JPH06267905A - Power impressing electrode defect detecting device and dry etching device - Google Patents

Power impressing electrode defect detecting device and dry etching device

Info

Publication number
JPH06267905A
JPH06267905A JP4884293A JP4884293A JPH06267905A JP H06267905 A JPH06267905 A JP H06267905A JP 4884293 A JP4884293 A JP 4884293A JP 4884293 A JP4884293 A JP 4884293A JP H06267905 A JPH06267905 A JP H06267905A
Authority
JP
Japan
Prior art keywords
electrode
power
insulator
potential difference
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4884293A
Other languages
Japanese (ja)
Inventor
Seiji Matsumoto
省二 松元
Takeisa Ogura
毅勇 小倉
Hideo Nikawa
秀夫 二河
Shinichi Domae
伸一 堂前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4884293A priority Critical patent/JPH06267905A/en
Publication of JPH06267905A publication Critical patent/JPH06267905A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a power impressing electrode defect detecting device, which is capable of detecting a defect in a power impressing electrode, and a dry etching device. CONSTITUTION:A power impressing electrode defect detecting device is provided with a power impressing electrode 1, which opposes to an earth electrode 4 and has its surface coated with an insulator 2, and a potential difference measuring device 12 for measuring a potential difference between a potential in this electrode 1 and a potential in the electrode 4. Thereby, in the case where high- frequency power is impressed between the electrodes 1 and 4, the electrode 1 shows OV if the insulator 2 on the electrode 1 is in a normal state and if a pinhole is formed by a dielectric breakdown, the electrode 1 shows an inter- electrode voltage. As a result, detection of a defect in the electrode 1 becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力印加電極の不良
検出装置およびドライエッチング装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a defect of a power application electrode and a dry etching device.

【0002】[0002]

【従来の技術】 近年、高精度な異方性エ
ッチングを実現するため、ウェハ温度を0℃以下に冷却
する低温技術が注目されている。この低温エッチング技
術においては、ウェハを効率よく冷却するため、温度制
御されている電力印加電極の表面と、この表面に載るウ
エハとの接触方式が重要である。この接触方式には、機
械的にウェハへ荷重をかける方法、および静電気による
方法がある。
2. Description of the Related Art In recent years, in order to realize highly accurate anisotropic etching, a low temperature technique for cooling a wafer temperature to 0 ° C. or less has been attracting attention. In this low-temperature etching technique, in order to cool the wafer efficiently, a method of contacting the surface of the power application electrode whose temperature is controlled with the wafer placed on this surface is important. This contact method includes a method of mechanically applying a load to the wafer and a method of using static electricity.

【0003】以下、図5を参照しながら、表面を絶縁物
でコーティングした電力印加電極を用い、静電気による
ウェハの冷却方式のドライエッチング装置の一例につい
て説明する。図5は、表面を絶縁物でコーティングした
電力印加電極を有するドライエッチング装置の構成を示
す断面図である。この図5において、1は電力印加電
極、2は絶縁物、3はウェハ、4は接地電極、5はチャ
ンバー壁、6はガス吹き出し口、7は排気口、8は整合
器、9はブロッキングコンデンサ、10はコイル、11
は高周波電源である。
An example of a dry etching apparatus of a method of cooling a wafer by static electricity using a power applying electrode whose surface is coated with an insulator will be described below with reference to FIG. FIG. 5 is a cross-sectional view showing the structure of a dry etching apparatus having a power applying electrode whose surface is coated with an insulating material. In FIG. 5, 1 is a power application electrode, 2 is an insulator, 3 is a wafer, 4 is a ground electrode, 5 is a chamber wall, 6 is a gas outlet, 7 is an exhaust port, 8 is a matching unit, and 9 is a blocking capacitor. 10 is a coil, 11
Is a high frequency power supply.

【0004】高周波電源11に接続された電力印加電極
1と接地電極4がチャンバー壁5内で相対向して設置さ
れる。またチャンバー壁5に反応性ガスを導入するガス
吹き出し口6と、チャンバー壁5内の圧力を一定に保つ
ための排気口7とを有する。エッチングすべきウェハ3
は高周波電源11により高周波電力が印加される電力印
加電極1の上に配置される。
A power application electrode 1 and a ground electrode 4 connected to a high frequency power source 11 are installed inside the chamber wall 5 so as to face each other. Further, the chamber wall 5 has a gas outlet 6 for introducing a reactive gas, and an exhaust port 7 for keeping the pressure in the chamber wall 5 constant. Wafer to be etched 3
Is disposed on the power application electrode 1 to which high frequency power is applied by the high frequency power supply 11.

【0005】このドライエッチング装置の動作について
説明する。すなわち、高周波電源11により電力印加電
極1と接地電極4間に放電を発生させる。この場合、電
子と正イオンの移動度の違いにより、電力印加電極1ー
接地電極4間に電位差が発生する。またウェハ3には電
子または正イオンが注入することによって、正または負
に帯電する。しかしながら、電力印加電極1は表面が絶
縁物2でコーティングされているため、電荷は注入され
ない。
The operation of this dry etching apparatus will be described. That is, the high frequency power supply 11 causes a discharge between the power applying electrode 1 and the ground electrode 4. In this case, a potential difference is generated between the power application electrode 1 and the ground electrode 4 due to the difference in mobility between electrons and positive ions. The wafer 3 is charged with positive or negative charges by injecting electrons or positive ions. However, since the surface of the power applying electrode 1 is coated with the insulator 2, no charge is injected.

【0006】このため、ウェハ3と電力印加電極1間に
電位差が生じ、ウェハ3は絶縁物2を介して電力印加電
極1に静電吸着する。ウェハ3が電力印加電極1に静電
吸着することによって、冷却している電力印加電極1と
ウェハ3との接触面積が増加し、熱伝導率が上がる。従
って、ウェハ3の冷却効果が高まる。
Therefore, a potential difference is generated between the wafer 3 and the power application electrode 1, and the wafer 3 is electrostatically adsorbed to the power application electrode 1 via the insulator 2. By electrostatically adsorbing the wafer 3 on the power applying electrode 1, the contact area between the cooling power applying electrode 1 and the wafer 3 increases, and the thermal conductivity increases. Therefore, the cooling effect of the wafer 3 is enhanced.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、何らかの原因で、電力印加電極1の表
面の絶縁物2の絶縁破壊が起こった場合、静電吸着力が
弱まり、ウェハ3と電力印加電極1との接触面積が減少
する。その結果、電力印加電極1の不良によってウェハ
温度はプラズマ照射により上昇し、エッチング時のマス
ク材料であるレジスト焼け、エッチングレート、および
下地とのエッチングレート選択比などの基本特性の変動
が生じるという問題を有していた。
However, in the above configuration, when the dielectric breakdown of the insulator 2 on the surface of the power application electrode 1 occurs for some reason, the electrostatic attraction force is weakened and the wafer 3 and The contact area with the power application electrode 1 is reduced. As a result, the wafer temperature rises due to plasma irradiation due to a defect in the power application electrode 1, and variations in basic characteristics such as resist burning as a mask material during etching, an etching rate, and an etching rate selection ratio with an underlying layer occur. Had.

【0008】したがって、この発明の目的は、上記問題
点に鑑み、電力印加電極の不良を検出することができる
電力印加電極の不良検出装置およびドライエッチング装
置を提供することである。
Therefore, in view of the above problems, an object of the present invention is to provide a defect detecting device for a power applying electrode and a dry etching device capable of detecting a defect in the power applying electrode.

【0009】[0009]

【課題を解決するための手段】請求項1の電力印加電極
の不良検出装置は、接地電極に対向する表面を絶縁物で
コーティングした電力印加電極と、この電力印加電極と
前記接地電極間の電位差を測定する電位差測定装置とを
備えたものである。請求項2のドライエッチング装置
は、請求項1の電力印加電極の不良検出装置を有するも
のである。
According to another aspect of the present invention, there is provided a power detecting electrode defect detecting device, wherein a surface of the power applying electrode facing the ground electrode is coated with an insulating material, and a potential difference between the power applying electrode and the ground electrode. And a potential difference measuring device for measuring. A dry etching apparatus according to a second aspect includes the defect detecting apparatus for a power application electrode according to the first aspect.

【0010】[0010]

【作用】請求項1の電力印加電極の不良検出装置によれ
ば、絶縁物が絶縁破壊されていないときは電極印加電極
と接地電極間の電位差は零であるが、絶縁物が絶縁破壊
されると電極印加電極と接地電極間に電位差が生じる。
このため電位差測定装置の電圧測定により絶縁物の絶縁
破壊を判断することができる。
According to the defect detecting device of the power applying electrode of the first aspect, the potential difference between the electrode applying electrode and the ground electrode is zero when the insulator is not broken down, but the insulator is broken down. And a potential difference occurs between the electrode applying electrode and the ground electrode.
Therefore, it is possible to determine the dielectric breakdown of the insulator by measuring the voltage of the potentiometer.

【0011】このように、電力印加電極ー接地電極間の
電位差を電位差測定装置により測定するため、電力印加
電極の表面の絶縁物のピンホールによる絶縁破壊等をモ
ニターでき、電力印加電極の不良に起因するトラブルを
未然に防止することができる。請求項2のドライエッチ
ング装置によれば、請求項1の電力印加電極の不良検出
装置を有するため、電力印加電極の不良によるウエハ温
度の変動もモニターすることが可能となり、レジスト焼
け、エッチングレート、および下地とのエッチングレー
ト選択比などの基本特性の変動が生じるのを防止でき
る。
As described above, since the potential difference between the power applying electrode and the ground electrode is measured by the potential difference measuring device, it is possible to monitor the dielectric breakdown due to the pinhole of the insulator on the surface of the power applying electrode, and to confirm the failure of the power applying electrode. It is possible to prevent the resulting trouble. According to the dry etching apparatus of the second aspect, since it has the defect detecting apparatus of the power applying electrode of the first aspect, it is possible to monitor the fluctuation of the wafer temperature due to the defect of the power applying electrode. Further, it is possible to prevent fluctuations in basic characteristics such as an etching rate selection ratio with respect to the base.

【0012】[0012]

【実施例】この発明の一実施例の電力印加電極の不良検
出装置およびドライエッチング装置について、図面を参
照しながら説明する。図1はこの発明の一実施例におけ
る表面を絶縁物でコーティングしてある電力印加電極の
不良検出装置を有するドライエッチング装置の断面概略
図を示すものである。図1において、1は電力印加電
極、2は絶縁物、3はウェハ、4は接地電極、5はチャ
ンバー壁、6はガス吹き出し口、7は排気口、8は整合
器、9はブロッキングコンデンサ、10はコイル、11
は高周波電源、12は電位差測定装置である電圧計であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A power applying electrode defect detecting device and a dry etching device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a dry etching apparatus having a power application electrode defect detection apparatus whose surface is coated with an insulating material according to an embodiment of the present invention. In FIG. 1, 1 is a power application electrode, 2 is an insulator, 3 is a wafer, 4 is a ground electrode, 5 is a chamber wall, 6 is a gas outlet, 7 is an exhaust port, 8 is a matching box, 9 is a blocking capacitor, 10 is a coil, 11
Is a high frequency power source, and 12 is a voltmeter which is a potential difference measuring device.

【0013】チャンバー壁5内では高周波電源11に接
続された電力印加電極1と、これに相対して接地電極4
が設置されている。またチャンバー壁5には反応性ガス
を導入するガス吹き出し口6と、エッチングチャンバー
内の圧力を一定に保つための排気口7とを有する。そし
てエッチングすべきウェハ3は高周波電源11により高
周波電力が印加される電力印加電極1の絶縁物2の上に
配置される。
In the chamber wall 5, a power applying electrode 1 connected to a high frequency power source 11 and a ground electrode 4 facing the power applying electrode 1.
Is installed. Further, the chamber wall 5 has a gas outlet 6 for introducing a reactive gas and an exhaust port 7 for keeping the pressure in the etching chamber constant. The wafer 3 to be etched is placed on the insulator 2 of the power application electrode 1 to which high frequency power is applied by the high frequency power supply 11.

【0014】このように構成されたドライエッチング装
置の動作について説明する。高周波電源11を電力印加
電極1に印加して、相対する電力印加電極1と接地電極
4間にプラズマ放電を発生させエッチングを行う。この
場合、電子とイオンの移動度の違いにより電力印加電極
1の表面と接地電極4間(図1のA−B間)に電位差V
ABが発生する。しかしながら、VABは電力印加電極1の
表面を絶縁物2でコーティングしてあるため測定するこ
とはできない。
The operation of the dry etching apparatus thus configured will be described. The high frequency power supply 11 is applied to the power application electrode 1 to generate plasma discharge between the opposing power application electrode 1 and the ground electrode 4 for etching. In this case, the potential difference V between the surface of the power applying electrode 1 and the ground electrode 4 (between A and B in FIG. 1) is caused by the difference in mobility of electrons and ions.
AB occurs. However, V AB cannot be measured because the surface of the power applying electrode 1 is coated with the insulator 2.

【0015】この発明の一実施例の電力印加電極の不良
検出装置は電力印加電極1と接地電極4との間の電位差
を測定する電位差測定装置を設けたものであり、その電
圧計12により、図1に示すC−D間の電位差VCDを測
定する。この電位差VCDは、電力印加電極1の表面の絶
縁物2にピンホールが開かない限り0Vである。高周波
電源11より高パワーで処理を行う場合、電力印加電極
1の表面の絶縁物2はピンホールが形成される場合があ
る。電力印加電極1の表面の絶縁物2にピンホールが完
全に形成されれば、VCD=VABとなり電圧計12により
モニターできる。すなわち、電圧計12が0Vを示せ
ば、ウェハ温度の制御が行われている。しかし、電圧計
12が電位差VABに相当する電圧(一般的には数百V)
を示せば、絶縁物2にピンホールが形成されていると判
断することができる。
The defect detecting device for the power applying electrode according to the embodiment of the present invention is provided with a potential difference measuring device for measuring the potential difference between the power applying electrode 1 and the ground electrode 4. The potential difference V CD between C and D shown in FIG. 1 is measured. This potential difference V CD is 0 V unless a pinhole is opened in the insulator 2 on the surface of the power applying electrode 1. When processing is performed with higher power than the high frequency power supply 11, pinholes may be formed in the insulator 2 on the surface of the power application electrode 1. When the pinhole is completely formed in the insulator 2 on the surface of the power applying electrode 1, V CD = V AB , which can be monitored by the voltmeter 12. That is, if the voltmeter 12 shows 0 V, the wafer temperature is being controlled. However, the voltmeter 12 produces a voltage corresponding to the potential difference V AB (generally several hundreds V).
, It can be determined that a pinhole is formed in the insulator 2.

【0016】実際に、この電位差VCDと電力印加電極1
の表面の絶縁物2のピンホールとの関係を調べた実施例
について下記に示す。表面に厚さ150μmのアルミナ
絶縁物を形成したΦ6インチ電力印加電極1に、深さが
異なる複数のピンホールを強制的に形成する。まずピン
ホールの形成には、電子ビーム溶接機を使用した。電圧
80KV、電流5mAの条件で、孔径Φ100μmのピ
ンホールを十字に5点、電力印加電極1の表面の絶縁物
2に形成した。このときビーム照射時間を変化すること
でピンホール深さを制御した。上記条件での孔開け加工
速度は10cm/秒であり、ビーム照射時間を10-4
10-6秒と変化した。
Actually, this potential difference V CD and the power application electrode 1
An example in which the relationship between the surface of the insulator and the pinhole of the insulator 2 was investigated will be shown below. A plurality of pinholes having different depths are forcibly formed in the Φ6 inch power application electrode 1 on the surface of which an alumina insulator having a thickness of 150 μm is formed. First, an electron beam welder was used to form the pinholes. Under the conditions of a voltage of 80 KV and a current of 5 mA, five pinholes having a diameter of 100 μm were formed in a cross shape on the insulator 2 on the surface of the power applying electrode 1. At this time, the pinhole depth was controlled by changing the beam irradiation time. Under the above conditions, the drilling speed was 10 cm / sec, and the beam irradiation time was 10 -4 ~.
It changed to 10 -6 seconds.

【0017】図2にビーム照射時間とピンホール深さの
関係を示す。縦軸はピンホール深さ、横軸はビーム照射
時間を表わしている。図2で示す、ビーム照射時間10
-6秒で1μm深さ、10-5秒で10μm深さ、10-4
で100μm深さ、10-3秒で完全にピンホール(15
0μm)を形成し、下地の電力印加電極1の材質を露出
した。
FIG. 2 shows the relationship between the beam irradiation time and the pinhole depth. The vertical axis represents the pinhole depth, and the horizontal axis represents the beam irradiation time. Beam irradiation time 10 shown in FIG.
-6 seconds 1 μm depth, 10 −5 seconds 10 μm depth, 10 −4 seconds 100 μm depth, 10 −3 seconds completely pinhole (15
0 μm) was formed to expose the material of the underlying power applying electrode 1.

【0018】つぎに、図2の条件で、強制的に形成した
ピンホール深さと、プラズマ放電中(エッチング中)の
C−D間の電位差VCDの関係を図3に示す。縦軸は電位
差V CD、横軸はピンホール深さを表わしている。なお、
このときの放電条件は、エッチングガスSF6 /CF4
=20/20SCCM、ガス圧力175mTorr、R
F電力300Wで10分間放電した。ピンホール深さ1
〜10μmではVCDは0Vであり、100μmで30
V、150μm(完全なピンホール)では、急激に電位
差VCDは上昇し、250Vとなった。この電圧が図1を
用いて説明したV ABに相当していると推測できる。
Next, the film was forcibly formed under the conditions shown in FIG.
Pinhole depth and plasma discharge (during etching)
Potential difference V between C and DCDThe relationship is shown in FIG. Vertical axis is potential
Difference V CDThe horizontal axis represents the pinhole depth. In addition,
The discharge conditions at this time are etching gas SF.6 / CFFour 
= 20/20 SCCM, gas pressure 175 mTorr, R
It was discharged at F power of 300 W for 10 minutes. Pinhole depth 1
V at 10 μmCDIs 0 V and 30 at 100 μm
At V, 150 μm (complete pinhole), the potential suddenly rises
Difference VCDRose to 250V. This voltage
V explained using ABCan be estimated to be equivalent to.

【0019】またこの時、ウェハ3上にヒートラベル
(ミクロン社製)を貼りウェハの温度測定も行った。そ
の結果を図4に示す。電力印加電極1は、水温30℃の
冷却水をサーキュレーターにより循環し冷却している。
ピンホール深さ1〜10μmの場合は、ウェハ温度50
℃一定であり、静電吸着により、ウェハ3は冷却されて
いると言える。それに対して、完全にピンホールを形成
した電力印加電極1では、静電吸着による効果が弱ま
り、ウェハ3と電力印加電極1との接触面積が減少する
ことで熱伝導効率が下がり、ウェハ温度は150℃と急
激に上昇することがわかる。この状態で、製品ウェハ3
をエッチングすると、マスク材料であるレジストのレジ
スト焼け、あるいは被エッチング物のエッチングレー
ト、および下地とのエッチングレート選択比が悪くな
り、製品ウェハ3のすべてが不良となる。
At this time, a heat label (manufactured by Micron Co.) was attached on the wafer 3 and the temperature of the wafer was measured. The result is shown in FIG. The power application electrode 1 circulates cooling water having a water temperature of 30 ° C. by a circulator to cool it.
Wafer temperature of 50 when pinhole depth is 1 to 10 μm
The temperature is constant, and it can be said that the wafer 3 is cooled by electrostatic attraction. On the other hand, in the power applying electrode 1 in which the pinhole is completely formed, the effect of electrostatic attraction is weakened, and the contact area between the wafer 3 and the power applying electrode 1 is reduced, so that the heat conduction efficiency is lowered and the wafer temperature is reduced. It can be seen that the temperature rises sharply to 150 ° C. In this state, product wafer 3
When etching is performed, the resist burning as the mask material, the etching rate of the object to be etched, and the etching rate selection ratio with the base deteriorate, and all the product wafers 3 become defective.

【0020】このように電位差VCDを測定することで、
電力印加電極1の表面の絶縁物2の状態すなわちピンホ
ールの有無をモニターでき、かつウェハ温度の管理も可
能となる。
By measuring the potential difference V CD in this way,
The state of the insulator 2 on the surface of the power applying electrode 1, that is, the presence or absence of pinholes can be monitored, and the wafer temperature can be controlled.

【0021】[0021]

【発明の効果】請求項1の電力印加電極の不良検出装置
によれば、電力印加電極ー接地電極間の電位差を電位差
測定装置により測定するため、電力印加電極の表面の絶
縁物のピンホールによる絶縁破壊等をモニターでき、電
力印加電極の不良に起因するトラブルを未然に防止する
ことができるという効果がある。
According to the defect detecting device of the power applying electrode of the first aspect, since the potential difference between the power applying electrode and the ground electrode is measured by the potential difference measuring device, it is possible to use the pinhole of the insulator on the surface of the power applying electrode. There is an effect that it is possible to monitor dielectric breakdown and the like, and to prevent problems caused by defects of the power application electrodes.

【0022】請求項2のドライエッチング装置によれ
ば、請求項1の電力印加電極の不良検出装置を有するた
め、電力印加電極の不良によるウエハ温度の変動もモニ
ターすることが可能となり、レジスト焼け、エッチング
レート、および下地とのエッチングレート選択比などの
基本特性の変動が生じるのを防止できる。
According to the dry etching apparatus of the second aspect, since it has the defect detecting apparatus of the power applying electrode according to the first aspect, it is possible to monitor the fluctuation of the wafer temperature due to the defect of the power applying electrode. It is possible to prevent variations in basic characteristics such as the etching rate and the etching rate selection ratio with respect to the base.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例における電力印加電極の不
良検出装置を有するドライエッチング装置の概略図であ
る。
FIG. 1 is a schematic diagram of a dry etching apparatus having a defect detection device for a power application electrode according to an embodiment of the present invention.

【図2】電力印加電極の表面をコーティングしている絶
縁物に、電子ビーム溶接機を用いて強制的にピンホール
を形成したときの、ビーム照射時間と絶縁物のピンホー
ル深さの関係を示した図である。
FIG. 2 shows the relationship between the beam irradiation time and the pinhole depth of the insulator when the electron beam welding machine is used to forcibly form a pinhole in the insulator coating the surface of the power application electrode. It is the figure shown.

【図3】図2に示す条件で強制的に形成したピンホール
深さと放電中の図1のC−D間の電位差VCDの関係を示
した図である。
3 is a diagram showing the relationship between the pinhole depth forcibly formed under the conditions shown in FIG. 2 and the potential difference V CD between C and D in FIG. 1 during discharge.

【図4】図2に示す条件で強制的に形成したピンホール
深さと、ウェハ温度の関係を示した図である。
FIG. 4 is a diagram showing a relationship between a pinhole depth forcibly formed under the conditions shown in FIG. 2 and a wafer temperature.

【図5】従来の電力印加電極の不良検出装置のないドラ
イエッチング装置の概略図である。
FIG. 5 is a schematic diagram of a conventional dry etching apparatus without a defect detection apparatus for power application electrodes.

【符号の説明】[Explanation of symbols]

1 電力印加電極 2 絶縁物 4 接地電極 12 電位差測定装置である電圧計 DESCRIPTION OF SYMBOLS 1 Power application electrode 2 Insulator 4 Ground electrode 12 Voltmeter which is a potentiometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堂前 伸一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Domae 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接地電極に対向する表面を絶縁物でコー
ティングした電力印加電極と、この電力印加電極と前記
接地電極間の電位差を測定する電位差測定装置とを備え
た電力印加電極の不良検出装置。
1. A defect detecting device for a power applying electrode, comprising: a power applying electrode having a surface facing the ground electrode coated with an insulating material; and a potential difference measuring device for measuring a potential difference between the power applying electrode and the ground electrode. .
【請求項2】 請求項1の電力印加電極の不良検出装置
を有するドライエッチング装置。
2. A dry etching apparatus having the defect detection device for a power application electrode according to claim 1.
JP4884293A 1993-03-10 1993-03-10 Power impressing electrode defect detecting device and dry etching device Pending JPH06267905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4884293A JPH06267905A (en) 1993-03-10 1993-03-10 Power impressing electrode defect detecting device and dry etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4884293A JPH06267905A (en) 1993-03-10 1993-03-10 Power impressing electrode defect detecting device and dry etching device

Publications (1)

Publication Number Publication Date
JPH06267905A true JPH06267905A (en) 1994-09-22

Family

ID=12814510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4884293A Pending JPH06267905A (en) 1993-03-10 1993-03-10 Power impressing electrode defect detecting device and dry etching device

Country Status (1)

Country Link
JP (1) JPH06267905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9378862B2 (en) 2013-01-16 2016-06-28 Sumitomo Osaka Cement Co., Ltd. Dielectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9378862B2 (en) 2013-01-16 2016-06-28 Sumitomo Osaka Cement Co., Ltd. Dielectric material

Similar Documents

Publication Publication Date Title
KR100394982B1 (en) Sputtering film forming method, sputtering film forming equipment, and semiconductor device manufacturing method
EP0346131A2 (en) Dry etching apparatus
US4399016A (en) Plasma device comprising an intermediate electrode out of contact with a high frequency electrode to induce electrostatic attraction
US5556500A (en) Plasma etching apparatus
JP3296292B2 (en) Etching method, cleaning method, and plasma processing apparatus
EP0486966A1 (en) Electrostatic chuck
JP3306677B2 (en) Self-bias measurement method and device, and electrostatic suction device
JPH0351101B2 (en)
US20110163615A1 (en) Patterned Electret Structures and Methods for Manufacturing Patterned Electret Structures
US20010050143A1 (en) Method and apparatus for semiconductor wafer process monitoring
Shin et al. Dependence of plasma-induced oxide charging current on Al antenna geometry
US4373990A (en) Dry etching aluminum
JPH06267905A (en) Power impressing electrode defect detecting device and dry etching device
JP3169993B2 (en) Electrostatic suction device
US7287328B2 (en) Methods for distributed electrode injection
Le Gressus et al. The influence of surface phenomena on the initiation of discharges in vacuum
US20070077366A1 (en) Plasma doping method and plasma doping apparatus for performing the same
JPH0329863B2 (en)
JPH03145151A (en) Electrostatic chuck device
JPH05291562A (en) Electrostatic chuck device
JPS622631A (en) Pin hole inspection method for insulative thin film
JPH07283296A (en) Electrostatic attraction device
JP2507155B2 (en) Semiconductor manufacturing apparatus and manufacturing method thereof
JPH04233148A (en) Discharge method of sample and device
KR20040041266A (en) Apparatus of ionizing and method of controling the same