側ローラ22aが第1のクローズラッチ25の端面、即ち規制面を反時計方向に押し、この結果、第1のクローズラッチ25のラッチ側ローラ25aが第2のクローズラッチ26の下端係合部を左方に押して第2のクローズラッチ26を時計方向に回転させようとするが、第2のクローズラッチ26の上端部でクローズバー27がストッパとなって第2のクローズラッチ26の時計方向回転が阻止されている。 In the state of FIG. 5, the spring force of the input spring 17 pushes the spring break pin 24d upward to exert a counterclockwise force on the charge arm 24. Since this force is transmitted to the charging cam 22 via the arm-side roller 24b, the cam-side roller 22a pushes the end surface of the first closed latch 25, that is, the regulation surface counterclockwise, and as a result, the first The latch-side roller 25a of the close latch 25 pushes the lower end engaging portion of the second close latch 26 to the left to rotate the second close latch 26 clockwise, but the upper end of the second close latch 26 The close bar 27 serves as a stopper at the portion to prevent the second close latch 26 from rotating clockwise.
 この状態において、図1のONボタン11を押下するとクローズバー27が時計方向に回動してオン操作され、クローズバー27による第2のクローズラッチ26上端のロックが解除されるため、第2のクローズラッチ26が時計方向に回転し、その下端係合部とラッチ側ローラ25aとの係合が外れる。 In this state, when the ON button 11 of FIG. 1 is pressed, the close bar 27 is rotated clockwise to be turned on, and the lock of the upper end of the second close latch 26 by the close bar 27 is released. The close latch 26 rotates clockwise, and the lower end engaging portion thereof and the latch side roller 25a are disengaged.
 この結果、カム側ローラ22aは第1のクローズラッチ25を反時計方向に回転させながら、同方向に回転し、チャージ用カム22も同方向に回転するため、チャージアーム24の左端に支持されているアーム側ローラ24bがチャージ用カム22の円周カム面22bの段差部に落ち込み、投入バネ17の放勢力によってチャージアーム24が図6に示すように反時計方向に回転し、その作動面24cが投入トグルリンク機構29のリンク側ローラ29eをはね上げる。 As a result, the cam-side roller 22a rotates in the same direction while rotating the first close latch 25 in the counterclockwise direction, and the charging cam 22 also rotates in the same direction, so that it is supported by the left end of the charge arm 24. The arm-side roller 24b falls into the stepped portion of the circumferential cam surface 22b of the charging cam 22, and the charging arm 24 rotates counterclockwise as shown in FIG. 6 due to the releasing force of the closing spring 17, and the operating surface 24c thereof. Raises the link side roller 29e of the input toggle link mechanism 29.
 このため、投入トグルリンク機構29の左側のリンクが上方に動き、リンクレバー30を時計方向に回転しようとするが、レバー側ローラ30cがトリップラッチ31に当接し、トリップラッチ31はトリップバー32によって反時計方向の動きがロックされているため、投入トグルリンク機構29は右方に伸張し、第2リンク用アーム28bを反時計方向に回転して可動接触子43を右方に動作させるために図6に示す状態となり接点43a、導体44に設けられた接点44aをオンにする。 Therefore, the link on the left side of the closing toggle link mechanism 29 moves upward and tries to rotate the link lever 30 clockwise, but the lever side roller 30c comes into contact with the trip latch 31, and the trip latch 31 is moved by the trip bar 32. Since the counterclockwise movement is locked, the closing toggle link mechanism 29 extends to the right and rotates the second link arm 28b counterclockwise to move the movable contact 43 to the right. In the state shown in FIG. 6, the contact 43a and the contact 44a provided on the conductor 44 are turned on.
 図6に示すオン状態では、接圧バネ45の押圧力によって投入トグルリンク機構29が左方に押され、ピン30bを介してリンクレバー30に時計方向の回転力を与え、レバー側ローラ30cを介してトリップラッチ31を反時計方向に押圧するが、トリップラッチ31はトリップバー32によって反時計方向の回転が阻止されている。 In the on state shown in FIG. 6, the closing toggle link mechanism 29 is pushed to the left by the pressing force of the pressure contact spring 45, and a clockwise rotational force is applied to the link lever 30 via the pin 30b to push the lever side roller 30c. The trip latch 31 is pressed counterclockwise through the trip latch 31, but the trip latch 31 is prevented from rotating counterclockwise by the trip bar 32.
 この状態において図1のOFFボタン12を押下すると、トリップバー32が反時計方向に回動してトリップ操作され、トリップラッチ31が上述の作用力によって反時計方向に回動するので、トリップラッチ31の凹部からレバー側ローラ30cが外れ、リンクレバー30が時計方向に回動する。この結果、投入トグルリンク機構29の他端のピン30bが上方に移動して投入トグルリンク機構29が屈曲する。この時、投入トグルリンク機構29のリンク側ローラ29eがチャージアーム24の作動面24cに沿って左に移動し、ピン29cが絶縁リンク41を左方に駆動して可動接触子43を左方に動作させて接点43a、44aがオフとなり、図4の状態に戻る。以下、上述の動作を繰り返す。 When the OFF button 12 of FIG. 1 is pressed in this state, the trip bar 32 rotates counterclockwise to perform a trip operation, and the trip latch 31 rotates counterclockwise due to the above-mentioned acting force. Therefore, the trip latch 31 The lever-side roller 30c is disengaged from the recess, and the link lever 30 rotates clockwise. As a result, the pin 30b at the other end of the closing toggle link mechanism 29 moves upward, and the closing toggle link mechanism 29 bends. At this time, the link-side roller 29e of the closing toggle link mechanism 29 moves to the left along the operating surface 24c of the charge arm 24, and the pin 29c drives the insulating link 41 to the left to move the movable contactor 43 to the left. When operated, the contacts 43a and 44a are turned off, and the state returns to the state shown in FIG. Hereinafter, the above operation is repeated.
 次に、メインシャフト28を例として、開閉機構の回転軸であるシャフトの構成について述べる。
 図7は気中遮断器におけるシャフトの一例であるメインシャフト28の正面図である。図7に示すように、メインシャフト28には、絶縁リンク用アーム28aと、絶縁リンク用アーム28aと同形の第2リンク用アーム28bとが固定されている。絶縁リンク用アーム28aと第2リンク用アーム28bにはそれぞれリンクを駆動するためのピン42、ピン29cが設けられている。
 メインシャフト28は、軸方向の両端部に段差部28cと、段差部28cを介して縮径形成された小径部28dとをそれぞれ有する段付きシャフトである。メインシャフト28の小径部28dが板金フレーム2に取り付けられたベアリングに固定され、回転自在に支持されている。
 気中遮断器300において、開閉機構の構成部品の一部として、メインシャフト28、カムシャフト21などのシャフトは、それぞれ筐体101に固定された板金フレーム2に取り付けられたベアリングに回転自在に支持されている。
Next, the configuration of the shaft, which is the rotating shaft of the opening / closing mechanism, will be described by taking the main shaft 28 as an example.
FIG. 7 is a front view of the main shaft 28, which is an example of a shaft in an aerial circuit breaker. As shown in FIG. 7, an insulating link arm 28a and a second link arm 28b having the same shape as the insulating link arm 28a are fixed to the main shaft 28. The insulating link arm 28a and the second link arm 28b are provided with pins 42 and 29c for driving the links, respectively.
The main shaft 28 is a stepped shaft having a stepped portion 28c at both ends in the axial direction and a small diameter portion 28d formed by reducing the diameter via the stepped portion 28c. The small diameter portion 28d of the main shaft 28 is fixed to a bearing attached to the sheet metal frame 2 and is rotatably supported.
In the aerial circuit breaker 300, shafts such as the main shaft 28 and the cam shaft 21 are rotatably supported by bearings attached to the sheet metal frame 2 fixed to the housing 101 as part of the components of the opening / closing mechanism. Has been done.
 次に、遮断器本体100の筐体101に取付けられたベアリングの位置決めおよび保持機能を有する装置であるベアリング保持装置の構成について述べる。
 図8は実施の形態1に係るベアリング保持装置1の構成を示す図である。図8(a)はベアリング保持装置1の分解斜視図であり、図8(b)は図8(a)における一点鎖線Aで示す部分の拡大図である。図8(c)は、図8(a)における左側のベアリング4の拡大概略図である。
 図9は、ベアリング保持装置1の板金フレーム2の外壁面側の側面図である。
 図10は、ベアリング保持装置1を示す斜視図である。
 図11は、図10に示す一点鎖線Bの位置におけるベアリング保持装置1の断面図である。
Next, the configuration of the bearing holding device, which is a device having a bearing positioning and holding function attached to the housing 101 of the circuit breaker main body 100, will be described.
FIG. 8 is a diagram showing the configuration of the bearing holding device 1 according to the first embodiment. 8 (a) is an exploded perspective view of the bearing holding device 1, and FIG. 8 (b) is an enlarged view of a portion shown by the alternate long and short dash line A in FIG. 8 (a). FIG. 8C is an enlarged schematic view of the bearing 4 on the left side in FIG. 8A.
FIG. 9 is a side view of the sheet metal frame 2 of the bearing holding device 1 on the outer wall surface side.
FIG. 10 is a perspective view showing the bearing holding device 1.
FIG. 11 is a cross-sectional view of the bearing holding device 1 at the position of the alternate long and short dash line B shown in FIG.
 実施の形態1に係るベアリング保持装置1は、ベアリング4と、ベアリング4に回転自在に保持される段付きシャフト3と、ベアリング4を取り付けるベアリング取付け孔2aが設けられた板金フレーム2とを有する。 The bearing holding device 1 according to the first embodiment includes a bearing 4, a stepped shaft 3 rotatably held by the bearing 4, and a sheet metal frame 2 provided with a bearing mounting hole 2a for mounting the bearing 4.
 ベアリング4は、外輪4aと外輪4aの内側の内輪4bを有する。内輪4bが外輪4aに対して極めて小さい抵抗で回転可能とされている。また、ベアリング4は、段付きシャフト3の挿入方向に対向する内側面4cと内側面4cの反対側の外側面4dを有する。 The bearing 4 has an outer ring 4a and an inner ring 4b inside the outer ring 4a. The inner ring 4b can rotate with an extremely small resistance with respect to the outer ring 4a. Further, the bearing 4 has an inner side surface 4c facing the insertion direction of the stepped shaft 3 and an outer side surface 4d opposite to the inner side surface 4c.
 板金フレーム2は、厚みがベアリング4の軸方向の厚み以下であり、筐体101に固定され、対向に配置された一対のものである。板金フレーム2は、ベアリング4を取付ける側の内壁面2c、および厚み方向において内壁面2cの反対側の外壁面2dを有する。板金フレーム2を貫通するベアリング取付け孔2aは、内径がベアリング4の外輪4aに対応する。ベアリング取付け孔2aの円周面2eにおいて、外壁面2d側の取付け孔縁部2fから軸方向に向かって延伸するツメ部2bを有する。ツメ部2bは、ベアリング4の外側面4d側の外輪4aに当接してベアリング4を保持し、ツメ部2bより外へ向かうベアリング4の動きを規制する。 The sheet metal frame 2 is a pair having a thickness equal to or less than the thickness of the bearing 4 in the axial direction, fixed to the housing 101, and arranged to face each other. The sheet metal frame 2 has an inner wall surface 2c on the side where the bearing 4 is mounted, and an outer wall surface 2d on the opposite side of the inner wall surface 2c in the thickness direction. The bearing mounting hole 2a penetrating the sheet metal frame 2 has an inner diameter corresponding to the outer ring 4a of the bearing 4. The circumferential surface 2e of the bearing mounting hole 2a has a claw portion 2b extending in the axial direction from the mounting hole edge portion 2f on the outer wall surface 2d side. The claw portion 2b abuts on the outer ring 4a on the outer surface 4d side of the bearing 4 to hold the bearing 4, and regulates the movement of the bearing 4 outward from the claw portion 2b.
 ベアリング取付け孔2aとツメ部2bはプレス加工にて一体成型により構成される。これにより、加工工程数が増えず、ツメ部2bの強度を高めることができる。
 段付きシャフト3は、軸方向の両側の端部に段差部3aと、段差部3aを介して縮径形成された小径部3bとをそれぞれ有する。段付きシャフト3は、段差部3aがベアリング4の内側面4c側の内輪4bに突き当たるまで小径部3bがベアリング4の内輪4bの中に挿入される。段付きシャフト3は、小径部3bがベアリング4の内輪4bに固定されることにより、回転自在に保持されている。
The bearing mounting hole 2a and the claw portion 2b are integrally molded by press working. As a result, the number of processing steps does not increase, and the strength of the claw portion 2b can be increased.
The stepped shaft 3 has a stepped portion 3a at both end portions in the axial direction and a small diameter portion 3b formed with a reduced diameter via the stepped portion 3a, respectively. In the stepped shaft 3, the small diameter portion 3b is inserted into the inner ring 4b of the bearing 4 until the step portion 3a abuts on the inner ring 4b on the inner side surface 4c side of the bearing 4. The stepped shaft 3 is rotatably held by fixing the small diameter portion 3b to the inner ring 4b of the bearing 4.
 ここで、段付きシャフト3は、代表的なシャフト構成例とし、メインシャフト28などのシャフトに対応し、メインシャフト28などのシャフトと同様に回転軸の機能を有する。段付きシャフト3の段差部3aはメインシャフト28の段差部28cに対応し、段付きシャフト3の小径部3bはメインシャフト28の小径部28dに対応する。
 なお、説明の便宜上、チャージ用カム、アームなどを図示していない。ベアリング保持装置は、段付きシャフトにチャージ用カム、アームなどが取り付けられた場合も同様に構成でき、同様な機能を有する。
 また、説明の便宜上、図8では、板金フレーム2において、ベアリングが取り付けられるためのベアリング取付け孔が1つのみの状態を示している。ベアリング保持装置において、一枚の板金フレームにベアリング取付け孔が複数個取り付けられた場合も同様に構成でき、同様な機能を有する。
Here, the stepped shaft 3 is a typical shaft configuration example, corresponds to a shaft such as the main shaft 28, and has a function of a rotating shaft like a shaft such as the main shaft 28. The stepped portion 3a of the stepped shaft 3 corresponds to the stepped portion 28c of the main shaft 28, and the small diameter portion 3b of the stepped shaft 3 corresponds to the small diameter portion 28d of the main shaft 28.
For convenience of explanation, the charging cam, arm, and the like are not shown. The bearing holding device can be similarly configured when a charging cam, an arm, or the like is attached to the stepped shaft, and has the same function.
Further, for convenience of explanation, FIG. 8 shows a state in which the sheet metal frame 2 has only one bearing mounting hole for mounting the bearing. In the bearing holding device, when a plurality of bearing mounting holes are mounted on one sheet metal frame, it can be configured in the same manner and has the same function.
 実施の形態1において、ツメ部2bはベアリング取付け孔2aの取付け孔縁部2fに沿って、複数箇所に不連続に設けられており、ベアリング4の外輪4aを挟持する。ベアリング取付け孔2aの取付け孔縁部2fに沿って略等間隔で複数箇所に設けられることにより、ベアリング4を保持する安定性を向上できる。図9に、取付け孔縁部2fに沿って、ツメ部2bが3箇所に設けられている例を示している。
 また、図10、図11に示すように、ベアリング保持装置1において、ベアリング4が板金フレーム2に設けられたベアリング取付け孔2aに内接することによって、ベアリング4のラジアル方向の動きが規制される。ベアリング4の外輪4aが、板金フレーム2の外壁面2d側のツメ部2bに当接し、ベアリング4の内輪4bが段付きシャフト3の段差部3aに当接し、ベアリング4はベアリング取付け孔2aのツメ部2bと段付きシャフト3の段差部3aとともに挟持されることによって、ベアリング4のスラスト方向の動きが規制される。これによりベアリング4の位置決めと保持機能を果たす。
 なお、ツメ部2bは、ベアリング4の外輪4aを挟持し、ツメ部2bより外へ向かう方向のベアリング4の動きを規制できれば、形状について問わない。
In the first embodiment, the claw portion 2b is discontinuously provided at a plurality of locations along the mounting hole edge portion 2f of the bearing mounting hole 2a, and sandwiches the outer ring 4a of the bearing 4. The stability of holding the bearing 4 can be improved by providing the bearing mounting holes 2a at a plurality of locations at substantially equal intervals along the mounting hole edge 2f. FIG. 9 shows an example in which claw portions 2b are provided at three locations along the mounting hole edge portion 2f.
Further, as shown in FIGS. 10 and 11, in the bearing holding device 1, the bearing 4 is inscribed in the bearing mounting hole 2a provided in the sheet metal frame 2, so that the movement of the bearing 4 in the radial direction is restricted. The outer ring 4a of the bearing 4 abuts on the claw portion 2b on the outer wall surface 2d side of the sheet metal frame 2, the inner ring 4b of the bearing 4 abuts on the stepped portion 3a of the stepped shaft 3, and the bearing 4 has the claw portion of the bearing mounting hole 2a. By being sandwiched between the portion 2b and the stepped portion 3a of the stepped shaft 3, the movement of the bearing 4 in the thrust direction is restricted. As a result, the bearing 4 is positioned and held.
The shape of the claw portion 2b does not matter as long as it can sandwich the outer ring 4a of the bearing 4 and regulate the movement of the bearing 4 in the direction outward from the claw portion 2b.
 また、図11に示すように、ツメ部2bは、外壁面2d側において、外壁面2dと同一平面になるように設けられている。ツメ部2bと外壁面2dとが同一平面になる構造により、ツメ部2bが板金フレーム外に配置される部品と干渉しないため、部品レイアウト等の設計自由度が高くなる。 Further, as shown in FIG. 11, the claw portion 2b is provided on the outer wall surface 2d side so as to be flush with the outer wall surface 2d. Since the claw portion 2b and the outer wall surface 2d are flush with each other, the claw portion 2b does not interfere with the parts arranged outside the sheet metal frame, so that the degree of freedom in designing the parts layout and the like is increased.
 板金フレーム2の厚みは、ベアリング4の軸方向の厚み以下であるため、ベアリング4は、外輪4aがツメ部2bに突き当たるまでベアリング取付け孔2aに取り付けられる場合、ベアリング4がベアリング取付け孔2aに挿入する部分のみベアリング取付け孔2aの円周面2eに接している。すなわち、ベアリング4がベアリング取付け孔2aに取り付けられる状態において、軸方向において外輪4aは一部のみがベアリング取付け孔2aの円周面2eに内接している。ベアリング4は、この一部以外の部分がツメ部2bが設けられない側の板金フレーム2の内壁面2cより外側に露出している。 Since the thickness of the sheet metal frame 2 is less than or equal to the thickness of the bearing 4 in the axial direction, the bearing 4 is inserted into the bearing mounting hole 2a when the bearing 4 is mounted in the bearing mounting hole 2a until the outer ring 4a abuts on the claw portion 2b. Only the portion to be in contact with the circumferential surface 2e of the bearing mounting hole 2a. That is, in a state where the bearing 4 is mounted in the bearing mounting hole 2a, only a part of the outer ring 4a is inscribed in the circumferential surface 2e of the bearing mounting hole 2a in the axial direction. The portion of the bearing 4 other than a part thereof is exposed to the outside of the inner wall surface 2c of the sheet metal frame 2 on the side where the claw portion 2b is not provided.
 実施の形態1に係る気中遮断器は、遮断器本体100の筐体101にこのベアリング保持装置1が取付けられている。 In the aerial circuit breaker according to the first embodiment, the bearing holding device 1 is attached to the housing 101 of the circuit breaker main body 100.
 実施の形態1に係るベアリング保持装置によれば、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 実施の形態1に係るベアリング保持装置を備えた気中遮断器によれば、部品点数の削減により製品の軽量化および信頼性向上を図ることができる。
According to the bearing holding device according to the first embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of assembly accuracy.
According to the aerial circuit breaker provided with the bearing holding device according to the first embodiment, the weight of the product can be reduced and the reliability can be improved by reducing the number of parts.
実施の形態2.
 図12を用いて、実施の形態2に係るベアリング保持装置およびこのベアリング保持装置を用いた気中遮断器を説明する。
 実施の形態2では、本開示の実施の形態1と同一の構成要素または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態2に係るベアリング保持装置の実施の形態1と異なる点について述べる。
 図12は、図10中に示す一点鎖線Bの位置に対応する実施の形態2に係るベアリング保持装置102の断面図である。なお、図12は、図9に示すような取付け孔縁部2fに沿って3箇所にツメ部が設けられている場合に対応する実施の形態2に係るベアリング保持装置102の断面図である。
Embodiment 2.
The bearing holding device according to the second embodiment and the aerial circuit breaker using the bearing holding device will be described with reference to FIG.
In the second embodiment, the description of the same components or corresponding parts as those in the first embodiment of the present disclosure will be omitted. Hereinafter, the differences from the first embodiment of the bearing holding device according to the second embodiment will be described with reference to the drawings.
FIG. 12 is a cross-sectional view of the bearing holding device 102 according to the second embodiment corresponding to the position of the alternate long and short dash line B shown in FIG. Note that FIG. 12 is a cross-sectional view of the bearing holding device 102 according to the second embodiment, which corresponds to the case where the claw portions are provided at three positions along the mounting hole edge portion 2f as shown in FIG.
 図12に示すように、ベアリング保持装置102において、板金フレーム202は、ベアリング4を取付ける側の内壁面202cと、厚み方向において内壁面202cの反対側の外壁面202dを有する。ベアリング取付け孔202aの円周面202eにおいて、外壁面202d側の取付け孔縁部202fから軸方向に向かって延伸するツメ部202bが設けられている。
 上記の実施の形態1におけるツメ部2bが外壁面2dと同一平面になる構造に対して、実施の形態2に係るベアリング保持装置では、ツメ部202bは、外壁面202d側において、外壁面202dから外側へ突出している構造となる。ツメ部202bが板金フレーム202の外壁面202dから外側へ突出する構造により、ベアリング4はスラスト方向において板金フレーム202の外壁面202d側へ向かう方向へシフトして取付けられる。すなわち、ベアリング4の外輪4aとベアリング取付け孔202aの円周面202eとの接触面が大きくなる。これにより、段付きシャフト3に荷重が発生した時に、板金フレーム202とベアリング4に発生する応力を低減することができる。
As shown in FIG. 12, in the bearing holding device 102, the sheet metal frame 202 has an inner wall surface 202c on the side where the bearing 4 is mounted and an outer wall surface 202d on the opposite side of the inner wall surface 202c in the thickness direction. On the circumferential surface 202e of the bearing mounting hole 202a, a claw portion 202b extending in the axial direction from the mounting hole edge portion 202f on the outer wall surface 202d side is provided.
In contrast to the structure in which the claw portion 2b in the first embodiment is flush with the outer wall surface 2d, in the bearing holding device according to the second embodiment, the claw portion 202b is located on the outer wall surface 202d side from the outer wall surface 202d. It has a structure that protrudes outward. Due to the structure in which the claw portion 202b projects outward from the outer wall surface 202d of the sheet metal frame 202, the bearing 4 is mounted by shifting in the thrust direction toward the outer wall surface 202d side of the sheet metal frame 202. That is, the contact surface between the outer ring 4a of the bearing 4 and the circumferential surface 202e of the bearing mounting hole 202a becomes large. Thereby, when a load is generated on the stepped shaft 3, the stress generated on the sheet metal frame 202 and the bearing 4 can be reduced.
 実施の形態1と同様に、実施の形態2では、ツメ部202bはベアリング取付け孔202aの取付け孔縁部202fに沿って、複数箇所に不連続に設けられている。ツメ部202bは、ベアリング4の外輪4aを挟持し、ツメ部202bより外へ向かう方向のベアリング4の動きを規制できれば、形状について問わない。
 また、ベアリング取付け孔202aとツメ部202bはプレス加工にて一体成型により構成される。
Similar to the first embodiment, in the second embodiment, the claw portion 202b is discontinuously provided at a plurality of locations along the mounting hole edge portion 202f of the bearing mounting hole 202a. The shape of the claw portion 202b does not matter as long as it can sandwich the outer ring 4a of the bearing 4 and regulate the movement of the bearing 4 in the direction outward from the claw portion 202b.
Further, the bearing mounting hole 202a and the claw portion 202b are integrally molded by press working.
 なお、実施の形態2に係るベアリング保持装置において、板金フレーム202のツメ部202b以外の構成は、上記実施の形態1に係るベアリング保持装置と同様である。
 また、実施の形態2に係るベアリング保持装置を用いた気中遮断器も実施の形態1に係るベアリング保持装置を用いた気中遮断器と同様に構成できる。
In the bearing holding device according to the second embodiment, the configuration other than the claw portion 202b of the sheet metal frame 202 is the same as the bearing holding device according to the first embodiment.
Further, the aerial circuit breaker using the bearing holding device according to the second embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
 実施の形態2に係るベアリング保持装置よれば、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 また、ツメ部が板金フレームの外壁面から外側へ突出する構造となるため、ベアリングとベアリング取付け孔との接触面が大きくなり、板金フレームとベアリングに発生する応力を低減することができ、製品寿命の向上を図ることができる。
 実施の形態2に係るベアリング保持装置を用いた気中遮断器によれば、部品点数の削減により製品の軽量化、および製品の信頼性と寿命の向上を図ることができる。
According to the bearing holding device according to the second embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of bearing accuracy.
In addition, since the claws have a structure that projects outward from the outer wall surface of the sheet metal frame, the contact surface between the bearing and the bearing mounting hole becomes large, and the stress generated between the sheet metal frame and the bearing can be reduced, resulting in a product life. Can be improved.
According to the aerial circuit breaker using the bearing holding device according to the second embodiment, it is possible to reduce the weight of the product and improve the reliability and the life of the product by reducing the number of parts.
実施の形態3.
 図13を用いて、実施の形態3に係るベアリング保持装置およびこのベアリング保持装置を用いた気中遮断器を説明する。
 実施の形態3では、本開示の実施の形態1と同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態3に係るベアリング保持装置の実施の形態1と異なる点について述べる。
Embodiment 3.
The bearing holding device according to the third embodiment and the aerial circuit breaker using the bearing holding device will be described with reference to FIG.
In the third embodiment, the description of the same or corresponding parts as the first embodiment of the present disclosure will be omitted. Hereinafter, the points different from the first embodiment of the bearing holding device according to the third embodiment will be described with reference to the drawings.
 図13は、図8(a)に示す一点鎖線Aで示す部分に対応する実施の形態3係るベアリング保持装置の板金フレーム203におけるベアリング取付け孔203aの拡大斜視図である。
 図13に示すように、実施の形態3において、板金フレーム203は、ベアリング取付け孔203aの円周面203eにおいて、板金フレーム203の外壁面側の取付け孔縁部203fから軸方向に向かって延伸するツメ部203bと、ツメ部203bの根本の両端に形成されたくぼみ203gを有する。
FIG. 13 is an enlarged perspective view of a bearing mounting hole 203a in the sheet metal frame 203 of the bearing holding device according to the third embodiment corresponding to the portion indicated by the alternate long and short dash line A shown in FIG. 8A.
As shown in FIG. 13, in the third embodiment, the sheet metal frame 203 extends in the axial direction from the mounting hole edge portion 203f on the outer wall surface side of the sheet metal frame 203 on the circumferential surface 203e of the bearing mounting hole 203a. It has a claw portion 203b and dents 203 g formed at both ends of the root of the claw portion 203b.
 ベアリング取付け孔203a、ツメ部203bおよびくぼみ203gは、2段階のプレス加工により一体成型される。まず、ベアリング取付け孔203aとくぼみ203gを同時にプレス加工にて成型する。次に、ツメ部203bをプレス加工にて成型する。ツメ部203bを成型する前に、くぼみ203gをベアリング取付け孔203aと同時に成型しておくことにより、ツメ部203bを成型する際に発生する応力をくぼみ203g部分に集中させることができる。くぼみ203gを成型しない場合に比べ、ツメ部203b周辺に発生する応力によるベアリング取付け孔203aの変形を防ぐことができる。 The bearing mounting hole 203a, the claw portion 203b, and the recess 203g are integrally molded by two-step press working. First, the bearing mounting hole 203a and the recess 203g are simultaneously molded by press working. Next, the claw portion 203b is molded by press working. By molding the recess 203g at the same time as the bearing mounting hole 203a before molding the claw portion 203b, the stress generated when molding the claw portion 203b can be concentrated on the recess 203g. Compared with the case where the recess 203g is not molded, it is possible to prevent the bearing mounting hole 203a from being deformed due to the stress generated around the claw portion 203b.
 実施の形態3において、ベアリング4は、ベアリング取付け孔203aのツメ部203bと段付きシャフト3の段差部3aとともに挟持される。また、ベアリング取付け孔203aの取付け孔縁部203fに沿って略等間隔で複数箇所に設けられることにより、ベアリング4を保持する安定性を向上できる。 In the third embodiment, the bearing 4 is sandwiched together with the claw portion 203b of the bearing mounting hole 203a and the stepped portion 3a of the stepped shaft 3. Further, the stability of holding the bearing 4 can be improved by providing the bearing mounting holes 203a at a plurality of locations at substantially equal intervals along the mounting hole edge portions 203f.
 次に、実施の形態3係るベアリング保持装置におけるツメ部203bと板金フレーム203の外壁面との位置関係について述べる。
 実施の形態3において、実施の形態1に係るベアリング保持装置1のように、ツメ部203bが、板金フレーム203の外壁面と同一平面に設けられることができる。この場合、ツメ部が板金フレーム外に配置される部品と干渉しないため、部品レイアウト等の設計自由度が高くなる。
Next, the positional relationship between the claw portion 203b and the outer wall surface of the sheet metal frame 203 in the bearing holding device according to the third embodiment will be described.
In the third embodiment, the claw portion 203b can be provided on the same plane as the outer wall surface of the sheet metal frame 203 as in the bearing holding device 1 according to the first embodiment. In this case, since the claw portion does not interfere with the parts arranged outside the sheet metal frame, the degree of freedom in designing the parts layout and the like is increased.
 また、実施の形態2に係るベアリング保持装置102のように、ツメ部203bが、板金フレーム203の外壁面から外側へ突出するように設けられることができる。この場合、ベアリングとベアリング取付け孔との接触面が大きくなり、板金フレームとベアリングに発生する応力を低減することができ、製品寿命の向上を図ることができる。
 ツメ部203bが、板金フレーム203の外壁面から外側へ突出する場合においても、ベアリング取付け孔203a、ツメ部203bおよびくぼみ203gは、同様に2段階のプレス加工により一体成型される。
Further, like the bearing holding device 102 according to the second embodiment, the claw portion 203b can be provided so as to project outward from the outer wall surface of the sheet metal frame 203. In this case, the contact surface between the bearing and the bearing mounting hole becomes large, the stress generated in the sheet metal frame and the bearing can be reduced, and the product life can be improved.
Even when the claw portion 203b projects outward from the outer wall surface of the sheet metal frame 203, the bearing mounting hole 203a, the claw portion 203b, and the recess 203g are integrally molded by two-step press working in the same manner.
 実施の形態3に係るベアリング保持装置において、板金フレーム203のツメ部203bの根本に形成されたくぼみ203g以外の構成は、実施の形態1または実施の形態2に係るベアリング保持装置と同様である。
 また、実施の形態3に係るベアリング保持装置を用いた気中遮断器も実施の形態1に係るベアリング保持装置を用いた気中遮断器と同様に構成できる。
In the bearing holding device according to the third embodiment, the configuration other than the recess 203g formed at the root of the claw portion 203b of the sheet metal frame 203 is the same as the bearing holding device according to the first embodiment or the second embodiment.
Further, the aerial circuit breaker using the bearing holding device according to the third embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
 実施の形態3に係るベアリング保持装置によれば、実施の形態1と同様に、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 また、板金フレームにおいてツメ部の両端にくぼみを設けることにより、ツメ部成型時に発生する応力によるベアリング取付け孔の変形を防ぐことができる。これにより、ベアリングの取付け不良を防ぐことができる。
 実施の形態3に係るベアリング保持装置を用いた気中遮断器によれば、部品点数の削減により製品の軽量化および組み立て工数削減ができ、ベアリング取付け孔の変形を防ぎ、製品の軽量化および信頼性向上を図ることができる。
According to the bearing holding device according to the third embodiment, as in the first embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing positioning and holding function can be performed without increasing the number of parts. As a result, the assembly man-hours can be reduced and the deterioration of assembly accuracy can be prevented.
Further, by providing recesses at both ends of the claw portion in the sheet metal frame, it is possible to prevent deformation of the bearing mounting hole due to stress generated during molding of the claw portion. As a result, it is possible to prevent improper mounting of the bearing.
According to the aerial circuit breaker using the bearing holding device according to the third embodiment, the weight of the product can be reduced and the assembly man-hours can be reduced by reducing the number of parts, the deformation of the bearing mounting hole can be prevented, and the weight and reliability of the product can be reduced. It is possible to improve the sex.
実施の形態4.
 図14と図15を用いて、実施の形態4に係るベアリング保持装置およびこのベアリング保持装置を用いた気中遮断器を説明する。
 実施の形態4では、本開示の実施の形態1と同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態4に係るベアリング保持装置の実施の形態1と異なる点について述べる。
Embodiment 4.
A bearing holding device according to the fourth embodiment and an aerial circuit breaker using the bearing holding device will be described with reference to FIGS. 14 and 15.
In the fourth embodiment, the description of the same or corresponding parts as the first embodiment of the present disclosure will be omitted. Hereinafter, the points different from the first embodiment of the bearing holding device according to the fourth embodiment will be described with reference to the drawings.
 図14は、実施の形態4に係るベアリング保持装置104における板金フレーム204の内壁面204c側からみた斜視図である。
 図15は、実施の形態4に係るベアリング保持装置104を示す断面図である。
FIG. 14 is a perspective view of the bearing holding device 104 according to the fourth embodiment as viewed from the inner wall surface 204c side of the sheet metal frame 204.
FIG. 15 is a cross-sectional view showing the bearing holding device 104 according to the fourth embodiment.
 図14に示すように、実施の形態4に係るベアリング保持装置104において、板金フレーム204は、ベアリング4を取付ける側の内壁面204cと、厚み方向において内壁面204cの反対側の外壁面204dを有する。板金フレーム204には、ベアリング取付け孔204aと、ベアリング取付け孔204aの円周面204eにおいて、板金フレーム204の外壁面204d側から軸方向に向かって延伸するツメ部204bが形成されている。ベアリング取付け孔204aとツメ部204bはプレス加工にて一体成型される。 As shown in FIG. 14, in the bearing holding device 104 according to the fourth embodiment, the sheet metal frame 204 has an inner wall surface 204c on the side where the bearing 4 is mounted and an outer wall surface 204d on the opposite side of the inner wall surface 204c in the thickness direction. .. The sheet metal frame 204 is formed with a bearing mounting hole 204a and a claw portion 204b extending axially from the outer wall surface 204d side of the sheet metal frame 204 on the circumferential surface 204e of the bearing mounting hole 204a. The bearing mounting hole 204a and the claw portion 204b are integrally molded by press working.
 上記の実施の形態1におけるベアリング取付け孔2aのツメ部2bはベアリング取付け孔2aの取付け孔縁部2fに沿って略等間隔で複数箇所に設けられる構成に対して、実施の形態4では、ツメ部204bは、ベアリング取付け孔204aの円周面204eにおいて、取付け孔縁部204fに沿って連続するつば形状となる。すなわち、ツメ部204bの形状は、中心に穴が開いた円盤の外周が外壁面204d側の取付け孔縁部204fに繋がっている形状である。
 連続するつば形状となるツメ部204bは、ベアリング4との接触面が大きくなるため、段付きシャフト3に荷重が発生した時に、ツメ部204bに発生する応力を低減することができる。実施の形態1に係るベアリング保持装置に比べて、ベアリング4の首振り方向の動きに対してより強く規制でき、保持性が向上できる。
In contrast to the configuration in which the claw portions 2b of the bearing mounting hole 2a in the first embodiment are provided at a plurality of locations along the mounting hole edge portion 2f of the bearing mounting hole 2a at substantially equal intervals, in the fourth embodiment, the claws are provided. The portion 204b has a brim shape that is continuous along the mounting hole edge portion 204f on the circumferential surface 204e of the bearing mounting hole 204a. That is, the shape of the claw portion 204b is such that the outer circumference of the disk having a hole in the center is connected to the mounting hole edge portion 204f on the outer wall surface 204d side.
Since the claw portion 204b having a continuous brim shape has a large contact surface with the bearing 4, it is possible to reduce the stress generated in the claw portion 204b when a load is generated on the stepped shaft 3. Compared with the bearing holding device according to the first embodiment, the movement of the bearing 4 in the swing direction can be more strongly regulated, and the holding property can be improved.
 また、図15に示すように、ツメ部204bは、板金フレーム204の外壁面204d側において、外壁面204dと同一平面になるように設けられている。ツメ部204bと板金フレーム204の外壁面204dが同一平面に設けられることにより、ツメ部204bが、板金フレーム外に配置される部品と干渉しないため、部品レイアウト等の設計自由度が高くなる。
 なお、実施の形態4に係るベアリング保持装置104において、板金フレーム204以外の構成は、上記実施の形態1に係るベアリング保持装置と同様である。また、実施の形態4に係るベアリング保持装置を用いた気中遮断器も実施の形態1に係るベアリング保持装置を用いた気中遮断器と同様に構成できる。
Further, as shown in FIG. 15, the claw portion 204b is provided on the outer wall surface 204d side of the sheet metal frame 204 so as to be flush with the outer wall surface 204d. By providing the claw portion 204b and the outer wall surface 204d of the sheet metal frame 204 on the same plane, the claw portion 204b does not interfere with the parts arranged outside the sheet metal frame, so that the degree of freedom in designing the parts layout and the like is increased.
In the bearing holding device 104 according to the fourth embodiment, the configuration other than the sheet metal frame 204 is the same as the bearing holding device according to the first embodiment. Further, the aerial circuit breaker using the bearing holding device according to the fourth embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the first embodiment.
 実施の形態4に係るベアリング保持装置によれば、実施の形態1と同様に、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 また、ベアリング取付け孔のツメ部とベアリングとの接触面が大きいため、段付きシャフトに荷重が発生した時に、ツメ部に発生する応力を低減することができる。実施の形態1に係るベアリング保持装置に比べて、ベアリングの首振り方向の動きに対してより強く規制でき、保持性が向上できる。
 実施の形態4に係るベアリング保持装置を用いた気中遮断器によれば、部品点数の削減により製品の軽量化および組み立て工数削減ができ、ベアリングに対する保持性が向上でき、製品の軽量化および信頼性向上を図ることができる。
According to the bearing holding device according to the fourth embodiment, as in the first embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing positioning and holding function can be performed without increasing the number of parts. As a result, the assembly man-hours can be reduced and the deterioration of assembly accuracy can be prevented.
Further, since the contact surface between the claw portion of the bearing mounting hole and the bearing is large, it is possible to reduce the stress generated in the claw portion when a load is generated on the stepped shaft. Compared with the bearing holding device according to the first embodiment, the movement of the bearing in the swing direction can be more strongly regulated, and the holding property can be improved.
According to the aerial circuit breaker using the bearing holding device according to the fourth embodiment, the weight of the product can be reduced and the assembly man-hours can be reduced by reducing the number of parts, the holding property for the bearing can be improved, and the weight and reliability of the product can be reduced. It is possible to improve the sex.
実施の形態5.
 図16と図17を用いて、実施の形態5に係るベアリング保持装置およびこのベアリング保持装置を用いた気中遮断器を説明する。
 実施の形態5では、本開示の実施の形態4と同一の構成要素または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態5に係るベアリング保持装置の実施の形態4と異なる点について述べる。
Embodiment 5.
The bearing holding device according to the fifth embodiment and the aerial circuit breaker using the bearing holding device will be described with reference to FIGS. 16 and 17.
In the fifth embodiment, the description of the same components or corresponding parts as those in the fourth embodiment of the present disclosure will be omitted. Hereinafter, the points different from the fourth embodiment of the bearing holding device according to the fifth embodiment will be described with reference to the drawings.
 図16は、実施の形態5によるベアリング保持装置105を示す斜視図である。図17は、図16中に示す一点鎖線Cの位置における断面図である。
 図16と図17に示すように、ベアリング保持装置105において、板金フレーム205は、ベアリング4を取付ける側の内壁面205cと、厚み方向において内壁面205cの反対側の外壁面205dを有する。板金フレーム205には、ベアリング取付け孔205aと、ベアリング取付け孔205aの円周面205eにおいて、板金フレーム205の外壁面205d側から軸方向に向かって延伸するツメ部205bが形成されている。ツメ部205bは、取付け孔縁部205fに沿って連続するつば形状となる。ベアリング取付け孔205aとツメ部205bはプレス加工にて一体成型される。
FIG. 16 is a perspective view showing the bearing holding device 105 according to the fifth embodiment. FIG. 17 is a cross-sectional view at the position of the alternate long and short dash line C shown in FIG.
As shown in FIGS. 16 and 17, in the bearing holding device 105, the sheet metal frame 205 has an inner wall surface 205c on the side where the bearing 4 is mounted and an outer wall surface 205d on the opposite side of the inner wall surface 205c in the thickness direction. The sheet metal frame 205 is formed with a bearing mounting hole 205a and a claw portion 205b extending in the axial direction from the outer wall surface 205d side of the sheet metal frame 205 on the circumferential surface 205e of the bearing mounting hole 205a. The claw portion 205b has a continuous brim shape along the mounting hole edge portion 205f. The bearing mounting hole 205a and the claw portion 205b are integrally molded by press working.
 上記の実施の形態4に係るベアリング保持装置104におけるツメ部204bと板金フレーム204の外壁面204dとが同一平面になる構造に対して、実施の形態5では、ツメ部205bは、外壁面205d側において、外壁面205dから外側へ突出している構造となる。すなわち、ツメ部205bは、外壁面205dから外側へ突出し、中心に穴が開いた円盤の外周が外壁面205d側の取付け孔縁部205fに繋がっている形状である。 In contrast to the structure in which the claw portion 204b in the bearing holding device 104 according to the fourth embodiment and the outer wall surface 204d of the sheet metal frame 204 are flush with each other, in the fifth embodiment, the claw portion 205b is on the outer wall surface 205d side. The structure is such that the outer wall surface 205d projects outward. That is, the claw portion 205b has a shape that protrudes outward from the outer wall surface 205d and the outer periphery of the disk having a hole in the center is connected to the mounting hole edge portion 205f on the outer wall surface 205d side.
 ツメ部205bが板金フレーム205の外壁面205dから外側へ突出する構造により、ベアリング4はスラスト方向において板金フレーム205の外壁面205d側へ向かう方向へシフトして取付けられる。すなわち、ベアリング4の外輪4aとベアリング取付け孔205aの円周面205eとの接触面が大きくなる。これにより、段付きシャフト3に荷重が発生した時に、板金フレーム205とベアリング4に発生する応力を低減することができる。 Due to the structure in which the claw portion 205b projects outward from the outer wall surface 205d of the sheet metal frame 205, the bearing 4 is mounted by shifting in the thrust direction toward the outer wall surface 205d of the sheet metal frame 205. That is, the contact surface between the outer ring 4a of the bearing 4 and the circumferential surface 205e of the bearing mounting hole 205a becomes large. As a result, when a load is generated on the stepped shaft 3, the stress generated on the sheet metal frame 205 and the bearing 4 can be reduced.
 なお、実施の形態5に係るベアリング保持装置105において、板金フレーム205以外の構成は、上記実施の形態4に係るベアリング保持装置と同様である。また、実施の形態5に係るベアリング保持装置を用いた気中遮断器も実施の形態4に係るベアリング保持装置を用いた気中遮断器と同様に構成できる。 In the bearing holding device 105 according to the fifth embodiment, the configuration other than the sheet metal frame 205 is the same as the bearing holding device according to the fourth embodiment. Further, the aerial circuit breaker using the bearing holding device according to the fifth embodiment can be configured in the same manner as the aerial circuit breaker using the bearing holding device according to the fourth embodiment.
 実施の形態5に係るベアリング保持装置よれば、ベアリングの軸方向の厚みよりも薄い板金フレームであっても部品点数を増やすことなく、ベアリングの位置決めおよび保持機能を奏し、組み立て工数が削減でき、組付け精度の悪化を防ぐことができる。
 また、ベアリング取付け孔のツメ部とベアリングとの接触面が大きいため、段付きシャフトに荷重が発生した時に、ツメ部に発生する応力を低減することができる。実施の形態1に係るベアリング保持装置に比べて、ベアリングの首振り方向の動きに対してより強く規制でき、保持性が向上できる。
 また、ツメ部が板金フレームの外壁面から外側へ突出する構造となるため、ベアリングとベアリング取付け孔との接触面が大きくなり、板金フレームとベアリングに発生する応力を低減することができ、製品寿命の向上を図ることができる。
 実施の形態5に係るベアリング保持装置を用いた気中遮断器によれば、部品点数の削減により製品の軽量化、および製品の信頼性と寿命の向上を図ることができる。
According to the bearing holding device according to the fifth embodiment, even if the sheet metal frame is thinner than the axial thickness of the bearing, the bearing can be positioned and held without increasing the number of parts, and the assembly man-hours can be reduced. It is possible to prevent deterioration of bearing accuracy.
Further, since the contact surface between the claw portion of the bearing mounting hole and the bearing is large, it is possible to reduce the stress generated in the claw portion when a load is generated on the stepped shaft. Compared with the bearing holding device according to the first embodiment, the movement of the bearing in the swing direction can be more strongly regulated, and the holding property can be improved.
In addition, since the claws have a structure that projects outward from the outer wall surface of the sheet metal frame, the contact surface between the bearing and the bearing mounting hole becomes large, and the stress generated between the sheet metal frame and the bearing can be reduced, resulting in a product life. Can be improved.
According to the aerial circuit breaker using the bearing holding device according to the fifth embodiment, it is possible to reduce the weight of the product and improve the reliability and the life of the product by reducing the number of parts.
 本開示は、様々な例示的な実施の形態が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は、特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present disclosure describes various exemplary embodiments, the various features, embodiments, and functions described in one or more embodiments may be incorporated into the application of a particular embodiment. Not limited, it can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1、102、104、105 ベアリング保持装置
2、202、203、204、205 板金フレーム
2a、202a、203a、204a、205a ベアリング取付け孔
2b、202b、203b、204b、205b ツメ部
2c、202c、204c、205c 内壁面
2d、202d、204d、205d 外壁面
2e、202e、203e、204e、205e 円周面
2f、202f、203f、204f、205f 取付け孔縁部
3 段付きシャフト
3a 段差部
3b 小径部
4 ベアリング
4a 外輪
4b 内輪
4c 内側面
4d 外側面
21 カムシャフト
28 メインシャフト
100 遮断器本体
101 筐体
300 気中遮断器
1, 102, 104, 105 Bearing holding device 2, 202, 203, 204, 205 Sheet metal frame 2a, 202a, 203a, 204a, 205a Bearing mounting holes 2b, 202b, 203b, 204b, 205b Claws 2c, 202c, 204c, 205c Inner wall surface 2d, 202d, 204d, 205d Outer wall surface 2e, 202e, 203e, 204e, 205e Circumferential surface 2f, 202f, 203f, 204f, 205f Mounting hole edge 3 Stepped shaft 3a Step 3b Small diameter 4 Bearing 4a Outer ring 4b Inner ring 4c Inner side surface 4d Outer side surface 21 Camshaft 28 Main shaft 100 Circuit breaker body 101 Housing 300 Air circuit breaker

Claims (9)

  1.  ベアリングと、
     前記ベアリングに回転自在に保持される段付きシャフトと、
     厚みが前記ベアリングの軸方向の厚み以下であり、ベアリングを取り付けるベアリング取付け孔が設けられた板金フレームと、を備え、
     前記ベアリングは、外輪と、前記外輪の内側の内輪と、前記段付きシャフトの挿入方向に対向する内側面と、前記内側面の反対側の外側面とを有し、
     前記段付きシャフトは、端部に段差部と、前記段差部を介して縮径形成された小径部とを有し、前記段差部が前記ベアリングの前記内側面側の前記内輪に突き当たるまで前記小径部が前記内輪に挿入されており、
     前記板金フレームは、前記ベアリングを取付ける側の内壁面、および厚み方向において前記内壁面の反対側の外壁面を有し、
     前記ベアリング取付け孔は、前記ベアリング取付け孔の円周面において、前記外壁面側の取付け孔縁部から前記軸方向に向かって延伸し、前記ベアリングの前記外側面側の前記外輪に当接するツメ部を有することを特徴とするベアリング保持装置。
    Bearings and
    A stepped shaft that is rotatably held by the bearing,
    A sheet metal frame having a thickness equal to or less than the axial thickness of the bearing and provided with a bearing mounting hole for mounting the bearing is provided.
    The bearing has an outer ring, an inner ring inside the outer ring, an inner surface surface facing the insertion direction of the stepped shaft, and an outer surface opposite the inner surface surface.
    The stepped shaft has a stepped portion at an end and a small diameter portion formed by reducing the diameter through the stepped portion, and the small diameter portion is reached until the stepped portion abuts on the inner ring on the inner side surface side of the bearing. The part is inserted into the inner ring,
    The sheet metal frame has an inner wall surface on the side where the bearing is mounted, and an outer wall surface on the opposite side of the inner wall surface in the thickness direction.
    The bearing mounting hole is a claw portion that extends in the axial direction from the mounting hole edge portion on the outer wall surface side and abuts on the outer ring on the outer surface side of the bearing on the circumferential surface of the bearing mounting hole. A bearing holding device characterized by having.
  2.  前記板金フレームは、対向に配置された一対のものであり、
     前記段付きシャフトは、両側の前記端部に前記段差部と前記小径部とをそれぞれ有することを特徴とする請求項1に記載のベアリング保持装置。
    The sheet metal frames are a pair arranged so as to face each other.
    The bearing holding device according to claim 1, wherein the stepped shaft has a stepped portion and a small diameter portion at the end portions on both sides thereof.
  3.  前記ベアリング取付け孔と前記ツメ部とは一体成型されていることを特徴とする請求項1または2に記載のベアリング保持装置。 The bearing holding device according to claim 1 or 2, wherein the bearing mounting hole and the claw portion are integrally molded.
  4.  前記ツメ部は、前記取付け孔縁部に沿って複数箇所に設けられていることを特徴とする請求項1から3の何れか1項に記載のベアリング保持装置。 The bearing holding device according to any one of claims 1 to 3, wherein the claw portion is provided at a plurality of locations along the mounting hole edge portion.
  5.  前記ベアリング取付け孔の円周面において、前記ツメ部の根本にくぼみが形成されていることを特徴とする請求項4に記載のベアリング保持装置。 The bearing holding device according to claim 4, wherein a recess is formed at the root of the claw portion on the circumferential surface of the bearing mounting hole.
  6.  前記ツメ部は、前記取付け孔縁部に沿って連続するつば形状であることを特徴とする請求項1から3の何れか1項に記載のベアリング保持装置。 The bearing holding device according to any one of claims 1 to 3, wherein the claw portion has a continuous brim shape along the mounting hole edge portion.
  7.  前記ツメ部は、前記外壁面側において前記外壁面と同一平面に設けられていることを特徴とする請求項1から請求項6の何れか1項に記載のベアリング保持装置。 The bearing holding device according to any one of claims 1 to 6, wherein the claw portion is provided on the outer wall surface side in the same plane as the outer wall surface.
  8.  前記ツメ部は、前記外壁面側において前記外壁面より外側へ突出するように設けられていることを特徴とする請求項1から請求項6の何れか1項に記載のベアリング保持装置。 The bearing holding device according to any one of claims 1 to 6, wherein the claw portion is provided so as to project outward from the outer wall surface on the outer wall surface side.
  9.  前記請求項1から8の何れかのベアリング保持装置が遮断器本体に取付けられている気中遮断器。 An aerial circuit breaker in which the bearing holding device according to any one of claims 1 to 8 is attached to the circuit breaker body.
PCT/JP2020/011734 2020-03-17 2020-03-17 Bearing holding device and air breaker provided with said bearing holding device WO2021186553A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/011734 WO2021186553A1 (en) 2020-03-17 2020-03-17 Bearing holding device and air breaker provided with said bearing holding device
JP2022508658A JP7239058B2 (en) 2020-03-17 2020-03-17 Bearing retainer and air circuit breaker with this bearing retainer
CN202080098347.8A CN115280451A (en) 2020-03-17 2020-03-17 Bearing holding device and air circuit breaker with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011734 WO2021186553A1 (en) 2020-03-17 2020-03-17 Bearing holding device and air breaker provided with said bearing holding device

Publications (1)

Publication Number Publication Date
WO2021186553A1 true WO2021186553A1 (en) 2021-09-23

Family

ID=77770979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011734 WO2021186553A1 (en) 2020-03-17 2020-03-17 Bearing holding device and air breaker provided with said bearing holding device

Country Status (3)

Country Link
JP (1) JP7239058B2 (en)
CN (1) CN115280451A (en)
WO (1) WO2021186553A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152217U (en) * 1983-03-30 1984-10-12 三菱電機株式会社 bearing device
JPS59194244U (en) * 1983-06-13 1984-12-24 富士電機株式会社 Opening/closing shaft bearing structure of breaker
JPS6123526U (en) * 1984-07-19 1986-02-12 富士ゼロックス株式会社 pairing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500214Y2 (en) * 1990-04-16 1996-06-05 日新電機株式会社 ON / OFF display device for switch
JPH0587125A (en) * 1991-09-27 1993-04-06 Oki Electric Ind Co Ltd Bearing carrying structure
JP3131037B2 (en) 1992-07-07 2001-01-31 日本電信電話株式会社 Method for measuring refractive index of soft X-ray transparent material
CN211376561U (en) 2019-09-30 2020-08-28 上海良信电器股份有限公司 Camshaft supporting structure of circuit breaker operating mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152217U (en) * 1983-03-30 1984-10-12 三菱電機株式会社 bearing device
JPS59194244U (en) * 1983-06-13 1984-12-24 富士電機株式会社 Opening/closing shaft bearing structure of breaker
JPS6123526U (en) * 1984-07-19 1986-02-12 富士ゼロックス株式会社 pairing

Also Published As

Publication number Publication date
CN115280451A (en) 2022-11-01
JPWO2021186553A1 (en) 2021-09-23
JP7239058B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US8664556B2 (en) Switch device operating mechanism
JP5769791B2 (en) Latch device
JPH11339608A (en) Automonous operation mechanism for electric switch device
JP4866399B2 (en) Drive motor used for the spring charging device of the air circuit breaker
JPH05106374A (en) Active lock device for vehicle trunk door and the like
JP7271375B2 (en) vehicle steering wheel
WO2021186553A1 (en) Bearing holding device and air breaker provided with said bearing holding device
US20210363795A1 (en) Door handle device for vehicle
JP5630380B2 (en) Pull-out type circuit breaker
US7389708B2 (en) Starter for an engine
JP5032217B2 (en) Vacuum circuit breaker
JP2005197168A (en) Manual operation device of switch
JP5109271B2 (en) Deadbolt structure
CN111128616A (en) Operating mechanism of miniature circuit breaker
CN215600317U (en) Thermal trip device for miniature circuit breaker and miniature circuit breaker
CN114783837A (en) Operating system of miniature circuit breaker and miniature circuit breaker with same
WO2012173083A1 (en) Latching device
JP5197031B2 (en) Circuit breaker operation mechanism
TWI803660B (en) (無)
CN110120604B (en) Connector component and connector
CN218849404U (en) Operating mechanism with reclosing function
JP4632943B2 (en) Open / close operation device
CN117832025A (en) Interlocking device
CN113394039B (en) Energy storage mechanism
JP3778604B2 (en) Key switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925942

Country of ref document: EP

Kind code of ref document: A1