JPH0627003A - Analysis of adhesive - Google Patents

Analysis of adhesive

Info

Publication number
JPH0627003A
JPH0627003A JP18015692A JP18015692A JPH0627003A JP H0627003 A JPH0627003 A JP H0627003A JP 18015692 A JP18015692 A JP 18015692A JP 18015692 A JP18015692 A JP 18015692A JP H0627003 A JPH0627003 A JP H0627003A
Authority
JP
Japan
Prior art keywords
ray
sample
adhesive
analysis
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18015692A
Other languages
Japanese (ja)
Inventor
Naohiko Sato
直彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18015692A priority Critical patent/JPH0627003A/en
Publication of JPH0627003A publication Critical patent/JPH0627003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize quick and highly accurate analysis of trace impurity elements contained in an adhesive mainly composed of polymer by holding liquid ultraviolet ray curable anaerobic adhesive into an adsorbing material and then solidifying them to prepare an analytic sample. CONSTITUTION:An adhesive sample is a liquid substance containing an additive and impurity chloride in addition to polymer, i.e., an acrylic ultraviolet ray curable anaerobic adhesive or main binder containing unsaturated polyester. A small quantity of sample not subjected to chemical treatment is then dripped or applied onto a filter paper made of adsorbing material to prepare an analytic sample 3 which is then set in a vacuum sample chamber 7. The sample 3 is then irradiated with X-ray from an X-ray tube 2 according to X-ray fluorescence analysis and solidified quickly. Existence of impurity element is determined from the wavelength of characteristic X-ray (ClKalpha ray) inherent to the impurity element generated upon irradiation with X-ray. Content of impurity is determined at a data processing section 6 based on the ratio of intensity of characteristic X-ray(ClKalpha ray) of the sample 3 detected through a detector 5 to the intensity of reflected X-ray(e.g. CrKalpha ray).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接着剤の分析方法に係
り、特に精密モータ等に用いられる接着剤中の不純物元
素の分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing an adhesive, and more particularly to a method for analyzing an impurity element in an adhesive used in a precision motor or the like.

【0002】[0002]

【従来の技術】近年、コンピュータ用記憶装置としての
ハードディスクドライブ (HDD) の小型化、大容量化
への要請がますます強くなってきている。特に、2.5イ
ンチHDDの生産台数はノートブック型コンピュータの
普及とともに急増している。さらにHDD市場には1.8
インチタイプの製品の開発が発表されるまでになってい
る。
2. Description of the Related Art In recent years, there has been an increasing demand for miniaturization and increase in capacity of hard disk drives (HDD) as computer storage devices. In particular, the production volume of 2.5-inch HDDs has rapidly increased with the spread of notebook computers. Furthermore, the HDD market is 1.8
The development of inch type products has been announced.

【0003】これらに用いられる精密モータの製造にお
いて、部品の接合に接着剤が用いられる。接着剤は、塗
布する時は液体であるが接合後は必ず固体でなければな
らない。種類としては数多くあるが大別すると溶剤系,
水系, 無溶剤系の接着剤がある。これら接着剤の基本構
成成分としては、主結合剤のポリマーが必ず配合されて
おり、その他種類によっては溶剤, 無機充填剤、可塑
剤, 着色剤および老化防止剤や触媒, 促進剤からなって
いるのが一般的である。
In the manufacture of precision motors used for these, an adhesive is used for joining parts. The adhesive must be liquid when applied but must be solid after joining. There are many types, but roughly speaking, solvent type,
There are water-based and solvent-free adhesives. As a basic constituent component of these adhesives, the polymer of the main binder is always blended, and depending on other types, it consists of solvent, inorganic filler, plasticizer, colorant and antiaging agent, catalyst, and accelerator. Is common.

【0004】精密モータ用接着剤としては、ポリウレタ
ンメタクリレート, アクリル酸, ヒドロキシアルキルメ
タクリレートなどと数種類の添加物からなる紫外線硬化
型嫌気性接着剤などが検討されている。これら接着剤は
接着性の他に粘度, 蒸気圧, 比重, 水に対する溶解性,
沸点,引火点, 安定性などの物性が重要であるが、モー
タがより小型化される中で接着剤中の塩素等の腐食性成
分はHDDにおけるモータ、記録媒体部分の腐食に影響
するため、迅速かつ高精度の定量方法が求められてい
る。
As an adhesive for precision motors, an ultraviolet-curable anaerobic adhesive composed of polyurethane methacrylate, acrylic acid, hydroxyalkyl methacrylate and the like and several kinds of additives has been studied. In addition to adhesiveness, these adhesives have viscosity, vapor pressure, specific gravity, solubility in water,
Physical properties such as boiling point, flash point, and stability are important, but as motors become smaller, corrosive components such as chlorine in the adhesive affect the corrosion of motors and recording media in HDDs. A rapid and highly accurate quantification method is required.

【0005】一般に接着剤の標準的な分析方法は、日本
分析化学会編「分析化学便覧」改定四版(1991)に述べら
れている。接着剤によって異なるが主結合剤のポリマー
や溶剤などはIR法 (赤外スペクトル分析) やGC法
(ガスクロマトグラフ) を適用して分析することができ
る。
Generally, a standard method for analyzing adhesives is described in "Analytical Chemistry Handbook", Fourth Edition (1991), edited by The Japan Society for Analytical Chemistry. Depending on the adhesive, the main binder polymer and solvent are IR method (infrared spectrum analysis) and GC method.
(Gas chromatograph) can be applied for analysis.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の標
準的な方法においては塩素等の接着剤中の不純物元素に
関しては分析法の規定がない。接着剤試料は嫌気性雰囲
気で紫外線を照射して固化するものであるから大気中で
は液状である。接着剤は有機物が主体であるから塩素分
析のための試料の前処理として燃焼させたガスを吸収液
に捕集して液中の塩素イオンを各種の検出法にて定量す
る方法が一般には考えられる。しかし、前記のように液
状物では燃焼が困難であり、助燃剤を用いても容易でな
い。いずれにしてもこれらの方法では分析操作に時間を
要し迅速性に欠ける。
However, in the above-mentioned standard method, there is no stipulation of analytical method for impurity elements in the adhesive such as chlorine. Since the adhesive sample is solidified by irradiating it with ultraviolet rays in an anaerobic atmosphere, it is liquid in the atmosphere. Since the adhesive is mainly composed of organic substances, it is generally considered to collect the burned gas in the absorption liquid as a pretreatment of the sample for chlorine analysis and quantify the chlorine ion in the liquid by various detection methods. To be However, as described above, it is difficult to burn a liquid substance, and it is not easy to use a combustion improver. In any case, these methods are time-consuming and lacking in speediness in the analysis operation.

【0007】図5は、水溶液などの一般的な液体試料の
調製手順を示すもので、試料採取 (シリンジによる) 、
滴加、滴加試料の管理、乾燥、試料セット、分析測定の
順で行われる。この方法を紫外線硬化型嫌気性接着剤に
適用すると試料は粘性の高い液体であるから、そのまま
適用できない。つまり、試料採取方法、試料量管理、乾
燥の操作を改善する必要がある。特に乾燥によっても十
分固化しないという問題がある。
FIG. 5 shows a general procedure for preparing a liquid sample such as an aqueous solution. Sampling (using a syringe),
The process is performed in the order of dropping, management of the dropped sample, drying, sample setting, and analytical measurement. When this method is applied to an ultraviolet curable anaerobic adhesive, the sample cannot be applied as it is because it is a highly viscous liquid. That is, it is necessary to improve the sampling method, sample amount control, and drying operation. In particular, there is a problem that it does not solidify sufficiently even when dried.

【0008】また、試料は接着剤であって一般には取り
扱い可能な試料量が少なく、例えば0.1g以下の少ない
試料中に微量含まれる不純物元素に関してはその分析方
法がない。この発明は上述の点に鑑みてなされ、その目
的は分析試料の調製方法を開発してポリマーが主体の接
着剤に含まれる微量不純物元素の迅速かつ高精度な分析
方法を提供することにある。
Further, the sample is an adhesive, and generally the amount of sample that can be handled is small. For example, there is no analytical method for impurity elements contained in a small amount of less than 0.1 g. The present invention has been made in view of the above points, and an object thereof is to develop a method for preparing an analysis sample to provide a rapid and highly accurate analysis method for trace impurity elements contained in an adhesive mainly composed of a polymer.

【0009】[0009]

【課題を解決するための手段】上述の目的はこの発明に
よれば分析試料調製工程と、定量工程を有し、分析試料
調製工程は液状の紫外線硬化型嫌気性接着剤を吸着材に
保持し、次いで固化させるもので、定量工程は螢光X線
分析法により固化した紫外線硬化型嫌気性接着剤中の不
純物元素を分析するものであり、ここに螢光X線分析法
は不純物元素の特性X線強度と分析試料からの反射X線
強度の比を測定するものであるとすることにより達成さ
れる。
According to the present invention, the above-mentioned object has an analytical sample preparing step and a quantitative measuring step, wherein the analytical sample preparing step holds a liquid ultraviolet-curable anaerobic adhesive on an adsorbent. Then, solidification is performed, and the quantitative step is to analyze the impurity element in the ultraviolet-curing anaerobic adhesive solidified by the fluorescent X-ray analysis method. Here, the fluorescent X-ray analysis method is the characteristic of the impurity element. It is achieved by measuring the ratio of the X-ray intensity and the intensity of the reflected X-ray from the analysis sample.

【0010】吸着材には精製したセルロースを主体とし
た濾紙の他に不純物の少ない濾過材(フィルター) 等も
用いることができる。吸着材の濾紙はサイズ10〜50φの
ものを用いるとともに螢光X線分析時の分析面積 (X線
照射面積) を一定にして安定した測定を行うことができ
る。より好ましくは45φの濾紙で中央部の約20φに滴
加, 塗布するのがよい。
As the adsorbent, in addition to a filter paper mainly composed of purified cellulose, a filter material containing a small amount of impurities (filter) can be used. As the adsorbent, filter paper having a size of 10 to 50φ is used, and stable analysis can be performed by keeping the analysis area (X-ray irradiation area) during the fluorescent X-ray analysis constant. More preferably, a 45φ filter paper should be added dropwise to about 20φ in the central portion.

【0011】滴加, 塗布後の接着剤は未硬化で液状であ
るが、螢光X線測定直前に真空雰囲気中でX線を照射す
ることによって固化させる。螢光X線分析に際しては吸
着材は試薬から調製した溶液を滴加, 塗布して標準試料
とすることができる。これはマトリクスを整合させる。
螢光X線分析の測定は、不純物元素の特性X線強度と反
射X線強度との比を求めて行う。
Although the adhesive after dripping and applying is uncured and in a liquid state, it is solidified by irradiating with X-rays in a vacuum atmosphere immediately before measurement of fluorescent X-rays. For fluorescent X-ray analysis, the adsorbent can be used as a standard sample by dropping and applying a solution prepared from a reagent. This aligns the matrices.
The fluorescent X-ray analysis is performed by obtaining the ratio of the characteristic X-ray intensity of the impurity element and the reflected X-ray intensity.

【0012】[0012]

【作用】紫外線硬化型嫌気性接着剤を吸着材に保持し固
化して分析試料とするので、分析試料調製が迅速であ
る。特に真空雰囲気中のX線照射による固化は紫外線照
射装置を不要にする。不純物元素の特性X線強度と、反
射X線強度との比を測定することにより、固化した分析
試料表面の凹凸や吸着材の厚さによる影響を補正して、
分析精度を高める。
[Function] Since the ultraviolet curable anaerobic adhesive is held on the adsorbent and solidified to be an analytical sample, the analytical sample can be rapidly prepared. In particular, solidification by X-ray irradiation in a vacuum atmosphere makes an ultraviolet irradiation device unnecessary. By measuring the ratio of the characteristic X-ray intensity of the impurity element and the reflected X-ray intensity, the influence of the unevenness of the solidified analytical sample surface and the thickness of the adsorbent is corrected,
Increase analysis accuracy.

【0013】[0013]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。図1は、本発明の実施例に係る分析試料調製手順
を示す流れ図である。接着剤試料は、不飽和ポリエステ
ルを含むアクリル系紫外線硬化型嫌気性接着剤で主結合
剤であるポリマーの他に添加剤を含み、さらに不純物の
塩素を含む液状物質である。少量試料を用いて化学的な
処理を加えずに吸着材の濾紙に滴加または塗布した後、
真空雰囲気でX線を照射して速やかに固化することがで
きる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a flow chart showing an analytical sample preparation procedure according to an example of the present invention. The adhesive sample is an acrylic UV-curable anaerobic adhesive containing unsaturated polyester, which is a liquid substance containing an additive in addition to a polymer as a main binder and further containing chlorine as an impurity. After adding or applying a small amount of sample to the filter paper of the adsorbent without chemical treatment,
It can be rapidly solidified by irradiating X-rays in a vacuum atmosphere.

【0014】吸着材の濾紙は、精製したセルロースを主
体とした清浄で均一な濾過材で滴加, 塗布する面積を一
定にするために濾紙のサイズを加工するなどして用い通
常はJIS P 3801 〔化学分析用ろ紙〕を用いる。接
着剤は紫外線硬化型嫌気性のものであり、通常は硬化さ
せるのに紫外線ランプ照射装置を用いて、例えば365 n
mの波長〔エネルギー約10(eV)レベル〕を用い、照射強
度 100 mW/cm2 のもとで数分レベルの時間で行われる。
さらに、嫌気性雰囲気は分子状酸素を必要としないつま
り空気を遮断するような雰囲気が必要である。これらの
操作は、塩素分析における測定操作の前工程で必要とな
るが、これらに変わる簡便な方法として吸着材の濾紙に
滴加, 塗布した試料をエネルギーの高いX線〔波長0.1
〜1nm, エネルギー約104 (eV)レベル〕を照射するこ
とによって速やかに固化させ、試料表面の変化の少ない
状態にして、のちの測定が安定してできるようにした。
The filter paper of the adsorbent is a clean and uniform filter material mainly composed of purified cellulose, and is used by processing the size of the filter paper so as to make the area to be dropped and applied constant. Usually, JIS P 3801 is used. Use [Chemical analysis filter paper]. The adhesive is an ultraviolet curable anaerobic adhesive, and it is usually cured by using an ultraviolet lamp irradiation device to cure the adhesive, for example, 365 n.
Using a wavelength of m (energy of about 10 (eV) level) and irradiation intensity of 100 mW / cm 2 for several minutes level time.
Further, the anaerobic atmosphere does not require molecular oxygen, that is, an atmosphere that blocks air. These operations are required in the previous step of the measurement operation in chlorine analysis, but as a simple alternative to these, a sample applied dropwise to the filter paper of the adsorbent and applied is a high energy X-ray [wavelength 0.1
.About.1 nm, energy about 10 4 (eV) level] was applied to rapidly solidify the sample to make the sample surface in a state where there was little change so that subsequent measurements could be stably performed.

【0015】試料調製後の塩素の定量は、螢光X線分析
法を適用する。本法は、一次X線の照射によって発生す
る元素特有の特性X線 (この場合ClKα) の波長より、
含有元素の存在が分かる。さらに、特性X線の強度から
含有量を求めることができる。 前記調製した分析試料
にCrターゲツトのX線管からでたX線が照射される。こ
の時、吸着材の濾紙に付いている塩素のClKα線が放射
される。このClKα線の強度は、試料に照射したCrX線
の反射X線強度によって徐される。これによって分析試
料の濾紙表面のわずかな凹凸や、濾紙の厚さの違いが特
性X線強度におよぼす影響を補正することができる。分
析試料からの反射X線としては例えばCrKα線, CrKβ
線が用いられる。
For the quantification of chlorine after the sample preparation, a fluorescent X-ray analysis method is applied. This method is based on the wavelength of characteristic X-rays (ClKα in this case) peculiar to the elements generated by the irradiation of primary X-rays.
The existence of contained elements is known. Further, the content can be obtained from the intensity of the characteristic X-ray. The prepared analytical sample is irradiated with X-rays emitted from a Cr target X-ray tube. At this time, ClKα ray of chlorine attached to the filter paper of the adsorbent is emitted. The intensity of this ClKα ray is slowed down by the intensity of the reflected X-ray of the Cr X-ray irradiated on the sample. This makes it possible to correct the slight unevenness of the filter paper surface of the analysis sample and the influence of the difference in the filter paper thickness on the characteristic X-ray intensity. Examples of the reflected X-rays from the analysis sample include CrKα rays and CrKβ
Lines are used.

【0016】分析試料からのClKα線の強度とCrKα線
の反射X線強度との比を求めると検量線の作成や接着剤
試料の特性X線強度測定において、精度を高めることが
できる。以下に分析試料調製手順の詳細を述べる。試料
量としては、0.1g以下の液状の接着剤を用いる。0.04
〜0.08gをスポイト又はガラス棒で採取し、予め用意し
た濾紙の中央部に滴加, 塗布する。濾紙は、直径45φの
もので中央部の約20φの円内に滴加, 塗布した。この状
態での接着剤重量を天秤で測定しておく。
By obtaining the ratio of the intensity of ClKα rays from the analytical sample and the intensity of reflected X-rays of CrKα rays, the accuracy can be improved in preparing a calibration curve and measuring the characteristic X-ray intensity of the adhesive sample. The details of the analytical sample preparation procedure are described below. As the sample amount, a liquid adhesive of 0.1 g or less is used. 0.04
Approximately 0.08 g is sampled with a dropper or a glass rod, and is applied dropwise to the center of the filter paper prepared in advance. The filter paper had a diameter of 45φ and was dropped and applied in a circle of about 20φ in the center. The weight of the adhesive in this state is measured by a balance.

【0017】次に、試料の雰囲気を真空にし、X線を照
射して速やかに固化させた。この操作は、分析試料ホル
ダーに試料を固定し、螢光X線分析試料室に試料ホルダ
ーを載置して行った。接着剤が固化すると試料は直ちに
測定可能な状態になる。次に試料中の塩素測定法につい
て述べる。図2は、本発明の実施例に係る螢光X線分析
装置を示す配置図である。この分析装置は、X線発生装
置1、X線管2、分光結晶4、検出器5、データ処理部
6からなり、分析試料3のセットされる試料室7は真空
にできる。
Next, the atmosphere of the sample was evacuated and irradiated with X-ray to rapidly solidify. This operation was performed by fixing the sample to the analysis sample holder and mounting the sample holder in the fluorescent X-ray analysis sample chamber. When the adhesive solidifies, the sample is ready for measurement. Next, the method for measuring chlorine in the sample will be described. FIG. 2 is a layout view showing a fluorescent X-ray analysis apparatus according to an embodiment of the present invention. This analyzer comprises an X-ray generator 1, an X-ray tube 2, a dispersive crystal 4, a detector 5, and a data processing unit 6, and a sample chamber 7 in which an analytical sample 3 is set can be evacuated.

【0018】図3は、ClKα螢光X線スペクトルを示す
線図である。分析試料の塩素Clは、X線管からの一次X
線が照射されたときClKα線を励起放出する。次いで分
光器で分光され検出器により光電検出が行われる。同様
にして照射される一次X線は、CrターゲツトのX線管よ
り発せられ、試料面からの反射X線としてCrKα線が検
出器で検出される。
FIG. 3 is a diagram showing a ClKα fluorescence X-ray spectrum. Chlorine Cl of the analytical sample is the primary X from the X-ray tube.
Excited emission of ClKα rays when the rays are irradiated. Next, the light is dispersed by the spectroscope, and photoelectric detection is performed by the detector. The primary X-rays emitted in the same manner are emitted from the X-ray tube of the Cr target, and CrKα rays are detected by the detector as reflected X-rays from the sample surface.

【0019】ここで、螢光X線分析における測定X線強
度は、分析試料の組成によって異なり、吸収効果と励起
効果および表面状態の違いによる影響が生ずることが知
られている。本法では、分析試料の構成材質は濾紙の材
質がマトリクスであり全体に薄いシート状のため分析に
は問題のない十分な厚さの領域となっている。このこと
は、一般に測定X線強度に与える影響は少ないと言え
る。さらに、わずかな表面状態の違いも考慮して前記反
射X線を用いた強度比によってClKα線強度が補正さ
れ、測定精度が高められる。
Here, it is known that the measured X-ray intensity in the fluorescent X-ray analysis varies depending on the composition of the analysis sample and is affected by the absorption effect, the excitation effect and the difference in the surface state. In this method, the constituent material of the analytical sample is a matrix of filter paper and is a thin sheet as a whole, so that it is a region of sufficient thickness that does not pose a problem for analysis. It can be said that this generally has little influence on the measured X-ray intensity. Further, the ClKα ray intensity is corrected by the intensity ratio using the reflected X-ray in consideration of a slight difference in surface state, and the measurement accuracy is enhanced.

【0020】このようにして次の測定条件でClKα線の
強度とCl濃度との関係から、最小自乗法により検量線が
作成された。 測定条件 分析元素 ;Cl 分光結晶 ;PET〔Cr用;LiF 〕 X線管ターケ゛ット ;Cr X線管電圧 ;50kV X線管電流 ;50mA 測定角度 ;ClKα線, 2θ=65.440deg 、CrKα
線,2θ=62.950deg 波高分析器 ; (L−U:100 −300) 計測時間 ;20s 図4は塩素の検量線を示す線図である。横軸は、塩素濃
度 (μg) で、縦軸は、ClKα線強度/CrKα線強度の
比で、塩素濃度50μgの時のX線強度比で基準化した。
直線性の良好な検量線が得られる。この時の実験式は次
の通りである。
In this way, a calibration curve was prepared by the method of least squares from the relationship between the ClKα ray intensity and the Cl concentration under the following measurement conditions. Measurement conditions Analytical element; Cl spectroscopic crystal; PET [for Cr; LiF] X-ray tube target; Cr X-ray tube voltage; 50 kV X-ray tube current; 50 mA Measurement angle; ClKα line, 2θ = 65.440 deg, CrKα
Line, 2θ = 62.950 deg wave height analyzer; (L−U: 100−300) measurement time; 20 s FIG. 4 is a diagram showing a calibration curve of chlorine. The abscissa is the chlorine concentration (μg), the ordinate is the ratio of ClKα ray intensity / CrKα ray intensity, and is normalized by the X-ray intensity ratio when the chlorine concentration is 50 μg.
A calibration curve with good linearity can be obtained. The empirical formula at this time is as follows.

【0021】 X (Cl) =52.29 χ−3.07 相関係数γ=0.9998 ここでχはX線強度比である。塩素濃度とX線強度比と
の相関係数は0.9998で良好であることが分かる。塩素濃
度は1〜100 μgの範囲を示した。次に本発明の試料調
製法で作成した塩素濃度50μgの分析試料を用い、前記
の検量線を適用して繰り返し分析精度の検討を行った結
果を表1に示す。
X (Cl) = 52.29 χ-3.07 Correlation coefficient γ = 0.9998 where χ is the X-ray intensity ratio. It can be seen that the correlation coefficient between the chlorine concentration and the X-ray intensity ratio is 0.9998, which is good. The chlorine concentration was in the range of 1 to 100 μg. Next, Table 1 shows the results of repeated examination of analysis accuracy using the analytical curve prepared above by using the analytical sample having a chlorine concentration of 50 μg prepared by the sample preparation method of the present invention.

【0022】[0022]

【表1】 繰り返し分析精度は、変動係数で1%以下で良好である
ことが分かる。
[Table 1] It can be seen that the repeat analysis accuracy is good when the coefficient of variation is 1% or less.

【0023】次に実試料の分析に適用し、前記の検量線
を用いて接着剤の塩素の分析を行った。結果が表2に示
される。
Next, it was applied to the analysis of an actual sample, and the chlorine of the adhesive was analyzed using the above calibration curve. The results are shown in Table 2.

【0024】[0024]

【表2】 接着剤中の塩素量の評価が定量下限 (10μg/g) で可能
である。
[Table 2] The chlorine amount in the adhesive can be evaluated at the lower limit of quantification (10 μg / g).

【0025】本発明の方法によれば、分析所要時間は試
料調製を含めても1試料1時間以内で完了するから迅速
な分析方法となっている。このようにして、この発明に
よれば接着剤中の微量不純物元素を迅速かつ高精度に測
定することが可能となる。
According to the method of the present invention, the time required for the analysis is completed within one hour for each sample including the sample preparation, so that it is a rapid analysis method. Thus, according to the present invention, it becomes possible to measure the trace impurity element in the adhesive quickly and with high accuracy.

【0026】[0026]

【発明の効果】この発明によれば、分析試料調製工程
と、定量工程を有し、分析試料調製工程は液状の紫外線
硬化型嫌気性接着剤を吸着材に保持し、次いで固化させ
るものであるので分析試料調製が迅速であり、また定量
工程は螢光X線分析法により固化した紫外線硬化型嫌気
性接着剤中の不純物元素を分析するものであり、ここに
螢光X線分析法は不純物元素の特性X線強度と分析試料
からの反射X線強度の比を測定するものであるので固化
した分析試料表面の凹凸や吸着材の厚さのもたらす影響
を補正することができ、分析精度を高めることができ
る。このようにして、接着剤中の微量不純物に対する迅
速かつ高精度な分析方法が得られる。
According to the present invention, there are an analytical sample preparing step and a quantitative measuring step, and the analytical sample preparing step holds a liquid ultraviolet-curable anaerobic adhesive on an adsorbent and then solidifies it. Therefore, the analytical sample preparation is quick, and the quantitative step is to analyze the impurity elements in the ultraviolet curable anaerobic adhesive solidified by the fluorescent X-ray analysis method. Since the ratio of the characteristic X-ray intensity of the element and the reflected X-ray intensity from the analytical sample is measured, it is possible to correct the influence of the unevenness of the solidified analytical sample surface and the thickness of the adsorbent, and to improve the analytical accuracy. Can be increased. In this way, a rapid and highly accurate analysis method for trace impurities in the adhesive can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る分析試料の調製手順を
示す流れ図
FIG. 1 is a flow chart showing a procedure for preparing an analytical sample according to an embodiment of the present invention.

【図2】この発明の実施例に係る螢光X線分析装置を示
す配置図
FIG. 2 is a layout view showing a fluorescent X-ray analysis apparatus according to an embodiment of the present invention.

【図3】ClKα線の螢光X線スペクトルを示す線図FIG. 3 is a diagram showing a fluorescent X-ray spectrum of ClKα rays.

【図4】この発明の実施例に係る検量線を示す線図FIG. 4 is a diagram showing a calibration curve according to an example of the present invention.

【図5】従来の分析試料調製手順を示す流れ図FIG. 5 is a flowchart showing a conventional analytical sample preparation procedure.

【符号の説明】[Explanation of symbols]

1 X線発生装置 2 X線管 3 分析試料 4 分光結晶 5 検出器 6 データ処理部 7 分析試料室 1 X-ray generator 2 X-ray tube 3 Analytical sample 4 Spectroscopic crystal 5 Detector 6 Data processing unit 7 Analytical sample room

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】分析試料調製工程と、定量工程を有し、 分析試料調製工程は液状の紫外線硬化型嫌気性接着剤を
吸着材に保持し、次いで固化させるもので、 定量工程は螢光X線分析法により固化した紫外線硬化型
嫌気性接着剤中の不純物元素を分析するものであり、こ
こに螢光X線分析法は不純物元素の特性X線強度と分析
試料からの反射X線強度の比を測定するものであること
を特徴とする接着剤の分析方法。
1. An analytical sample preparing step and a quantifying step, wherein the analytical sample preparing step holds a liquid ultraviolet-curable anaerobic adhesive on an adsorbent and then solidifies the quantifying step. The impurity element in the ultraviolet-curable anaerobic adhesive solidified by the X-ray analysis method is analyzed. Here, the fluorescent X-ray analysis method is used to measure the characteristic X-ray intensity of the impurity element and the reflected X-ray intensity of the analysis sample. A method for analyzing an adhesive, which comprises measuring a ratio.
【請求項2】請求項1記載の分析方法において、紫外線
硬化型嫌気性接着剤は不飽和ポリエステルを含むアクリ
ル系の接着剤であることを特徴とする接着剤の分析方
法。
2. The analysis method according to claim 1, wherein the ultraviolet curable anaerobic adhesive is an acrylic adhesive containing unsaturated polyester.
【請求項3】請求項1記載の分析方法において、吸着材
は濾紙であることを特徴とする接着剤の分析方法。
3. The analysis method according to claim 1, wherein the adsorbent is a filter paper.
【請求項4】請求項1記載の分析方法において、接着剤
の固化は真空雰囲気中でX線を接着剤に照射するもので
あることを特徴とする接着剤の分析方法。
4. The analysis method according to claim 1, wherein the solidification of the adhesive is performed by irradiating the adhesive with X-rays in a vacuum atmosphere.
【請求項5】請求項1記載の分析方法において、接着剤
中の不純物元素は塩素であることを特徴とする接着剤の
分析方法。
5. The analytical method according to claim 1, wherein the impurity element in the adhesive is chlorine.
JP18015692A 1992-07-08 1992-07-08 Analysis of adhesive Pending JPH0627003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18015692A JPH0627003A (en) 1992-07-08 1992-07-08 Analysis of adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18015692A JPH0627003A (en) 1992-07-08 1992-07-08 Analysis of adhesive

Publications (1)

Publication Number Publication Date
JPH0627003A true JPH0627003A (en) 1994-02-04

Family

ID=16078380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18015692A Pending JPH0627003A (en) 1992-07-08 1992-07-08 Analysis of adhesive

Country Status (1)

Country Link
JP (1) JPH0627003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100704522B1 (en) * 2002-02-25 2007-04-10 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Non-destructive method for testing curing level of cured product of curable adhesive composition and manufacturing method of electronic devices
CN105866156A (en) * 2016-04-22 2016-08-17 苏州三值精密仪器有限公司 Method for quickly determining trace elements in salt with X-ray fluorescence spectrometry
CN110412017A (en) * 2019-08-26 2019-11-05 青岛大学 A kind of spectrum detection device and its method of haze elemental composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100704522B1 (en) * 2002-02-25 2007-04-10 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Non-destructive method for testing curing level of cured product of curable adhesive composition and manufacturing method of electronic devices
CN105866156A (en) * 2016-04-22 2016-08-17 苏州三值精密仪器有限公司 Method for quickly determining trace elements in salt with X-ray fluorescence spectrometry
CN110412017A (en) * 2019-08-26 2019-11-05 青岛大学 A kind of spectrum detection device and its method of haze elemental composition

Similar Documents

Publication Publication Date Title
Ho et al. Feasibility of collection and analysis of airborne carbonyls by on-sorbent derivatization and thermal desorption
JP4921993B2 (en) Chromatography system automatic installation qualification method
Ayyalasomayajula et al. Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy
Walgraeve et al. Uptake rate behavior of tube-type passive samplers for volatile organic compounds under controlled atmospheric conditions
Schumann et al. Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS)
Varma Revival: CRC Handbook of Furnace Atomic Absorption Spectroscopy (1990)
Schäffer et al. A graphite furnace electrothermal vaporization system for inductively coupled plasma atomic emission spectrometry
Gomez et al. Linseed oil as a model system for surface enhanced Raman spectroscopy detection of degradation products in artworks
Lagesson et al. Direct determination of lead and cadmium in blood and urine by flameless atomic absorption spectrophotometry.
Milano et al. Evaluation of a vidicon scanning spectrometer for ultraviolet molecular absorption spectrometry
Zheng et al. Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy
Glaser et al. Microwave-assisted combustion to produce benzene polycarboxylic acids as molecular markers for biochar identification and quantification
Stephens et al. Impact of volatile organic compounds (VOCs) from acrylic double-sided pressure-sensitive adhesives (PSAs) on metals found in cultural heritage environments
US20080310588A1 (en) XRF analyzer
JPH0627003A (en) Analysis of adhesive
JPH0643961B2 (en) Determination of uranium traces in solution
O'Connor et al. Analysis of the heavy element content of atmospheric particulate fractions using X‐ray fluorescence spectrometry
Muhammad et al. Novel fluorescent membrane for metronidazole sensing prepared by covalent immobilization of a pyrenebutyric acid derivative
CN103185686B (en) Particulate matter component assay method in transformer oil
CN101059434A (en) Method for determining total carbon of alumyte
JP2007248431A (en) Method for measuring hardening degree of hardening resin
CN113092429A (en) Cefalexin antibiotic detection method based on fluorescent metal organic framework material
Nakano et al. Preparation of standard materials of aerosol particles for X‐ray fluorescence analysis using a small chamber sampling unit
JP2002040006A (en) Measuring method of volatile organic compound from building material
CN116930008B (en) In-situ mass spectrum identification method for detecting organic matters on black carbon surface and application of in-situ mass spectrum identification method