JPH06267838A - Method of forming resist pattern - Google Patents

Method of forming resist pattern

Info

Publication number
JPH06267838A
JPH06267838A JP5039993A JP5039993A JPH06267838A JP H06267838 A JPH06267838 A JP H06267838A JP 5039993 A JP5039993 A JP 5039993A JP 5039993 A JP5039993 A JP 5039993A JP H06267838 A JPH06267838 A JP H06267838A
Authority
JP
Japan
Prior art keywords
resist
acid
layer
exposure
resist surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039993A
Other languages
Japanese (ja)
Inventor
Kazuo Kazama
和夫 風間
Fumio Murai
二三夫 村井
Shinji Okazaki
信次 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP5039993A priority Critical patent/JPH06267838A/en
Publication of JPH06267838A publication Critical patent/JPH06267838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the influence of a resist surface layer which is hard to dissolve, and form a resist pattern highly conformable to a designed pattern, by adding a process exposing the resist surface to an acid atmosphere after exposure to light and before baking, and dissolving the whole resist surface as far as a specified depth in a developing process. CONSTITUTION:In order to supplement acid which is insufficient in the vicinity of a resist surface of a silicon substrate coated with a resist layer 2, the laver is spin-coated with solution wherein acetic acid is diluted to 10% with pure water, thereby obtaining an acid supplement layer 3. Then selective exposure to light is performed by using KrF excimer layer 4, arud acid 5 is generated. After the exposure to light, baking is performed at 110 deg.C for 2 minutes. Hence the acid supplement layer 3 on the resist surface, and high-molecular dissolution inhibiter THP-M in the part of the resist where acid is selectively generated are decomposed, and dissolution inhibiting effect is reduced. Then a developing process is performed. The acid supplement layer 3 on the resist surface is dissolved, and a resist pattern 7 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は感光性レジストを用い
て、例えばウェハまたはフォトマスク上にパターンを設
計寸法に対し忠実に形成させる方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a pattern on a wafer or a photomask, for example, faithfully to a design dimension, using a photosensitive resist.

【0002】[0002]

【従来の技術】近年、加工寸法の微細化が進むにつれ、
レジスト材料も大きな進歩を遂げてきた。中でも化学増
幅系レジストと呼ばれるレジストは、露光時に酸を発生
し、この酸の触媒作用を利用してレジストの反応を促進
させている。(参考:レジスト材料・プロセス技術,1
04〜112頁,技術情報協会,1991,東京)この
化学増幅系レジストは従来型レジストに比べて高い感度
を有するという特長があるが、問題点としては特にポジ
型レジストの問題に限っていえば、表面難溶化層の形成
が挙げられる。ここで、図5に沿って化学増幅系ポジ型
レジストを使用し、現像まで行なったときの従来の工程
を説明する。
2. Description of the Related Art In recent years, as the processing size has become finer,
Resist materials have also made great progress. Among them, a resist called a chemically amplified resist generates an acid at the time of exposure and utilizes the catalytic action of this acid to accelerate the reaction of the resist. (Reference: Resist material / process technology, 1
04-112, Technical Information Institute, 1991, Tokyo) This chemically amplified resist has the characteristic of having higher sensitivity than conventional resists, but the problem is that it is limited to the problems of positive resists. The formation of the surface insolubilized layer may be mentioned. Here, a conventional process in which a chemically amplified positive resist is used and development is performed will be described with reference to FIG.

【0003】シリコン基板1上に高分子溶解阻害剤であ
るテトラヒドロピラニル化ポリ(p−ビニルフェノー
ル)(THP−M)と、酸発生剤であるトリ(メタンス
ルホニルオキシ)ベンゼン(MeSB)と、ノボラック
樹脂の三成分から成る化学増幅系ポジ型レジストを0.
35μmの厚さに回転塗布し、125℃、2分間のプリ
ベーク処理を行ない、レジスト層2とした(図6
(a))。
On the silicon substrate 1, tetrahydropyranylated poly (p-vinylphenol) (THP-M), which is a polymer dissolution inhibitor, and tri (methanesulfonyloxy) benzene (MeSB), which is an acid generator, A chemically amplified positive resist consisting of three components of novolac resin is used as a resist.
The resist layer 2 was formed by spin coating to a thickness of 35 μm and prebaking at 125 ° C. for 2 minutes (FIG. 6).
(A)).

【0004】つぎに、KrFエキシマレーザー4を50
mJ/cm2の照射量で選択的に露光を行ない、レジス
トが露光された部分に酸を発生させた(図6(b))。
Next, 50 KrF excimer laser 4 is used.
The resist was exposed selectively with an irradiation amount of mJ / cm2 to generate an acid in the exposed portion of the resist (Fig. 6 (b)).

【0005】その後、露光後ベークを110℃、2分行
ない、レジスト内部に選択的に酸を発生させた部分の高
分子溶解阻害剤THP−Mを分解し溶解阻害効果を消滅
させた(図6(c))。
After that, a post-exposure bake is carried out at 110 ° C. for 2 minutes to decompose the polymer dissolution inhibitor THP-M in the portion where the acid is selectively generated inside the resist to eliminate the dissolution inhibiting effect (FIG. 6). (C)).

【0006】さらに、テトラメチルアンモニウムハイド
ロオキサイドの2.38%水溶液に2分間浸漬し、現像
処理を行ないレジストパターン7を形成した。このとき
得られたパターン断面を観察した結果以下のようになっ
た。すなわちレジスト表面に表面難溶化層17が形成さ
れると、表面難溶化層とその下の層とで溶解速度に差が
生じ、図6(d)のようにパターン上部がいわゆるTト
ップ形状に解像されてしまう。このためパターンの寸法
変動が大きく設計寸法に対し忠実にパターン形成するこ
とが困難だった。
Further, the resist pattern 7 was formed by immersing in a 2.38% aqueous solution of tetramethylammonium hydroxide for 2 minutes and developing it. As a result of observing the pattern cross section obtained at this time, the result is as follows. That is, when the surface hardly-solubilized layer 17 is formed on the resist surface, a difference in dissolution rate occurs between the surface hardly-solubilized layer and the layer thereunder, and the pattern upper part is solved into a so-called T-top shape as shown in FIG. 6D. I will be imaged. For this reason, it is difficult to form the pattern faithfully to the design size because the pattern size varies greatly.

【0007】このように表面難溶化層が形成される理由
として、一つにはレジスト表面の雰囲気による影響が考
えられる。例えば、プリベーク後のレジストをある雰囲
気下で露光、露光後ベーク、現像処理を行なうと、レジ
スト表面からある一定の深さに溶解されにくい部分がで
き、その下の部分だけがパターン化されてしまう。この
原因として、レジスト表面に触れている雰囲気中の物質
が付着拡散することにより、露光時に発生する酸と打ち
消しあい、レジスト表面のみ溶解されずに残ってしまう
と考えられている。(高道、他5名、第39回応用物理
学関係連合講演会講演予稿集、1992、春季、No
2、576頁)また、レジストの塗布、現像の過程にお
いて表面近傍の酸発生剤がレジスト外に蒸発することに
より、レジスト膜中の酸がレジスト深さ方向に濃度分布
を生じることによっても形成されてしまう。
One of the reasons why the surface insolubilized layer is formed is considered to be the influence of the atmosphere on the resist surface. For example, if the resist after pre-baking is exposed in a certain atmosphere, baked after exposure, and developed, a portion that is difficult to dissolve is formed at a certain depth from the resist surface, and only the portion below it is patterned. . It is considered that the cause of this is that the substance in the atmosphere in contact with the resist surface adheres and diffuses to cancel out the acid generated during exposure, leaving only the resist surface undissolved. (Takamichi, 5 others, Proceedings of 39th Joint Lecture on Applied Physics, 1992, Spring, No
(Page 2, 576) In addition, the acid generator in the vicinity of the surface evaporates out of the resist during the process of coating and developing the resist, so that the acid in the resist film has a concentration distribution in the depth direction of the resist. Will end up.

【0008】[0008]

【発明が解決しようとする課題】上記表面難溶化層の形
成を防ぐ方法として、塗布したレジスト表面上にカバー
膜を塗布しレジスト表面の雰囲気からの影響を遮断する
方法が報告されている。(山東、他4名、第53回応用
物理学会学術講演会講演予稿集、1992、秋季、No
2、504頁)この方法を用いることにより表面難溶化
層の発生をかなり抑えることはできた。しかし、表面難
溶化層の形成を完全に無くすことはできなかった。
As a method for preventing the formation of the surface insolubilized layer, a method has been reported in which a cover film is applied on the applied resist surface to block the influence of the atmosphere on the resist surface. (Shandong, 4 others, Proceedings of 53rd Annual Meeting of the Japan Society of Applied Physics, 1992, Autumn, No
(Page 2, 504) By using this method, it was possible to considerably suppress the generation of the surface insoluble layer. However, it was not possible to completely eliminate the formation of the surface hardly soluble layer.

【0009】本発明の目的は、従来化学増幅系レジスト
で問題となっていたレジスト表面難溶化層の影響を防止
し、設計パターンに忠実なレジストパターンを形成する
方法を提供するものである。
An object of the present invention is to provide a method of forming a resist pattern faithful to a design pattern by preventing the influence of a resist surface insolubilizing layer, which has been a problem in conventional chemically amplified resists.

【0010】[0010]

【課題を解決するための手段】上記目的は、被加工基板
上にレジストを塗布、プリベーク、露光、露光後ベー
ク、現像の各処理を行なう化学増幅系ポジ型レジストの
処理方法において、露光後ベーク処理の前にレジスト表
面を酸性雰囲気にさらす工程を追加し、現像工程におい
てレジスト全面を表面より一定深さまで溶解することに
より達成される。このレジストを酸性雰囲気にさらす工
程は、レジストを塗布した後露光後ベーク処理までの間
であればよく、いくつかの可能な工程を示すことができ
る。例えば、レジスト塗布後のプリベーク工程と露光工
程との間に酸性雰囲気にさらすことができる。あるいは
露光後ベークの直前に追加することも可能である。
The object of the present invention is to provide a chemically amplified positive type resist processing method, which comprises applying a resist on a substrate to be processed, pre-baking, exposing, post-exposure baking, and developing. This is achieved by adding a step of exposing the resist surface to an acidic atmosphere before the treatment and dissolving the entire surface of the resist to a certain depth from the surface in the developing step. The step of exposing the resist to an acidic atmosphere may be any time between application of the resist and post-exposure bake processing, and several possible steps can be shown. For example, it can be exposed to an acidic atmosphere between the pre-baking step and the exposure step after applying the resist. Alternatively, it may be added immediately after the post-exposure bake.

【0011】[0011]

【作用】前述した酸性雰囲気にさらす工程で、レジスト
表面から酸を拡散させてレジスト表面近傍の欠乏した酸
を補充することができるため、露光後ベーク工程でレジ
スト表面に酸触媒による反応が均一に起き、ポジ型レジ
ストではレジスト表面が現像液に対して溶解しやすくな
る。レジストを酸性雰囲気にさらす工程の効果は表面よ
り0.025μm〜0.1μm程度に限られるためレジ
スト内部では露光部のみに酸が発生しており、露光後ベ
ーク工程では露光部のみが現像液に対して溶解しやすく
なる。この結果従来化学増幅系ポジ型レジストで問題で
あった表面難溶化層の発生を防止し、高精度なレジスト
パターンが形成できる。
In the above-mentioned step of exposing to the acidic atmosphere, the acid can be diffused from the resist surface to replenish the deficient acid in the vicinity of the resist surface. As a result, in the case of a positive type resist, the resist surface is easily dissolved in the developing solution. Since the effect of the step of exposing the resist to the acidic atmosphere is limited to about 0.025 μm to 0.1 μm from the surface, acid is generated only in the exposed portion inside the resist, and only the exposed portion is exposed to the developing solution in the post-exposure bake step. In contrast, it becomes easier to dissolve. As a result, it is possible to prevent the formation of the surface insolubilized layer, which has been a problem with the conventional chemically amplified positive resist, and to form a highly accurate resist pattern.

【0012】[0012]

【実施例】以下、本発明を実施例を用いて詳細に説明す
るが、以下の実施例は本発明の範囲を制限するものでは
ない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the following examples do not limit the scope of the present invention.

【0013】実施例1 単層レジスト構造を用いたパターン形成に本発明を適用
した場合について説明する(図1)。
Example 1 A case in which the present invention is applied to pattern formation using a single-layer resist structure will be described (FIG. 1).

【0014】まず、シリコン基板1上に高分子溶解阻害
剤であるテトラヒドロピラニル化ポリ(p−ビニルフェ
ノール)(THP−M)と、酸発生剤であるトリ(メタ
ンスルホニルオキシ)ベンゼン(MeSB)と、ノボラ
ック樹脂の三成分から成る化学増幅系ポジ型レジストを
0.35μmの厚さに回転塗布し、125℃、2分間の
プリベーク処理を行ないレジスト層2とした(図1
(a))。
First, tetrahydropyranylated poly (p-vinylphenol) (THP-M), which is a polymer dissolution inhibitor, and tri (methanesulfonyloxy) benzene (MeSB), which is an acid generator, are formed on a silicon substrate 1. And a chemically amplified positive resist consisting of three components of novolac resin were spin-coated to a thickness of 0.35 μm, and prebaked at 125 ° C. for 2 minutes to form a resist layer 2 (FIG. 1).
(A)).

【0015】次に、レジスト層2の塗布されたシリコン
基板1をレジスト表面近傍の欠乏した酸を補充させるこ
とを目的とし、酢酸を純水で10%に希釈した液をレジ
スト層上に回転塗布することにより酸補充層3を得た
(図1(b))。
Next, the silicon substrate 1 coated with the resist layer 2 is spin-coated on the resist layer with a solution of acetic acid diluted to 10% with pure water for the purpose of supplementing the deficient acid in the vicinity of the resist surface. By doing so, an acid replenishing layer 3 was obtained (FIG. 1 (b)).

【0016】その後、KrFエキシマレーザー4を50
mJ/cm2の照射量で選択的に露光を行ない、レジス
ト内部の露光された部分に酸5を発生させた(図1
(c))。
Then, the KrF excimer laser 4 is turned on 50 times.
Exposure was selectively performed at a dose of mJ / cm2 to generate acid 5 in the exposed portion inside the resist (Fig. 1).
(C)).

【0017】次に、露光後ベークを110℃、2分行な
い、レジスト表面の酸補充層3と、レジスト内部の選択
的に酸を発生させた部分の高分子溶解阻害剤THP−M
を分解し溶解阻害効果を消滅させた(図1(d))。
Next, post-exposure bake is carried out at 110 ° C. for 2 minutes, and the acid replenishment layer 3 on the resist surface and the polymer dissolution inhibitor THP-M in the resist inside the portion where the acid is selectively generated.
Was dissolved to eliminate the dissolution inhibiting effect (Fig. 1 (d)).

【0018】さらに、前記試料をテトラメチルアンモニ
ウムハイドロオキサイドの2.38%水溶液に2分間浸
漬し現像処理を行なった。このときレジスト表面の酸補
充層3は現像液に溶解され、均一溶解層8の下に形成さ
れたレジストパターン7を得た(図1(e))。
Further, the sample was immersed in a 2.38% aqueous solution of tetramethylammonium hydroxide for 2 minutes for development processing. At this time, the acid replenishment layer 3 on the resist surface was dissolved in a developing solution to obtain a resist pattern 7 formed under the uniform dissolution layer 8 (FIG. 1 (e)).

【0019】ここで本実施例1のレジスト表面に酸補充
層3を形成したときと、従来の露光方法により表面難溶
化層17が形成されたときの溶解速度を比較したグラフ
を図2に示す。図2より従来の露光方法の場合はレジス
ト表面の酸が欠乏していることから表面難溶化層17が
形成されているため、現像を開始してもすぐに溶解され
ていない事がわかる。そのためレジストが溶解されるま
でに3分30秒要していた。それに対し、実施例1では
レジスト表面に酸補充層3があるため現像直後から溶解
が開始されていることがわかる。このことから図2のレ
ジスト溶解過程の差9は表面難溶化層17の形成により
おきていることがわかる。実施例1ではレジスト表面の
酸補充層3も溶解されることから、現像後のレジスト残
膜量を測定したところ本実施例により0.05μm膜減
りしていた。以上本実施例により形成されたレジストパ
ターンには表面難溶化層は形成されていなかった。
FIG. 2 is a graph comparing the dissolution rates when the acid replenishing layer 3 is formed on the resist surface of the first embodiment and when the surface-hardened layer 17 is formed by the conventional exposure method. . It can be seen from FIG. 2 that, in the case of the conventional exposure method, the surface-insolubilized layer 17 is formed because the acid on the resist surface is deficient, and therefore the resist is not immediately dissolved even when the development is started. Therefore, it took 3 minutes and 30 seconds until the resist was dissolved. On the other hand, in Example 1, it can be seen that the acid replenishment layer 3 is present on the resist surface, so that the dissolution starts immediately after the development. From this, it can be seen that the difference 9 in the resist dissolution process in FIG. 2 is caused by the formation of the surface insolubilized layer 17. In Example 1, the acid replenishing layer 3 on the surface of the resist was also dissolved. Therefore, when the amount of residual resist film after development was measured, it was found that the amount was reduced by 0.05 μm according to this example. As described above, the surface insolubilized layer was not formed in the resist pattern formed in this example.

【0020】実施例2 図3、図4は本発明を位相シフトマスクの製作に適用し
た例を示すものである。さらにレジスト表面に酸補充層
3を設ける方法と露光方法が異なる実施例をも示すもの
である。
Embodiment 2 FIGS. 3 and 4 show an example in which the present invention is applied to manufacture of a phase shift mask. Furthermore, an example is shown in which the method of providing the acid replenishing layer 3 on the resist surface and the method of exposure are different.

【0021】位相シフト法はマスクの開口部の1つおき
にシフターと呼ばれる光の位相を180°反転させるこ
とで解像度と焦点深度を向上させる方法でこれからの半
導体高集積化にはかかせないプロセスである。位相シフ
ト法の原理及びマスクの製作方法は例えば電気化学及び
工業物理化学Vol.58,No.4,330頁から3
35頁(1990年)長谷川他、「位相シフト法による
Subμmリソグラフィー」に記載がある。この方法に
おいてはシフター材料として透明絶縁物を用いるために
従来のマスク作成の際問題とならなかった基板帯電現象
の問題が発生する。
The phase shift method is a method for improving resolution and depth of focus by inverting the phase of light called a shifter by 180 ° at every other opening of the mask, which is an essential process for high integration of semiconductors in the future. Is. The principle of the phase shift method and the mask manufacturing method are described in, for example, Electrochemistry and Industrial Physics Vol. 58, No. Pages 4,330 to 3
Page 35 (1990) Hasegawa et al., “Subμm Lithography by Phase Shift Method”. In this method, since a transparent insulator is used as the shifter material, there arises a problem of a substrate charging phenomenon which is not a problem in the conventional mask making.

【0022】図3(a)に記載の構造は、通常のクロム
マスク基板の構造を示している。図3(a)より石英ガ
ラス基板10の上には金属クロム層11が被着されてい
ることがわかる。
The structure shown in FIG. 3A shows the structure of a normal chromium mask substrate. It can be seen from FIG. 3A that the metallic chromium layer 11 is deposited on the quartz glass substrate 10.

【0023】前記クロムマスク基板上に高分子溶解阻害
剤であるテトラヒドロピラニル化ポリ(p−ビニルフェ
ノール)(THP−M)と、酸発生剤であるトリ(メタ
ンスルホニルオキシ)ベンゼン(MeSB)と、ノボラ
ック樹脂の三成分から成る化学増幅系ポジ型レジストを
0.4μmの厚さに回転塗布し、125℃、5分間のプ
リベーク処理を行ないレジスト層2とした。尚、ベーク
時間は基板の熱容量を考慮し2分から5分とした。その
後レジスト層2の表面近傍の欠乏した酸を補充させるこ
とを目的とし、レジスト表面を酸性雰囲気にさらす工程
を、水溶性有機酸を含有するエスペイサー100(昭和
電工社商品名)13を回転塗布することにより行なっ
た。このためレジスト表面上には酸補充層3が形成され
た。前記エスペイサー100は導電性材料でもあるため
帯電防止膜としての効果も期待できる。この時の塗布膜
厚は、0.05μmであった(図3(b))。
Tetrahydropyranylated poly (p-vinylphenol) (THP-M), which is a polymer dissolution inhibitor, and tri (methanesulfonyloxy) benzene (MeSB), which is an acid generator, are formed on the chromium mask substrate. A chemically amplified positive resist consisting of three components of novolac resin was spin-coated to a thickness of 0.4 μm, and prebaked at 125 ° C. for 5 minutes to form a resist layer 2. The baking time was set to 2 to 5 minutes in consideration of the heat capacity of the substrate. Thereafter, for the purpose of supplementing the deficient acid in the vicinity of the surface of the resist layer 2, the step of exposing the resist surface to an acidic atmosphere is spin-coated with an Espacer 100 (trade name of Showa Denko KK) 13 containing a water-soluble organic acid. It was done by Therefore, the acid replenishment layer 3 was formed on the resist surface. Since the espacer 100 is also a conductive material, an effect as an antistatic film can be expected. The coating film thickness at this time was 0.05 μm (FIG. 3B).

【0024】まず、電子線14を2.0μC/cm2の
照射量で選択的に露光を行ない、レジスト内部の露光さ
れた部分に酸5を発生させた(図3(c))。
First, the electron beam 14 was selectively exposed at a dose of 2.0 μC / cm 2 to generate an acid 5 in the exposed portion inside the resist (FIG. 3C).

【0025】次に、前記エスペイサー10013を流水
中に1分間水洗の後、露光後ベークを110℃、5分行
ない、レジスト表面の酸補充層3と、レジスト内部の選
択的に酸を発生させた部分の高分子溶解阻害剤THP−
Mを分解し溶解阻害効果を消滅させた(図3(d))。
Next, the espacer 10013 was washed with running water for 1 minute, and then post-exposure baked at 110 ° C. for 5 minutes to generate an acid replenishing layer 3 on the resist surface and selectively generate an acid inside the resist. Partial polymer dissolution inhibitor THP-
M was decomposed to eliminate the dissolution inhibiting effect (Fig. 3 (d)).

【0026】前記試料をテトラメチルアンモニウムハイ
ドロオキサイドの2.38%水溶液に2分間浸漬し現像
処理を行なった。このときレジスト表面の酸補充層3は
現像液に溶解され、均一溶解層8の下に形成されたレジ
ストパターン7を得た(図3(e))。
The above sample was immersed in a 2.38% aqueous solution of tetramethylammonium hydroxide for 2 minutes for development processing. At this time, the acid replenishment layer 3 on the resist surface was dissolved in a developing solution to obtain a resist pattern 7 formed under the uniform dissolution layer 8 (FIG. 3 (e)).

【0027】前記試料のレジストパターン7をマスクと
して金属クロム層11を選択的に湿式エッチングを行な
った(図3(f))。
The metal chromium layer 11 was selectively wet-etched using the resist pattern 7 of the sample as a mask (FIG. 3 (f)).

【0028】前記工程により得られた金属クロム層11
上全面に位相シフター材料12(ここではシリコン酸化
膜)を0.4μmの厚さに被着する。この構造において
は金属クロム層は石英基板上に孤立して存在するため電
子線照射時に基板帯電現象を生じる(図3(g))。
Metal chrome layer 11 obtained by the above process
A phase shifter material 12 (here, a silicon oxide film) is deposited to a thickness of 0.4 μm on the entire upper surface. In this structure, since the metallic chromium layer is present separately on the quartz substrate, a substrate charging phenomenon occurs during electron beam irradiation (FIG. 3 (g)).

【0029】前記位相シフター材料12上に前記化学増
幅系ポジ型レジストを0.4μmの厚さに回転塗布し、
125℃、5分間のプリベーク処理を行ないレジスト層
2とした。レジスト層2の表面近傍の欠乏した酸を補充
させることと、電子線照射時に帯電防止膜としての効果
を目的とし、前述したエスペイサー10013を回転塗
布することにより行なった。このためレジスト上にはエ
スペイサー100(帯電防止膜)13が、レジスト表面
近傍には酸補充層3が形成された。(図4(a))。
On the phase shifter material 12, the chemically amplified positive resist is spin-coated to a thickness of 0.4 μm,
Prebaking treatment was carried out at 125 ° C. for 5 minutes to obtain a resist layer 2. For the purpose of replenishing the deficient acid near the surface of the resist layer 2 and for the effect as an antistatic film at the time of electron beam irradiation, the above-mentioned espacer 10013 was spin-coated. Therefore, the espacer 100 (antistatic film) 13 was formed on the resist, and the acid replenishment layer 3 was formed near the resist surface. (FIG. 4 (a)).

【0030】シフター材料12をエッチングすべき領域
に電子線14を2.0μC/cm2の照射量で選択的に
露光を行ない、レジスト内部の露光された部分に酸5を
発生させた(図4(b))。
An electron beam 14 was selectively exposed to the region where the shifter material 12 was to be etched at a dose of 2.0 μC / cm 2 to generate an acid 5 in the exposed portion inside the resist (FIG. 4 ( b)).

【0031】前記エスペイサー10013を流水中に1
分間水洗し除去した後、露光後ベークを110℃、5分
行ない、レジスト表面の酸補充層3と、レジスト内部の
選択的に酸を発生させた部分の高分子溶解阻害剤THP
−Mを分解し溶解阻害効果を消滅させた(図4
(c))。
Put the espacer 10013 into running water 1
After washing with water for 1 minute and removal, baking is performed at 110 ° C. for 5 minutes, and the acid replenishment layer 3 on the resist surface and the polymer dissolution inhibitor THP inside the resist where acid is selectively generated.
-M was decomposed to eliminate the dissolution inhibiting effect (Fig. 4).
(C)).

【0032】次に前記試料をテトラメチルアンモニウム
ハイドロオキサイドの2.38%水溶液に2分間浸漬し
現像処理を行なった。このときレジスト表面の酸補充層
3は現像液に溶解され、均一溶解層8の下に形成された
レジストパターン7を得た(図4(d))。
Next, the sample was immersed in a 2.38% aqueous solution of tetramethylammonium hydroxide for 2 minutes for development processing. At this time, the acid replenishment layer 3 on the resist surface was dissolved in a developing solution to obtain a resist pattern 7 formed under the uniform dissolution layer 8 (FIG. 4 (d)).

【0033】前記試料のレジストパターン7をマスクと
して位相シフター材料12を選択的に湿式エッチングを
行ない、必要な位相シフター15のパターンを得た(図
4(e))。
Using the resist pattern 7 of the sample as a mask, the phase shifter material 12 was selectively wet-etched to obtain a required pattern of the phase shifter 15 (FIG. 4 (e)).

【0034】ここで本実施例2の各工程における処理条
件を変化させたときの現像後のレジスト残膜量と処理条
件との関係を図5に示す。図5(a)は、レジスト塗布
膜厚0.35μmで露光後ベーク温度を120℃、2分
一定のときの現像後の未露光部のレジスト残膜量のプリ
ベーク温度依存性、図5(b)は、レジスト塗布膜厚
0.37μmでプリベーク温度を125℃、2分一定の
ときの現像後の未露光部のレジスト残膜量の露光後ベー
ク温度依存性をそれぞれ示す。図5(a)ではプリベー
ク温度が高くなるにつれて残膜量が増加している。図5
(b)に示す通り、本実施例で採用したベーク条件を使
用すると約0.025μm膜減りすることがわかる。ま
た、エスペイサー10013を使用したときの膜減り量
は、実験結果からベーク温度に依存し再現性よく制御で
きた。以上本実施例において形成されたレジストパター
ン7上に表面難溶化層17は形成されていなかった。ま
た、石英基板10上の孤立した金属クロムパターン11
の上で電子線描画を行なっても帯電現象によるパターン
の位置ずれは生じなかった。
FIG. 5 shows the relationship between the resist residual film amount after development and the processing conditions when the processing conditions in each step of the second embodiment were changed. FIG. 5A shows the prebaking temperature dependency of the resist residual film amount in the unexposed portion after development when the post-exposure bake temperature is 120 ° C. for a resist coating film thickness of 0.35 μm, and FIG. 2) shows the post-exposure bake temperature dependence of the resist residual film amount in the unexposed portion after development when the resist coating film thickness is 0.37 μm and the pre-bake temperature is 125 ° C. for 2 minutes. In FIG. 5A, the residual film amount increases as the prebake temperature increases. Figure 5
As shown in (b), it can be seen that the film thickness is reduced by about 0.025 μm when the baking condition adopted in this example is used. Further, the amount of film loss when using the Espacer 10013 was dependent on the baking temperature from the experimental results and could be controlled with good reproducibility. As described above, the surface hardly-solubilized layer 17 was not formed on the resist pattern 7 formed in this example. In addition, the isolated metallic chrome pattern 11 on the quartz substrate 10
Even if the electron beam drawing was performed on the above, the positional displacement of the pattern due to the charging phenomenon did not occur.

【0035】本実施例では、レジスト表面を酸性雰囲気
にさらす工程をレジスト塗布後のプリベーク工程と露光
工程との間に行なったときの例を挙げたが、酸性雰囲気
にさらす工程は、レジストを塗布した後から露光後ベー
ク処理までの間であればいつでもよく、いくつかの可能
な工程を示すことができる。例えば、レジスト塗布後の
プリベーク工程と露光工程との間にレジスト表面を酸蒸
気雰囲気中に放置し酸補充層3とすることができる。あ
るいはエスペイサー10013を使用するときは露光後
ベーク前までにレジスト表面に塗布した後、エスペイサ
ー10013を除去し、現像処理することも可能であ
る。
In this embodiment, an example was given in which the step of exposing the resist surface to an acidic atmosphere was performed between the pre-baking step and the exposure step after resist application. However, in the step of exposing to an acidic atmosphere, the resist is applied. Any time between after and after the post-exposure bake treatment can indicate some possible steps. For example, the acid replenishment layer 3 can be formed by leaving the resist surface in an acid vapor atmosphere between the pre-baking step and the exposure step after applying the resist. Alternatively, when the espacer 10013 is used, it is possible to apply the espacer 10013 on the resist surface after the exposure and before the baking, and then remove the espacer 10013 and perform development processing.

【0036】[0036]

【発明の効果】以上説明したように本発明のレジストパ
ターンの形成方法によれば、基板帯電現象防止効果の他
に、化学増幅系ポジ型レジストを使用したときに形成さ
れる表面難溶化層を、レジスト表面を酸性雰囲気にさら
すことにより現像液に溶解しやすくさせる。このことか
ら、レジスト全面を表面より一定深さまで溶解すること
で設計寸法に対し高精度なレジストパターンを形成する
ことができる。
As described above, according to the method of forming a resist pattern of the present invention, in addition to the effect of preventing the charging phenomenon of the substrate, the surface insolubilized layer formed when a chemically amplified positive resist is used is formed. By exposing the resist surface to an acidic atmosphere, the resist surface is easily dissolved in the developing solution. From this, by melting the entire surface of the resist to a certain depth from the surface, it is possible to form a highly accurate resist pattern with respect to the design dimension.

【0037】本発明の方法では、(1)酸性材料に酢
酸、エスペイサー100を使用したが代わりに他の酸が
含まれているものを用いることも可能である。(2)本
発明では露光に先立ちレジスト表面に酸性雰囲気にさら
す工程を行なったが、化学増幅系ポジ型レジストの塗布
から露光後ベークの間ではどこで塗布及び除去しても構
わない。(3)エスペイサー100の他の利用法として
は、導電性であることから電子線描画にも帯電防止膜と
して使用可能である。(4)本発明の方法は、化学増幅
系ポジ型レジストを使用するあらゆるリソグラフィープ
ロセスに適用できることはいうまでもない。
In the method of the present invention, (1) acetic acid and Espacer 100 were used as the acidic material, but it is also possible to use one containing other acid instead. (2) In the present invention, the step of exposing the resist surface to an acidic atmosphere is performed prior to the exposure, but it may be applied or removed anywhere between the application of the chemically amplified positive resist and the post-exposure bake. (3) As another usage of the espacer 100, since it is conductive, it can be used as an antistatic film for electron beam drawing. (4) It goes without saying that the method of the present invention can be applied to any lithographic process using a chemically amplified positive type resist.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の説明図。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の実施例1の効果を説明するグラフ。FIG. 2 is a graph illustrating the effect of the first embodiment of the present invention.

【図3】本発明の実施例2の説明図。FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】本発明の実施例2の説明図。FIG. 4 is an explanatory diagram of a second embodiment of the present invention.

【図5】残膜量のベーク温度依存性を示す図。FIG. 5 is a diagram showing the baking temperature dependency of the residual film amount.

【図6】従来のパターン形成方法の説明図。FIG. 6 is an explanatory diagram of a conventional pattern forming method.

【符号の説明】 1・・・シリコン基板、 2・・・レジスト層、3
・・・酸補充層、 4・・・紫外線、5・・・酸
発生領域、 6・・・溶解阻害剤分解領域、
7・・・レジストパターン、 8・・・均一溶解層、9
・・・レジスト溶解過程の差、 10・・・石英ガラス基板、
11・・・金属クロム層、 12・・・位相シフター
材料、13・・・エスペイサー100、 14・・・電子
線、15・・・位相シフター、 16・・・酸欠乏
部、17・・・表面難溶化層。
[Explanation of Codes] 1 ... Silicon substrate, 2 ... Resist layer, 3
... acid replenishment layer, 4 ... ultraviolet light, 5 ... acid generation region, 6 ... dissolution inhibitor decomposition region,
7 ... Resist pattern, 8 ... Uniform dissolution layer, 9
... Difference in resist dissolution process, 10 ... Quartz glass substrate,
11 ... Metal chromium layer, 12 ... Phase shifter material, 13 ... Espacer 100, 14 ... Electron beam, 15 ... Phase shifter, 16 ... Acid-deficient part, 17 ... Surface Hardly soluble layer.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/38 501 7124−2H 511 7124−2H 7352−4M H01L 21/30 361 G (72)発明者 岡崎 信次 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location G03F 7/38 501 7124-2H 511 7124-2H 7352-4M H01L 21/30 361 G (72) Inventor Shin Okazaki Next 1-280, Higashi Koigokubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被加工基板上にレジストを塗布、プリベー
ク、露光、露光後ベーク、現像の各処理を行なう化学増
幅系ポジ型レジストの処理方法において、該レジスト表
面を酸性雰囲気にさらす工程の後、露光後ベーク処理を
行ない、続く現像工程時にレジスト全面を表面より一定
深さまで溶解する工程を含むことを特徴とするレジスト
パターンの形成方法。
1. A method for processing a chemically amplified positive resist in which a resist is applied on a substrate to be processed, prebaking, exposing, post-exposure baking and developing are performed, and after the step of exposing the resist surface to an acidic atmosphere. A method for forming a resist pattern, which comprises a step of performing a post-exposure bake treatment and dissolving the entire surface of the resist to a certain depth from the surface in the subsequent developing step.
【請求項2】特許請求項1記載のレジストパターンの形
成方法において、該レジスト表面を酸性雰囲気にさらす
工程が、酸性材料をレジスト表面に塗布する工程である
ことを特徴とするレジストパターンの形成方法。
2. The method of forming a resist pattern according to claim 1, wherein the step of exposing the resist surface to an acidic atmosphere is a step of applying an acidic material to the resist surface. .
【請求項3】特許請求項2記載のレジストパターンの形
成方法において、該酸性材料は、水溶性有機酸であるこ
とを特徴とするレジストパターンの形成方法。
3. The method for forming a resist pattern according to claim 2, wherein the acidic material is a water-soluble organic acid.
【請求項4】特許請求項2記載のレジストパターンの形
成方法において、露光に先立ち、該水溶性有機酸塗布を
行ない、露光後ベークの前に該酸性材料を除去すること
を特徴とするレジストパターンの形成方法。
4. The method for forming a resist pattern according to claim 2, wherein the water-soluble organic acid is applied prior to exposure and the acidic material is removed after baking after exposure. Forming method.
JP5039993A 1993-03-11 1993-03-11 Method of forming resist pattern Pending JPH06267838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039993A JPH06267838A (en) 1993-03-11 1993-03-11 Method of forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039993A JPH06267838A (en) 1993-03-11 1993-03-11 Method of forming resist pattern

Publications (1)

Publication Number Publication Date
JPH06267838A true JPH06267838A (en) 1994-09-22

Family

ID=12857799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039993A Pending JPH06267838A (en) 1993-03-11 1993-03-11 Method of forming resist pattern

Country Status (1)

Country Link
JP (1) JPH06267838A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175226A (en) * 1993-12-20 1995-07-14 Nec Corp Method for forming resist pattern
WO2002041081A1 (en) * 2000-11-15 2002-05-23 Clariant International Ltd. Method for forming pattern and treating agent for use therein
US7427168B2 (en) 2002-03-01 2008-09-23 Tokyo Electron Limited Developing method and developing unit
JP2010181872A (en) * 2009-01-06 2010-08-19 Hoya Corp Method for manufacturing photomask, pattern transfer method, treatment device for photomask substrate, and thin film patterning method
WO2014088018A1 (en) * 2012-12-07 2014-06-12 富士フイルム株式会社 Method for manufacturing cured film, cured film, liquid crystal display device and organic el display device
KR20160047525A (en) * 2013-08-28 2016-05-02 호야 가부시키가이샤 Mask blank, method for manufacturing mask blank, and method for manufacturing mask for transfer
CN107703718A (en) * 2017-09-27 2018-02-16 中国科学院长春光学精密机械与物理研究所 The preparation method of inverted trapezoidal section photoresist mask in a kind of large-area glass substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175226A (en) * 1993-12-20 1995-07-14 Nec Corp Method for forming resist pattern
WO2002041081A1 (en) * 2000-11-15 2002-05-23 Clariant International Ltd. Method for forming pattern and treating agent for use therein
US7018785B2 (en) 2000-11-15 2006-03-28 Az Electronic Materials Usa Corp. Method for forming pattern and treating agent for use therein
US7427168B2 (en) 2002-03-01 2008-09-23 Tokyo Electron Limited Developing method and developing unit
US7794924B2 (en) 2002-03-01 2010-09-14 Tokyo Electron Limited Developing method and developing unit
US7857530B2 (en) 2002-03-01 2010-12-28 Tokyo Electron Limited Developing method and developing unit
US8053180B2 (en) 2002-03-01 2011-11-08 Tokyo Electron Limited Developing method and developing unit
JP2010181872A (en) * 2009-01-06 2010-08-19 Hoya Corp Method for manufacturing photomask, pattern transfer method, treatment device for photomask substrate, and thin film patterning method
WO2014088018A1 (en) * 2012-12-07 2014-06-12 富士フイルム株式会社 Method for manufacturing cured film, cured film, liquid crystal display device and organic el display device
CN104838316A (en) * 2012-12-07 2015-08-12 富士胶片株式会社 Method for manufacturing cured film, cured film, liquid crystal display device and organic EL display device
KR20160047525A (en) * 2013-08-28 2016-05-02 호야 가부시키가이샤 Mask blank, method for manufacturing mask blank, and method for manufacturing mask for transfer
CN107703718A (en) * 2017-09-27 2018-02-16 中国科学院长春光学精密机械与物理研究所 The preparation method of inverted trapezoidal section photoresist mask in a kind of large-area glass substrate

Similar Documents

Publication Publication Date Title
JPH07261393A (en) Negative resist composition
US4546066A (en) Method for forming narrow images on semiconductor substrates
JPH06267838A (en) Method of forming resist pattern
JPH07219237A (en) Formation method of minute resist pattern
JP2994501B2 (en) Pattern formation method
JPH08272107A (en) Forming method for resist pattern
JP2692059B2 (en) Method for forming electron beam resist pattern
JPH10123693A (en) Method of forming pattern of photosensitive organic film, and method of forming photomask pattern
JPH0635206A (en) Formation of pattern
JPH06338452A (en) Formation method of resist pattern
KR100422956B1 (en) Method for forming fine pattern
JPH02156244A (en) Pattern forming method
JP2604573B2 (en) Fine pattern forming method
JP2544478B2 (en) Wet etching method
KR100496815B1 (en) Method of fabricating semiconductor device using chemically swelling process
JPH08199375A (en) Resist pattern formation
JPS646448B2 (en)
JPS61260242A (en) Formation of resist pattern
KR20000045425A (en) Method for fabricating fine pattern
JPH05243144A (en) Manufacture of semiconductor device
JPH03269533A (en) Production of photomask and substrate used therein
JPH03282553A (en) Formation of resist pattern
JPH05241350A (en) Resist pattern forming method
JP2001185473A (en) Method for forming resist pattern
JPH0313949A (en) Resist pattern forming method