JPH0627052A - Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method - Google Patents

Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method

Info

Publication number
JPH0627052A
JPH0627052A JP4182486A JP18248692A JPH0627052A JP H0627052 A JPH0627052 A JP H0627052A JP 4182486 A JP4182486 A JP 4182486A JP 18248692 A JP18248692 A JP 18248692A JP H0627052 A JPH0627052 A JP H0627052A
Authority
JP
Japan
Prior art keywords
ray
sample
reflectance
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4182486A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4182486A priority Critical patent/JPH0627052A/en
Publication of JPH0627052A publication Critical patent/JPH0627052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To allow accurate measurement of original point angle of 0 deg. when projecting X-ray to a sample and measuring reflectance thereof. CONSTITUTION:The sample holder 11 for measurement of X-ray reflectance is located on the same plane as a sample 14 to be measured at a part of the optical path of incident X-ray and a crystalline thin film part 15, having known spacing of lattice plane, is provided thereon. When X-ray is projected onto the sample 14 in order to measure the reflectance thereof, X-ray is also projected onto the crystalline thin film part 15 in order to measure a diffraction peak thereof thus allowing correction of reflectance data based on the diffraction peak value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物質表面の定量分析等
に利用されるX線反射率測定用試料ホルダ及びこれを用
いたX線反射率測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray reflectance measuring sample holder used for quantitative analysis of a material surface and the like, and an X-ray reflectance measuring method using the same.

【0002】[0002]

【従来の技術】従来、この種の反射率測定法としては、
低入射角X線反射率測定法が一般的であり、図2又は図
3に示すような測定用試料ホルダ1が用いられている。
図2の場合、L=30mm、H=40mm位の大きさのホル
ダ基板(アルミニウム板、ガラス板等による)2のX線
照射部に矩形状開口3を形成し、この矩形状開口3に粉
末などの被測定試料4を充填させ、軸5を中心に測定用
試料ホルダ1を回転させながらX線照射部にX線を照射
させるようにしたものである。図3は矩形状開口3に代
えて、矩形状凹部6を形成して被測定試料4を充填させ
るようにしたものである。
2. Description of the Related Art Conventionally, as this type of reflectance measuring method,
A low incidence angle X-ray reflectance measurement method is generally used, and a measurement sample holder 1 as shown in FIG. 2 or 3 is used.
In the case of FIG. 2, a rectangular opening 3 is formed in the X-ray irradiation portion of a holder substrate (made of an aluminum plate, a glass plate, etc.) 2 having a size of L = 30 mm and H = 40 mm, and the rectangular opening 3 is made of powder. The sample to be measured 4 such as the above is filled, and the X-ray irradiator irradiates the X-ray with rotating the sample holder 1 for measurement around the axis 5. In FIG. 3, a rectangular recess 6 is formed in place of the rectangular opening 3 to fill the sample 4 to be measured.

【0003】このような測定用試料ホルダ1を用いた低
入射角X線反射率測定法について考えると、図4に示す
ように、X線7を被測定試料4面に対して角度α<3°
以下の低入射角で入射させ、反射率を測定する際には、
原点(=0°)なる角度を正確に知る必要がある。
Considering a low incidence angle X-ray reflectance measuring method using such a sample holder 1 for measurement, as shown in FIG. 4, an X-ray 7 is angle α <3 with respect to the surface of the sample 4 to be measured. °
When making the incidence at the following low incident angles and measuring the reflectance,
It is necessary to know the angle of the origin (= 0 °) accurately.

【0004】[0004]

【発明が解決しようとする課題】ここに、従来にあって
は、X線7と被測定試料4表面とが平行になったとき
(=0°)、検出器8のカウント数が最大となるので、
これを原点としているが、入射させるX線7にも幅があ
り、図5に示すような分布特性を持つため、求められた
原点位置は必ずしも正確なものではない。
Here, conventionally, when the X-ray 7 and the surface of the sample 4 to be measured are parallel (= 0 °), the count number of the detector 8 becomes maximum. So
Although this is the origin, the incident X-ray 7 also has a width and has a distribution characteristic as shown in FIG. 5, so the obtained origin position is not always accurate.

【0005】この点について、さらに詳細に言及する。
まず、低入射角X線反射率測定法の原理を説明する。X
線7は波長が短く(数10Å〜0.1Å位)、物質の屈
折率はほぼ1に等しい。ここに、X線7は固体表面にす
れすれの角度で入射する時は全反射が起る。その臨界角
θc は、通常10〜30′程度であり、X線7の波長が
長くなるほど、大きくなる。この全反射を利用して湾曲
面の鏡が集光用に利用されるわけである。また、X線7
は光と同じように干渉現象を示し、位相が揃うと、波は
強め合う。ところで、図6に示すように、X線7が被測
定試料4表面にすれすれの入射角αで入射すると、この
被測定試料4表面で反射された波とホルダ基板2表面で
反射された波とは、図7に示すような関係にある、ある
角度α1で位相が揃い、干渉して強くなる。これは、2
つのX線の光路差が、入射X線波長の整数倍に等しい時
に生ずる。ここに、被測定試料4の膜厚は1000Å以
下位でないとX線7がホルダ基板2へ到達せず、この現
象は生じない。被測定試料4としては結晶でもアモルフ
ァスでもよく、要は、均一であればよい。
This point will be described in more detail.
First, the principle of the low incidence angle X-ray reflectance measurement method will be described. X
The line 7 has a short wavelength (several 10 Å to 0.1 Å), and the refractive index of the substance is almost equal to 1. When the X-ray 7 is incident on the surface of the solid body at a grazing angle, total reflection occurs. The critical angle θc is usually about 10 to 30 ′, and becomes larger as the wavelength of the X-ray 7 becomes longer. By utilizing this total reflection, the curved mirror is used for collecting light. Also, X-ray 7
Shows an interference phenomenon like light, and when the phases are aligned, the waves strengthen each other. By the way, as shown in FIG. 6, when the X-ray 7 is incident on the surface of the sample to be measured 4 at a grazing incidence angle α, the wave reflected on the surface of the sample to be measured 4 and the wave reflected on the surface of the holder substrate 2 are separated. Are aligned at a certain angle α 1 and have a relationship as shown in FIG. This is 2
It occurs when the optical path difference of two X-rays is equal to an integer multiple of the incident X-ray wavelength. If the film thickness of the sample 4 to be measured is not more than 1000 Å, the X-ray 7 does not reach the holder substrate 2 and this phenomenon does not occur. The sample 4 to be measured may be crystalline or amorphous, and the point is that it should be uniform.

【0006】ところで、被測定試料4の物質を1000
Åより薄くして多重層構造で設ければ、上記の干渉効果
が増大する。ただし、層間は鏡面であることが必要であ
る。もっとも、現在の製造技術によれば、数Åの薄膜層
を何層も均一に設けることが可能となっている。例え
ば、LB膜とかMBE(分子線エピタキシー)で設ける
GaAs等の半導体で可能である。入射角αをα1 とし
た時、反射されるX線は上述した原理により単色化され
ており(分光されており)、かつ、位相の揃ったものと
なる。
By the way, the substance of the sample 4 to be measured is 1000
If the thickness is made thinner than Å and the multi-layer structure is provided, the above interference effect is increased. However, the layers must be mirror-finished. However, according to the current manufacturing technology, it is possible to provide several thin film layers uniformly. For example, a LB film or a semiconductor such as GaAs provided by MBE (molecular beam epitaxy) can be used. When the incident angle α is α 1 , the reflected X-rays are monochromatic (spectralized) according to the above-mentioned principle and have the same phase.

【0007】このような測定は、一般には、α<3°、
特にα<2°なる低角度入射の測定となる。ここに、振
動の周期によって膜厚を求め、強度の減衰の仕方から表
面粗さを求め、臨界角から膜の密度等を求めるために測
定を行うものである。このような内容は、例えば文献
“L.G.Parratt:Phys.Rev.,95.p359”や文献
“Y.Yoneda:Phys.Rev.,131.p2010”等により報告
されている。
Such a measurement is generally performed by α <3 °,
In particular, it becomes a measurement of low angle incidence where α <2 °. Here, the film thickness is obtained by the period of vibration, the surface roughness is obtained from the manner of attenuation of strength, and the density of the film is obtained from the critical angle. Such contents are reported, for example, in the document “LG Parratt: Phys. Rev., 95.p359” and the document “Y. Yoneda: Phys. Rev., 131.p2010”.

【0008】ところで、上述のように、0°となるのは
入射するX線7が被測定試料4表面に平行になる時であ
り、この時に検出器8による検出強度は最大となる。し
かし、現実には、被測定試料4の表面は完全な平面では
なく湾曲しているような場合もあり、また、入射するX
線7に関しても幅があり、分布がある。よって、図8に
示すように、被測定試料4を軸5を中心に回転させる時
の回転中心と入射させるX線7との関係は、厳密に考え
れば、常に一定ではなく、被測定試料4を交換する毎に
ずれを生じたりする。
By the way, as described above, 0 ° is when the incident X-ray 7 becomes parallel to the surface of the sample 4 to be measured, and at this time, the detection intensity by the detector 8 becomes maximum. However, in reality, the surface of the sample 4 to be measured may not be a perfect plane but may be curved.
The line 7 also has a width and a distribution. Therefore, as shown in FIG. 8, when the sample 4 to be measured is rotated about the axis 5, the relationship between the center of rotation and the incident X-ray 7 is not always constant if strictly considered. Every time you replace the, there is a gap.

【0009】従って、理想的な場合には図9に示すよう
に、0°の箇所にピークが生ずるが、実際には、常にこ
の図9に示すような強度分布となるわけではなく、ピー
ク位置やピーク前後のプロファイルは変動する。特に、
Siのように臨界角が判っている材料の場合であって
も、この臨界角から求めた0点はずれて合わない場合が
生じてしまう。よって、一般的には、データを読む時、
0点からの角度を読むため、元々この0点がずれていれ
ば誤ったデータ読取りとなってしまう。
Therefore, in the ideal case, as shown in FIG. 9, a peak occurs at a position of 0 °, but in reality, the intensity distribution as shown in FIG. And the profile around the peak fluctuates. In particular,
Even in the case of a material whose critical angle is known, such as Si, there may be cases where the zero points obtained from this critical angle do not match. So, in general, when reading data,
Since the angle from the 0 point is read, if the 0 point is originally deviated, the data will be erroneously read.

【0010】ちなみに、全反射X線計測法に関する文献
・報告は多数あり、特に、近年にあっては、物質表面の
不純物を定量するための全反射蛍光X線分析方法を用い
た装置が市販されるに至り、また、多層膜の界面状態を
調べる低入射角での反射率測定も盛んになってきている
が、上記の課題は、考慮されていないものである。
By the way, there are many literatures and reports on the total reflection X-ray measurement method, and in particular, in recent years, an apparatus using the total reflection X-ray fluorescence analysis method for quantifying impurities on the surface of a substance is commercially available. In addition, the reflectance measurement at a low incident angle for investigating the interface state of the multilayer film has become popular, but the above problems are not taken into consideration.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明で
は、入射させるX線光路内の一部であって被測定試料面
と同一面上に位置させて格子面間隔が既知の値を有する
結晶性薄膜部を設け、請求項2記載の発明では、請求項
1記載のX線反射率測定用試料ホルダに対してX線を入
射させて被測定試料の反射率を測定する際に、前記結晶
性薄膜部にもX線を入射させてその回折ピークを測定
し、この回折ピーク値に基づき反射率データを補正する
ようにした。
According to a first aspect of the present invention, the lattice plane spacing has a known value by being located on the same plane as the sample surface to be measured, which is a part of the incident X-ray optical path. A crystalline thin film portion is provided, and in the invention according to claim 2, when measuring the reflectance of the sample to be measured by making X-rays incident on the sample holder for measuring X-ray reflectance according to claim 1, X-rays were also made incident on the crystalline thin film portion to measure its diffraction peak, and the reflectance data was corrected based on this diffraction peak value.

【0012】[0012]

【作用】本発明においては、X線反射率測定用試料ホル
ダ自体に、その一部を利用して、格子定数、即ち格子面
間隔が既知の値を持つ結晶性薄膜部を設けておくことに
より、被測定試料部分に関する測定毎にこの結晶性薄膜
部の回折ピークの測定値を参照することにより、反射率
データを補正し得るものとなり、正確な測定が可能とな
る。
In the present invention, the X-ray reflectance measuring sample holder itself is provided with a crystalline thin film portion having a known lattice constant, that is, a lattice plane interval, by utilizing a part of the holder. The reflectance data can be corrected by referring to the measured value of the diffraction peak of the crystalline thin film portion for each measurement of the sample portion to be measured, and accurate measurement is possible.

【0013】[0013]

【実施例】本発明の一実施例を図1に基づいて説明す
る。本実施例は、測定用試料ホルダ11のホルダ基板1
2に形成された矩形状凹部(又は、矩形状開口)13に
よる被測定試料14の充填部の一部に、格子定数、ここ
では格子面間隔dが既知の結晶性薄膜部15を設けて、
被測定試料14面の測定毎に、この結晶性薄膜部15の
ピーク値を参照して補正・解析し得るようにしたもので
ある。前記測定用試料ホルダ11は測定時には軸16を
回転中心として回転される。ここに、結晶性薄膜部15
は入射させるX線の光路内の一部に位置させて、被測定
試料14と同一面となるように設定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. In this embodiment, the holder substrate 1 of the measurement sample holder 11 is used.
A crystalline thin film portion 15 having a known lattice constant, here, a lattice plane interval d, is provided in a part of the filled portion of the measured sample 14 by the rectangular concave portion (or rectangular opening) 13 formed in 2.
The peak value of the crystalline thin film portion 15 can be referred to and corrected and analyzed every time the measurement sample 14 surface is measured. The sample holder 11 for measurement is rotated about the axis 16 at the time of measurement. Here, the crystalline thin film portion 15
Is located in a part of the optical path of the incident X-ray and is set to be flush with the sample 14 to be measured.

【0014】例えば、αタイプのステアリン酸は格子面
間隔dはd=39.40Åであり、X線源にCuを用い
た場合のCuKα線(波長λ=1.54Å)のときは、
2d・sinθ=nλ より、角度θ=1.12°に回折ピ
ークが出現する。このように、脂肪酸と称されるものの
他、有機・無機物を問わない。また、X線源にモリブデ
ンを用いたときは、d>6.8Å(2θで6°であり、
θでは3°以内となる)、Cuを用いたときはd>1
4.7°Å以上(2θで6°であり、θでは3°以内と
なる)なる格子面間隔dの値を有する材料であれば何で
もよい。また、結晶性薄膜部15の形状としても、粉末
でも薄膜でもよく、極端には、被測定試料14上に薄く
設けてもよい。さらには、回折ピークのピーク位置さえ
判ればよいので、微量であってもよい。
For example, α type stearic acid has a lattice spacing d of d = 39.40Å, and when CuKα rays (wavelength λ = 1.54Å) when Cu is used as the X-ray source,
From 2d · sin θ = nλ, a diffraction peak appears at an angle θ = 1.12 °. Thus, in addition to the so-called fatty acids, organic / inorganic substances may be used. When molybdenum is used as the X-ray source, d> 6.8Å (6 at 2θ,
θ is within 3 °), and when Cu is used, d> 1
Any material may be used as long as it has a value of the lattice spacing d of 4.7 ° Å or more (6 ° for 2θ and within 3 ° for θ). The crystalline thin film portion 15 may be in the form of powder or thin film, and may be extremely thinly provided on the measured sample 14. Further, since it is only necessary to know the peak position of the diffraction peak, a minute amount may be sufficient.

【0015】より具体的な実施例について説明する。ま
ず、Siウエハによるホルダ基板12に形成した矩形状
凹部13部分に対して、αタイプのステアリン酸(純度
99.999%)を微量溶解し(約1%濃度)、図1中
に斜線を施して示す部分に一部液滴を添加し、これを引
き伸ばし乾燥させて結晶性薄膜部15を形成した。同時
に、ステアリン酸を設けないSiウエハだけの試料(比
較試料)も作製した。そして、これらの両試料につい
て、前述した低入射角X線反射率測定法に準じて、X線
を低入射角で入射させて測定を行った。ここに、X線装
置としては、理学株式会社製のRU−300をベースと
し、これを改良したものを用いた。ターゲットにはCu
を用い、被測定試料14にはSi(111)で分光した
CuKα線を照射するものとした。そこで、入射角を0
°〜2°の範囲で変化させ(電圧×電流=40kV×6
0mA)と反射率との関係を測定したところ、入射角が
1.1°の箇所に回折ピークが観察されたものである。
この角度を既知なる理論値1.12°としてSiウエハ
の臨界角を補正演算により求めると、0.22°とな
り、文献に示される真の値と一致したものである。
A more specific embodiment will be described. First, a small amount of α-type stearic acid (purity 99.999%) was dissolved (about 1% concentration) in the rectangular concave portion 13 portion formed on the holder substrate 12 made of a Si wafer, and hatched in FIG. Part of the liquid droplets was added to the portion indicated by, and this was drawn out and dried to form the crystalline thin film portion 15. At the same time, a sample (comparative sample) of only the Si wafer without the stearic acid was prepared. Then, according to the low incidence angle X-ray reflectance measurement method described above, the X-rays were made incident on the both samples at a low incidence angle to perform the measurement. Here, as the X-ray apparatus, an improved one based on RU-300 manufactured by Rigaku Co., Ltd. was used. Cu for the target
The sample 14 to be measured was irradiated with CuKα rays dispersed by Si (111). Therefore, the incident angle is 0
Change in the range of 2 ° to 2 ° (voltage × current = 40 kV × 6
When the relationship between 0 mA) and the reflectance was measured, a diffraction peak was observed at a position where the incident angle was 1.1 °.
When this angle is set to a known theoretical value of 1.12 ° and the critical angle of the Si wafer is calculated by correction calculation, it becomes 0.22 °, which is in agreement with the true value shown in the literature.

【0016】ちなみに、ステアリン酸を設けないSiウ
エハのみによる比較試料の場合には、−0.5°〜2°
の範囲で入射角を変化させて観察を行い、最大ピーク値
を与える角度を0°として、Siウエハの臨界角を求め
たところ、0.15°となり、真の臨界角からかなり逸
脱したものとなってしまったものである。
By the way, in the case of the comparative sample using only the Si wafer without the stearic acid, -0.5 ° to 2 °
The angle of incidence was changed within the range of ## EQU1 ## and the angle at which the maximum peak value was given was 0 °. The critical angle of the Si wafer was determined to be 0.15 °, which was a considerable deviation from the true critical angle. It has become.

【0017】なお、本発明方式は、低入射角X線反射率
測定用に限らず、より一般的な高入射角X線回折用にも
適用し得るものである。
The method of the present invention can be applied not only for measuring low incidence angle X-ray reflectance but also for more general high incidence angle X-ray diffraction.

【0018】[0018]

【発明の効果】本発明によれば、X線反射率測定用試料
ホルダ自体に、その一部を利用して、格子定数、即ち格
子面間隔が既知の値を持つ結晶性薄膜部を設け、測定時
にこの結晶性薄膜部の回折ピークの測定により補正デー
タが得られるようにしたので、被測定試料部分に関する
測定毎にこの結晶性薄膜部の回折ピークの測定値を参照
することにより、反射率データを補正することが可能と
なり、正確な測定を可能とすることができる。
According to the present invention, the X-ray reflectance measurement sample holder itself is provided with a crystalline thin film portion having a known lattice constant, that is, a lattice plane interval, by utilizing a part thereof. Since the correction data was obtained by measuring the diffraction peak of this crystalline thin film portion at the time of measurement, the reflectance was measured by referring to the measured value of the diffraction peak of this crystalline thin film portion for each measurement of the measured sample portion. It becomes possible to correct the data, which enables accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an embodiment of the present invention.

【図2】従来の試料ホルダの構成を示し、(a)は概略
斜視図、(b)はその縦断側面図である。
2A and 2B show a configuration of a conventional sample holder, in which FIG. 2A is a schematic perspective view and FIG. 2B is a longitudinal side view thereof.

【図3】異なる従来の試料ホルダの構成を示し、(a)
は概略斜視図、(b)はその縦断側面図である。
FIG. 3 shows a configuration of a different conventional sample holder, (a)
Is a schematic perspective view, and (b) is a longitudinal side view thereof.

【図4】低入射角X線反射率測定法を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a low incidence angle X-ray reflectance measurement method.

【図5】その入射X線の強度分布特性図である。FIG. 5 is an intensity distribution characteristic diagram of the incident X-ray.

【図6】低入射角X線反射率測定法の原理を示す説明図
である。
FIG. 6 is an explanatory diagram showing the principle of a low incidence angle X-ray reflectance measurement method.

【図7】X線入射角‐反射強度特性図である。FIG. 7 is an X-ray incident angle-reflection intensity characteristic diagram.

【図8】入射X線が幅を持つことを示す説明図である。FIG. 8 is an explanatory diagram showing that an incident X-ray has a width.

【図9】X線入射角‐X線強度特性図である。FIG. 9 is an X-ray incident angle-X-ray intensity characteristic diagram.

【符号の説明】[Explanation of symbols]

11 測定用試料ホルダ 14 被測定試料 15 結晶性薄膜部 11 sample holder for measurement 14 sample to be measured 15 crystalline thin film part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射させるX線光路内の一部であって被
測定試料面と同一面上に位置させて格子面間隔が既知の
値を有する結晶性薄膜部を設けたことを特徴とするX線
反射率測定用試料ホルダ。
1. A crystalline thin film portion having a known lattice plane interval is provided on a part of the incident X-ray optical path on the same plane as the sample surface to be measured. Sample holder for X-ray reflectance measurement.
【請求項2】 請求項1記載のX線反射率測定用試料ホ
ルダに対してX線を入射させて被測定試料の反射率を測
定する際に、結晶性薄膜部にもX線を入射させてその回
折ピークを測定し、この回折ピーク値に基づき反射率デ
ータを補正するようにしたことを特徴とするX線反射率
測定方法。
2. When the X-ray reflectance is measured on the sample holder for measuring X-ray reflectance according to claim 1, the X-ray is also incident on the crystalline thin film portion. The X-ray reflectance measuring method is characterized in that the diffraction peak is measured by means of the measurement, and the reflectance data is corrected based on the diffraction peak value.
JP4182486A 1992-07-09 1992-07-09 Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method Pending JPH0627052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182486A JPH0627052A (en) 1992-07-09 1992-07-09 Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182486A JPH0627052A (en) 1992-07-09 1992-07-09 Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method

Publications (1)

Publication Number Publication Date
JPH0627052A true JPH0627052A (en) 1994-02-04

Family

ID=16119126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182486A Pending JPH0627052A (en) 1992-07-09 1992-07-09 Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method

Country Status (1)

Country Link
JP (1) JPH0627052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134441A (en) * 2013-01-09 2014-07-24 Nippon Hoso Kyokai <Nhk> Film thickness and film density determination method and program therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134441A (en) * 2013-01-09 2014-07-24 Nippon Hoso Kyokai <Nhk> Film thickness and film density determination method and program therefor

Similar Documents

Publication Publication Date Title
US4785470A (en) Reflectivity and resolution X-ray dispersive and reflective structures for carbon, beryllium and boron analysis
EP0990140B1 (en) X-ray monochromator comprising a crystal having a tapered width and assuming a logarithmic spiral shape
WO1997007514A1 (en) X-ray thickness gauge
Patel et al. X-ray-standing-wave atom location in heteropolar crystals and the problem of extinction
US6873681B2 (en) Method of estimating preferred orientation of polycrystalline material
Lengeler X-ray reflection, a new tool for investigating layered structures and interfaces
JPH0627052A (en) Sample holder for measurement of x-ray reflectance and x-ray reflectance measuring method
Halliwell X-ray diffraction solutions to heteroepitaxial growth problems
Fewster et al. Interpretation of the diffuse scattering close to Bragg peaks by X-ray topography
JP2005528594A (en) X-ray diffraction apparatus and method
US7680246B2 (en) Method and device for judging polarity of single crystal sample
Niggemeier et al. X-ray reflectometer for the diagnostics of thin films during growth
Masson et al. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations
Nittono et al. An X-ray double-crystal method utilizing non-parallel setting for measuring local lattice mismatches between epitaxial films and substrates
JP2002286660A (en) Method and apparatus for observing crystal by using x-ray diffraction
Kharchenko et al. In situ and real-time characterization of metal-organic chemical vapor deposition growth by high resolution x-ray diffraction
Fatemi A high-resolution double-crystal diffractometer method for the measurement of lattice parameter in single crystals
JPH0792112A (en) X-ray evaluation system
CN109839398B (en) Preparation method of standard sample for synchrotron radiation confocal fluorescence experiment
Freitas et al. Measuring Friedel pairs in nanomembranes of GaAs (001)
US20030026383A1 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive x-ray spectrometric devices
JPH0735708A (en) Fluorescent x-ray analysis method
Jenkins et al. Calibration of the diffractometer at low values of two theta
Helliwell Single-crystal X-ray techniques
JPH06109671A (en) X-ray analyzer and total reflection fluorescent x-ray analyzer