JPH06268053A - Susceptor for semiconductor wafer - Google Patents

Susceptor for semiconductor wafer

Info

Publication number
JPH06268053A
JPH06268053A JP5584393A JP5584393A JPH06268053A JP H06268053 A JPH06268053 A JP H06268053A JP 5584393 A JP5584393 A JP 5584393A JP 5584393 A JP5584393 A JP 5584393A JP H06268053 A JPH06268053 A JP H06268053A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
susceptor
temperature
base material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5584393A
Other languages
Japanese (ja)
Other versions
JP3091804B2 (en
Inventor
Ryusuke Ushigoe
隆介 牛越
和宏 ▲昇▼
Kazuhiro Nobori
Kouichi Umemoto
鍠一 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5584393A priority Critical patent/JP3091804B2/en
Publication of JPH06268053A publication Critical patent/JPH06268053A/en
Application granted granted Critical
Publication of JP3091804B2 publication Critical patent/JP3091804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To control the temperature of a semiconductor wafer when the temperature fluctuates due to the existence of entrance and exit of heat on the semiconductor wafer, in a susceptor for a semiconductor wafer. CONSTITUTION:The base material 2 of a susceptor 1 consists of dense ceramics. A thermo-electric conversion element is buried in the base material 2. It is to be desired that this thermo-electric conversion element should consist of a p-type semiconductor element 3 and an n-type semiconductor element 4. The temperature of the semiconductor wafer on an installation face 2a is adjusted by letting a current flow to the thermo-electric conversion element and making it absorb or emit heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハーを保持
するためのサセプターに関するものである。
FIELD OF THE INVENTION The present invention relates to a susceptor for holding a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体製造装置では、PVD,CVD,
拡散,アニール等の工程を実施する。この際には、半導
体ウエハーをサセプター上に設置し、加熱する枚葉式処
理法が工業的に行われている。このウエハーを加熱する
際には、サセプター上に半導体ウエハーを載せて固定し
たり、静電チャックに半導体ウエハーを吸着して固定し
たりして、赤外線ランプで間接加熱する。また、本発明
者は、円盤状セラミックス基体中に高融点金属製の抵抗
発熱体を埋設し、この基体の表面に半導体ウエハーを固
定し、抵抗発熱体に通電して半導体ウエハーを加熱する
技術を、公開している。
2. Description of the Related Art In semiconductor manufacturing equipment, PVD, CVD,
Steps such as diffusion and annealing are performed. At this time, a single wafer processing method in which a semiconductor wafer is placed on a susceptor and heated is industrially performed. When heating this wafer, the semiconductor wafer is placed and fixed on the susceptor, or the semiconductor wafer is attracted and fixed to an electrostatic chuck, and indirectly heated by an infrared lamp. The present inventor has also proposed a technique of embedding a resistance heating element made of a refractory metal in a disk-shaped ceramic substrate, fixing a semiconductor wafer to the surface of this substrate, and energizing the resistance heating element to heat the semiconductor wafer. , Is open to the public.

【0003】[0003]

【発明が解決しようとする課題】ところが、近年、半導
体製造用装置においては、プラズマによる反応を用いる
ことが多くなってきており、RIE,PECVD,EC
R等の実用化が盛んである。しかし、こうした装置で
は、半導体ウエハーの温度制御が非常に困難である。
However, in recent years, in a semiconductor manufacturing apparatus, a reaction by plasma is often used, and RIE, PECVD, EC are used.
Practical use of R etc. is active. However, in such an apparatus, it is very difficult to control the temperature of the semiconductor wafer.

【0004】例えばECR等では、プロセス圧力が10-4
torrであり、一般のスパッタに比べ高真空化が進んでい
るうえ、プラズマ出力も大きくなってきている。従っ
て、プラズマイオンのボンバードメントによって半導体
ウエハーに急激に熱が流入する。この熱量は約1W/cm2
程度であり、温度に換算すると、1分間に 100℃ほど温
度が上昇することになる。このため、半導体ウエハーの
温度制御ができなくなっていた。
For example, in ECR, the process pressure is 10 -4.
It is a torr, and the vacuum level is higher than that of general sputtering, and the plasma output is also increasing. Therefore, heat rapidly flows into the semiconductor wafer due to the bombardment of plasma ions. This heat is about 1W / cm 2
When converted to temperature, the temperature rises by 100 ° C per minute. Therefore, the temperature of the semiconductor wafer cannot be controlled.

【0005】一つの方法としては、サセプター内に冷却
液を循環させ、半導体ウエハーを急速に冷却することが
考えられる。しかし、これでは冷却液の供給、排出系が
必要であるし、かつサセプターを同時に高温まで加熱す
ることができない。
One method is to circulate a cooling liquid in the susceptor to rapidly cool the semiconductor wafer. However, this requires a system for supplying and discharging a cooling liquid, and cannot heat the susceptor to a high temperature at the same time.

【0006】本発明者は、サセプターの表面に凹部を設
け、この上に半導体ウエハーを設置し、半導体ウエハー
の温度が急上昇すると、上記の凹部に冷却ガスを流すこ
とも検討した。しかし、冷却ガスを流すと、装置内の真
空度が下がるので、プラズマ反応が阻害される。また半
導体ウエハーに供給される熱量が多くなると、冷却能力
が不充分であり、温度の急上昇を止めることができな
い。
The inventor of the present invention also considered that a recess is provided on the surface of the susceptor, a semiconductor wafer is placed on the recess, and when the temperature of the semiconductor wafer rises rapidly, a cooling gas is caused to flow into the recess. However, when the cooling gas is flown, the degree of vacuum in the apparatus is lowered, so that the plasma reaction is hindered. Further, when the amount of heat supplied to the semiconductor wafer is large, the cooling capacity is insufficient, and it is impossible to stop the rapid rise in temperature.

【0007】本発明の課題は、半導体ウエハー用のサセ
プターにおいて、半導体ウエハー上で熱量の出入りがあ
り、温度が変動するときに、半導体ウエハーの温度を制
御できるようにすることである。
An object of the present invention is to make it possible to control the temperature of a semiconductor wafer in a susceptor for a semiconductor wafer when the amount of heat goes in and out of the semiconductor wafer and the temperature fluctuates.

【0008】[0008]

【課題を解決するための手段】本発明は、緻密質セラミ
ックスからなる基材内に熱電変換素子が埋設されてい
る、半導体ウエハー用サセプターに係るものである。
SUMMARY OF THE INVENTION The present invention relates to a semiconductor wafer susceptor in which a thermoelectric conversion element is embedded in a base material made of dense ceramics.

【0009】[0009]

【作用】本発明のサセプターによれば、緻密質セラミッ
クスからなる基材内に熱電変換素子が埋設されているの
で、半導体ウエハー上で熱量の出入りがあるときに、熱
電変換素子を動作させることによって、半導体ウエハー
の温度を制御することができる。この熱電変換素子と
は、金属や半導体中の温度が一様でなくなると、キャリ
アの移動がおこると、ゼーベック効果、ペルチェ効果、
トムソン効果、エッチングハウゼン効果、ネルンスト効
果などの電気効果が生じる機能を有しているものであ
る。
According to the susceptor of the present invention, since the thermoelectric conversion element is embedded in the base material made of dense ceramics, the thermoelectric conversion element can be operated when heat quantity goes in and out on the semiconductor wafer. , The temperature of the semiconductor wafer can be controlled. This thermoelectric conversion element, Seebeck effect, Peltier effect, when carrier movement occurs when the temperature in the metal or semiconductor becomes uneven
It has a function of producing electrical effects such as the Thomson effect, the Etchhausen effect, and the Nernst effect.

【0010】しかも、熱電変換素子は、緻密質セラミッ
クスからなる基材内に埋設されているので、半導体製造
用のプラズマガス、腐食性ガスから保護される。従っ
て、長期間に亘って、半導体ウエハーの温度を制御する
機能が、損なわれない。しかも、高温下や高真空下で
も、問題なく使用できる。
Moreover, since the thermoelectric conversion element is embedded in the base material made of dense ceramics, it is protected from plasma gas and corrosive gas for semiconductor production. Therefore, the function of controlling the temperature of the semiconductor wafer is not impaired for a long period of time. Moreover, it can be used without problems even under high temperature or high vacuum.

【0011】[0011]

【実施例】図1は、本発明の実施例に係るサセプター1
を模式的に示す断面図である。サセプター1の基材2
は、緻密質セラミックスからなる。基材2の平面的形状
は、円形の他、楕円形、正方形等であってよい。
FIG. 1 is a susceptor 1 according to an embodiment of the present invention.
It is a sectional view showing typically. Base material 2 of susceptor 1
Is made of dense ceramics. The planar shape of the base material 2 may be an elliptical shape, a square shape, etc. in addition to a circular shape.

【0012】基材2の内部に、P型半導体素子3とN型
半導体素子4とからなる熱電変換素子が埋設されてい
る。P型半導体素子3は、平板状部3aと、平板状部3
aから突出した棒状端子3bとからなっている。N型半
導体素子4は、平板状部4aと、平板状部4aから突出
した棒状端子4bとからなっている。平板状部4aの貫
通孔4cを、棒状端子3bが通っている。棒状端子3
b,4bの末端が、それぞれサセプターの背面に露出し
ている。
A thermoelectric conversion element consisting of a P-type semiconductor element 3 and an N-type semiconductor element 4 is embedded inside the base material 2. The P-type semiconductor element 3 includes a flat plate portion 3a and a flat plate portion 3a.
and a bar-shaped terminal 3b protruding from a. The N-type semiconductor element 4 includes a flat plate-shaped portion 4a and a rod-shaped terminal 4b protruding from the flat plate-shaped portion 4a. The rod-shaped terminal 3b passes through the through hole 4c of the flat plate portion 4a. Rod terminal 3
The ends of b and 4b are exposed on the back surface of the susceptor.

【0013】棒状端子3bがケーブル5Aの一端に接続
され、ケーブル5Aの他端が電源6の極6aに接続され
ている。棒状端子4bがケーブル5Bの一端に接続さ
れ、ケーブル5Bの他端が電源6の極6bに接続されて
いる。ケーブル5A,5Bは、棒状端子4a,4bの各
々と熱電変換効果の少ない材料で構成されており、電源
6内には放熱部がある。
The rod-shaped terminal 3b is connected to one end of the cable 5A, and the other end of the cable 5A is connected to the pole 6a of the power source 6. The rod-shaped terminal 4b is connected to one end of the cable 5B, and the other end of the cable 5B is connected to the pole 6b of the power supply 6. The cables 5A and 5B are made of a material having a small thermoelectric conversion effect with each of the rod-shaped terminals 4a and 4b, and the power source 6 has a heat radiating portion.

【0014】極6bを正極とし、極6aを負極とし、熱
電変換素子に電圧を加えると、矢印A方向に電流が流
れ、N型半導体素子4とP型半導体素子3との間で吸熱
する。この結果、設置面2a上に設置された半導体ウエ
ハーを効果的に冷却し、その温度を制御することができ
る。
When the electrode 6b is used as the positive electrode and the electrode 6a is used as the negative electrode and a voltage is applied to the thermoelectric conversion element, a current flows in the direction of arrow A, and heat is absorbed between the N-type semiconductor element 4 and the P-type semiconductor element 3. As a result, it is possible to effectively cool the semiconductor wafer installed on the installation surface 2a and control the temperature thereof.

【0015】極6bを負極とし、極6aを正極とし、熱
電変換素子に電圧を加えると、矢印B方向に電流が流
れ、N型半導体素子4とP型半導体素子3との間で発熱
する。この結果、設置面2a上に設置された半導体ウエ
ハーを効果的に加熱し、その温度を制御することができ
る。
When the electrode 6b is used as the negative electrode and the electrode 6a is used as the positive electrode, and a voltage is applied to the thermoelectric conversion element, a current flows in the direction of arrow B and heat is generated between the N-type semiconductor element 4 and the P-type semiconductor element 3. As a result, it is possible to effectively heat the semiconductor wafer installed on the installation surface 2a and control the temperature thereof.

【0016】図2に示す実施例においては、ケーブル5
Aと5Bとの間に、リレースイッチ8,負荷7が配線さ
れている。設置面2a上に設置された半導体ウエハーに
対し、プラズマイオンのボンバードメントによって熱量
が与えられると、素子3,4が熱電変換素子として働
く。このときリレースイッチ8をオンにすると、矢印A
のように電流が流れる。この結果、熱量が電力として消
費され、半導体ウエハーが冷却される。
In the embodiment shown in FIG. 2, the cable 5
The relay switch 8 and the load 7 are wired between A and 5B. When heat is applied to the semiconductor wafer placed on the placement surface 2a by bombardment of plasma ions, the elements 3 and 4 function as thermoelectric conversion elements. At this time, when the relay switch 8 is turned on, the arrow A
The current flows like. As a result, the amount of heat is consumed as electric power and the semiconductor wafer is cooled.

【0017】図1の実施例においては、特に、印加電圧
を制御することにより、半導体ウエハーの冷却及び加熱
を自由に制御できるという利点がある。一方、図2の例
では、自己起電力を利用し、負荷7を流れる電流を測定
すれば、起電力の大きさから半導体ウエハーの温度を検
出することができるし、基材2が加熱中であれば冷却す
ることもできる。
The embodiment shown in FIG. 1 has an advantage that the cooling and heating of the semiconductor wafer can be freely controlled by controlling the applied voltage. On the other hand, in the example of FIG. 2, the temperature of the semiconductor wafer can be detected from the magnitude of the electromotive force by using the self-electromotive force and measuring the current flowing through the load 7. It can also be cooled if present.

【0018】基材2を構成する緻密質セラミックスとし
ては、窒化珪素、窒化アルミニウム、サイアロン、炭化
珪素、アルミナ、チタニア等が好ましい。また、熱電冷
却素子の材料は、Bi2Te3−Sb2Te3系化合物, PbTe系化合
物, TAGS, Si0.8Ge0.2, FeSi 2 系化合物,SiC 系化合物
などを例示できる。特に、FeSi2, SiCは、セラミック製
造技術によって、複雑な形状のp−n接合素子を簡単に
作ることができるので、好ましい。
As the dense ceramics constituting the base material 2,
For silicon nitride, aluminum nitride, sialon, carbonization
Silicon, alumina, titania and the like are preferable. Also, thermoelectric cooling
The material of the device is Bi2Te3−Sb2Te3Compounds, PbTe compounds
Thing, TAGS, Si0.8Ge0.2, FeSi 2Compounds, SiC compounds
Can be exemplified. Especially FeSi2, SiC is ceramic
Manufacturing technology makes it easy to create pn junction devices with complex shapes
It is preferable because it can be made.

【0019】サセプター1は、例えば、次の方法によっ
て製造することができる。まず、図3に示すように、焼
結後のセラミックス基材9,10,P型半導体素子3,N
型半導体素子4を準備する。基材9は、P型半導体素子
3の表面を覆うためのものであり、平板状である。基材
10には、半導体素子3及び4を収容可能な凹部10aが設
けられており、かつ貫通孔4cに嵌合可能な突起10bが
設けられている。
The susceptor 1 can be manufactured, for example, by the following method. First, as shown in FIG. 3, the ceramic base material 9, 10 after sintering, the P-type semiconductor element 3, N
The type semiconductor element 4 is prepared. The base material 9 is for covering the surface of the P-type semiconductor element 3 and has a flat plate shape. Base material
A concave portion 10a that can accommodate the semiconductor elements 3 and 4 is provided in 10 and a projection 10b that can be fitted into the through hole 4c is provided.

【0020】そして、まずN型半導体素子4を凹部10a
に密着させ、棒状端子4bを貫通孔10dに貫通させ、突
起10bを貫通孔4cに嵌合させる。次いで、棒状端子3
bを貫通孔10cに挿通させ、平板状部3aを4aに密着
させる。この上から基材9を載せ、接合する。接合方法
は、ろう接合、ガラス接合が用いられる。半導体素子
は、セラミック系の焼結体の他、メタル製のもの、プリ
ントタイプの薄膜等が用いられる。
First, the N-type semiconductor element 4 is formed in the recess 10a.
Then, the rod-shaped terminal 4b is passed through the through hole 10d, and the protrusion 10b is fitted into the through hole 4c. Then, the rod-shaped terminal 3
b is inserted into the through hole 10c, and the flat plate portion 3a is brought into close contact with 4a. The base material 9 is placed on this and bonded. As a joining method, brazing or glass joining is used. As the semiconductor element, a ceramic-based sintered body, a metal-made one, a print-type thin film, or the like is used.

【0021】本発明者は、上記した製法でサセプター1
を試作し、作動実験を行った。即ち、P型半導体素子3
を、マンガンをドープしたFeSi2 で形成し、N型半導体
素子4を、コバルトをドープしたFeSi2 で形成した。基
材9,10は、いずれも窒化珪素で形成した。窒化珪素中
には、焼結助剤として、Y2O3を添加した。30重量%のY2
O3,30重量%のAl2O3, 30 重量%のSiO2及び10重量%の
Si3N4 の混合粉末を用い、1500℃で加熱してオキシナイ
トライドガラスを形成することによって、基材9と10と
を接合した。
The present inventor has made the susceptor 1 by the above-described manufacturing method.
Was prototyped and an operation test was conducted. That is, the P-type semiconductor element 3
Was formed of FeSi 2 doped with manganese, and the N-type semiconductor element 4 was formed of FeSi 2 doped with cobalt. Both the base materials 9 and 10 were made of silicon nitride. Y 2 O 3 was added into silicon nitride as a sintering aid. 30 wt% Y 2
O 3 , 30 wt% Al 2 O 3 , 30 wt% SiO 2 and 10 wt%
The base materials 9 and 10 were joined by using a mixed powder of Si 3 N 4 and heating at 1500 ° C. to form an oxynitride glass.

【0022】基材9,10及びP,N半導体素子3,4
は、予め緻密な焼結体を使用し、一体化しているが、セ
ラミックスの成形体を一体焼結する事も可能である。更
に、基材9,10,PN半導体素子3,4は、スパッタ、
CVD法によって形成する事も可能である。
Substrates 9, 10 and P, N semiconductor elements 3, 4
In the above, a dense sintered body is used in advance and integrated, but it is also possible to integrally sinter a ceramic molded body. Further, the base materials 9 and 10 and the PN semiconductor elements 3 and 4 are sputtered,
It can also be formed by the CVD method.

【0023】なお、基材9,10、及びPN半導体素子
3,4は、接合界面にスキ間が無く、吸熱、加熱が速や
かに基材9,10とPN半導体素子3,4の間で行なわれ
るよう、固体接触している状況が好ましく、一体化が重
要となる。このため、各材料の熱膨張率はできるだけ近
い方が良い。AlN やSi3N4, SiCを基材9,10に使用した
時には、半導体素子はSiC,SiGe等が好ましい。
The base materials 9 and 10 and the PN semiconductor elements 3 and 4 have no gaps at the bonding interface, and heat absorption and heating are performed quickly between the base materials 9 and 10 and the PN semiconductor elements 3 and 4. As described above, it is preferable to be in solid contact, and integration is important. Therefore, the thermal expansion coefficients of the respective materials should be as close as possible. When AlN, Si 3 N 4 or SiC is used as the base material 9 or 10, the semiconductor element is preferably SiC or SiGe.

【0024】そして、図1に示すように配線すると、半
導体素子3,4の接合界面と電源6の温度差ΔTによっ
て、ゼーベック電界Eが生じる。E=α・ΔT。αはゼ
ーベック係数である。効率良い熱電変換のためには、熱
電物質の性能指数Z=α2 /K・Pの大きいものが必要
である。K,Pは各々、熱伝導率、電気抵抗率を示して
いる。
When wiring is performed as shown in FIG. 1, a Seebeck electric field E is generated due to the temperature difference ΔT between the junction interface between the semiconductor elements 3 and 4 and the power source 6. E = α · ΔT. α is the Seebeck coefficient. For efficient thermoelectric conversion, a thermoelectric substance having a large figure of merit Z = α 2 / K · P is required. K and P indicate the thermal conductivity and the electrical resistivity, respectively.

【0025】極6bを正極とし、極6aを負極とし、10
0 Vの直流電圧を加えた。この結果、矢印A方向に5A
の電流が流れ、設置面2aの温度は−15℃まで低下し
た。なお、室温は25℃であった。
The pole 6b serves as a positive electrode and the pole 6a serves as a negative electrode.
A DC voltage of 0 V was applied. As a result, 5A in the direction of arrow A
Current flowed, and the temperature of the installation surface 2a dropped to -15 ° C. The room temperature was 25 ° C.

【0026】また、図1に示すように配線し、極6bを
負極とし、極6aを正極とし、100Vの直流電圧を加え
た。この結果、矢印B方向に5Aの電流が流れ、設置面
2aの温度は65℃まで上昇した。室温は25℃であった。
Wiring was performed as shown in FIG. 1, the pole 6b was used as the negative electrode, the pole 6a was used as the positive electrode, and a DC voltage of 100 V was applied. As a result, a current of 5 A flows in the direction of arrow B, and the temperature of the installation surface 2a rises to 65 ° C. Room temperature was 25 ° C.

【0027】次に、図2に示すように配線した。設置面
2aを外部より赤外線ランプで加熱し、温度を 800℃に
した。回路の発熱部の温度は室温とした。リレースイッ
チ8をオンにし、ケーブル全体を閉回路にすると、5A
の電流が流れた。この電流の値を検出することにより、
加熱温度を検出することができる。更に、ケーブルを閉
回路にした後、1分後には、設置面2aの温度が 690℃
まで低下した。
Next, wiring was performed as shown in FIG. The installation surface 2a was heated from outside by an infrared lamp to raise the temperature to 800 ° C. The temperature of the heat generating part of the circuit was room temperature. If you turn on the relay switch 8 and close the entire cable, 5A
Current flowed. By detecting the value of this current,
The heating temperature can be detected. Furthermore, 1 minute after the cable is closed circuit, the temperature of the installation surface 2a is 690 ° C.
Fell to.

【0028】図4の実施例においては、サセプター21の
内部に、更に抵抗発熱体11を埋設した。ただし、図1,
図2に示したものと同じ部材には同じ符号を付け、その
説明は省略する。基材2の内部には、高融点金属からな
る抵抗発熱体11が埋設されており、抵抗発熱体11の端部
に、棒状端子12が接続されている。各棒状端子12にリー
ド線14が接続され、リード線14が交流電源13に接続され
ている。
In the embodiment shown in FIG. 4, a resistance heating element 11 is further embedded inside the susceptor 21. However, in FIG.
The same members as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. A resistance heating element 11 made of a high melting point metal is embedded inside the base material 2, and a rod-shaped terminal 12 is connected to an end of the resistance heating element 11. A lead wire 14 is connected to each rod-shaped terminal 12, and the lead wire 14 is connected to an AC power supply 13.

【0029】そして、設置面2a上に、直接又は他のサ
セプターを介して、半導体ウエハーを設置し、抵抗発熱
体11に通電して発熱させる。半導体ウエハーの温度に変
動があったときには、熱電変換素子によって温度の調節
を行う。
Then, a semiconductor wafer is placed on the placement surface 2a directly or via another susceptor, and the resistance heating element 11 is energized to generate heat. When the temperature of the semiconductor wafer changes, the temperature is adjusted by the thermoelectric conversion element.

【0030】図5の実施例においては、基体2の内部に
抵抗発熱体11を埋設するのと共に、ケーブル5A,5B
にリレースイッチ8、負荷7を接続した。この部分の動
作は、図2に示したものと同じである。
In the embodiment shown in FIG. 5, the resistance heating element 11 is embedded in the base body 2 and the cables 5A and 5B are provided.
The relay switch 8 and the load 7 were connected to. The operation of this part is the same as that shown in FIG.

【0031】半導体素子は、平面状でなくとも、PNの
接合面がサセプター内に存在すればよい。冷却,加熱の
必要な所にのみ素子を設置したり、PN接合がくし歯状
に入りくんでいる状況でもよい。
The semiconductor element need not have a plane shape as long as the PN junction surface is present in the susceptor. The element may be installed only where cooling and heating are required, or the PN junction may be in a comb-like shape.

【0032】[0032]

【発明の効果】以上述べたように、本発明のサセプター
によれば、緻密質セラミックスからなる基材内に熱電変
換素子が埋設されているので、半導体ウエハー上で熱量
の出入りがあるときに、熱電変換素子を動作させること
によって、半導体ウエハーの温度を制御することができ
る。
As described above, according to the susceptor of the present invention, since the thermoelectric conversion element is embedded in the base material made of dense ceramics, when a heat quantity goes in and out of the semiconductor wafer, The temperature of the semiconductor wafer can be controlled by operating the thermoelectric conversion element.

【0033】しかも、熱電変換素子は、緻密質セラミッ
クスからなる基材内に埋設されているので、半導体製造
用のプラズマガス、腐食性ガスから保護される。従っ
て、長期間に亘って、半導体ウエハーの温度を制御する
機能が、損なわれない。しかも、高温下や高真空下で
も、問題なく使用できる。
Moreover, since the thermoelectric conversion element is embedded in the base material made of dense ceramics, it is protected from plasma gas and corrosive gas for semiconductor production. Therefore, the function of controlling the temperature of the semiconductor wafer is not impaired for a long period of time. Moreover, it can be used without problems even under high temperature or high vacuum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のサセプターを模式的に示す断面図であ
る。
FIG. 1 is a sectional view schematically showing a susceptor of the present invention.

【図2】本発明のサセプターを模式的に示す断面図であ
る。
FIG. 2 is a sectional view schematically showing a susceptor of the present invention.

【図3】サセプター1の製造工程を説明するための断面
図である。
FIG. 3 is a cross-sectional view for explaining a manufacturing process of the susceptor 1.

【図4】本発明のサセプターを模式的に示す断面図であ
る。
FIG. 4 is a sectional view schematically showing a susceptor of the present invention.

【図5】本発明のサセプターを模式的に示す断面図であ
る。
FIG. 5 is a sectional view schematically showing a susceptor of the present invention.

【符号の説明】[Explanation of symbols]

1,21 サセプター 2 基材 3 P型半導体素子 4 N型半導体素子 5A,5B ケーブル 6,13 電源 11 抵抗発熱体 A,B 電流が流れる方向 1,21 Susceptor 2 Base material 3 P-type semiconductor element 4 N-type semiconductor element 5A, 5B cable 6,13 Power supply 11 Resistance heating element A, B Current flow direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 緻密質セラミックスからなる基材内に熱
電変換素子が埋設されている、半導体ウエハー用サセプ
ター。
1. A susceptor for a semiconductor wafer, in which a thermoelectric conversion element is embedded in a base material made of dense ceramics.
JP5584393A 1993-03-16 1993-03-16 Susceptor for semiconductor wafer and method for measuring temperature of semiconductor wafer Expired - Lifetime JP3091804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5584393A JP3091804B2 (en) 1993-03-16 1993-03-16 Susceptor for semiconductor wafer and method for measuring temperature of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5584393A JP3091804B2 (en) 1993-03-16 1993-03-16 Susceptor for semiconductor wafer and method for measuring temperature of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH06268053A true JPH06268053A (en) 1994-09-22
JP3091804B2 JP3091804B2 (en) 2000-09-25

Family

ID=13010300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5584393A Expired - Lifetime JP3091804B2 (en) 1993-03-16 1993-03-16 Susceptor for semiconductor wafer and method for measuring temperature of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP3091804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978963B2 (en) 2003-09-24 2011-07-12 Tokyo Electron Limited Thermal processing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237109A (en) * 1988-07-25 1990-02-07 Yamaha Motor Co Ltd Air-fuel mixture supply device of gas engine
JPH02215135A (en) * 1989-02-15 1990-08-28 Fujitsu Ltd Vapor phase epitaxy device
JPH0362920A (en) * 1989-08-01 1991-03-19 Canon Inc Wafer mounting stage
JPH03261131A (en) * 1990-03-12 1991-11-21 Ngk Insulators Ltd Wafer heater for semiconductor manufacturing device
JPH0487178A (en) * 1990-07-27 1992-03-19 Ngk Insulators Ltd Heating device for semiconductor wafer
JPH04299832A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Semiconductor wafer heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237109A (en) * 1988-07-25 1990-02-07 Yamaha Motor Co Ltd Air-fuel mixture supply device of gas engine
JPH02215135A (en) * 1989-02-15 1990-08-28 Fujitsu Ltd Vapor phase epitaxy device
JPH0362920A (en) * 1989-08-01 1991-03-19 Canon Inc Wafer mounting stage
JPH03261131A (en) * 1990-03-12 1991-11-21 Ngk Insulators Ltd Wafer heater for semiconductor manufacturing device
JPH0487178A (en) * 1990-07-27 1992-03-19 Ngk Insulators Ltd Heating device for semiconductor wafer
JPH04299832A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Semiconductor wafer heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978963B2 (en) 2003-09-24 2011-07-12 Tokyo Electron Limited Thermal processing apparatus

Also Published As

Publication number Publication date
JP3091804B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
Bottner et al. New thermoelectric components using microsystem technologies
US5155652A (en) Temperature cycling ceramic electrostatic chuck
US6679064B2 (en) Wafer transfer system with temperature control apparatus
Kraemer et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts
JP5078908B2 (en) Thermoelectric tunnel equipment
Shakouri et al. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators
EP1187187B1 (en) Plasma processing apparatus
TWI815810B (en) Showerhead assembly, processing chamber and method for temperature controlling
EP1355346B1 (en) Apparatus for heat-treatment of semiconductor films under low temperature
WO1992020093A1 (en) Ceramic electrostatic chuck
US6034408A (en) Solid state thermal switch
US8166769B2 (en) Self-cooled vertical electronic component
KR101742836B1 (en) Thermoelectric device using semiconductor technology
US20170288113A1 (en) Metallic Junction Thermoelectric Generator
KR20100071601A (en) Thermoelectric module comprising spherical thermoelectric elements and process for preparing the same
JPH06268053A (en) Susceptor for semiconductor wafer
Rushing et al. Micro thermoelectric coolers for integrated applications [and semiconductor laser packaging]
Ren et al. Experimental demonstration of holey silicon-based thermoelectric cooling
JPH06291175A (en) Electrostatic chuck
CN112840470B (en) Method for manufacturing block-shaped thermoelectric element
JPH07273175A (en) Holding member
JP7313660B2 (en) Thermoelectric conversion module
JP5562086B2 (en) Heating member and heating apparatus using the same
JP2004111533A (en) Electrostatic attraction apparatus
KR20190009469A (en) P-type thermoelectric element composition, N-type thermoelectric element composition and thermoelectric element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13