JPH06267536A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH06267536A
JPH06267536A JP5048977A JP4897793A JPH06267536A JP H06267536 A JPH06267536 A JP H06267536A JP 5048977 A JP5048977 A JP 5048977A JP 4897793 A JP4897793 A JP 4897793A JP H06267536 A JPH06267536 A JP H06267536A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
active material
electrode
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5048977A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Masaaki Yamamoto
雅秋 山本
Masafumi Fujiwara
雅史 藤原
Kazuhiro Takeno
和太 武野
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP5048977A priority Critical patent/JPH06267536A/en
Publication of JPH06267536A publication Critical patent/JPH06267536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the deterioration owing to the oxidization in the storing condition, by making 20% or more of the surface of an active material compound in a water soluble binder, so as to reduce the feeding speed of the oxygen in the air. CONSTITUTION:In a hydrogen storage alloy electrode 3 made by applying an active material compound mainly of a hydrogen storage alloy powder to a conductive core, the oxygen in the air is fed to the powder in the storing condition, so as to promote oxidizing deterioration of the hydrogen storage alloy. In this case, by covering 20% or more of the surface of the active material compound with a membrane which consists of a water soluble binder, the feeding speed of the oxygen from the air to the hydrogen storage alloy powder in the active material compound is reduced. As a result, an electrode 3 in which the oxidizing deterioration of the hydrogen storage alloy powder in the storing condition can be suppressed can be obtained. Furthermore, when the membrane is installed to an alkaline battery, it is dissolved in the electrolyte solution, and the electric property can be exercised in a good condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金電極に関す
る。
FIELD OF THE INVENTION The present invention relates to a hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】近年、電子部品の高集積化や実装技術の
進歩により電子機器のポータブル化,コードレス化が進
んでいる。それに伴って、前記電子機器を駆動するため
の二次電池に対する高容量化の要求が高まってきてい
る。
2. Description of the Related Art In recent years, electronic devices have become more portable and cordless due to higher integration of electronic components and advances in packaging technology. Along with this, there is an increasing demand for higher capacity secondary batteries for driving the electronic devices.

【0003】こうした高容量化の要求に応えるため、負
極に水素吸蔵合金を使用したニッケル水素二次電池で
は、ニッケルカドミウム二次電池の2倍程度にまで電池
容量を高めたものが開発されている。また、前記ニッケ
ル水素二次電池は、ニッケルカドミウム二次電池よりも
大電流放電特性や低温放電特性が優れる、カドミウムを
含まないため環境保全に有効である、ニッケルカドミウ
ム二次電池との互換性を有する等の利点を備えている。
In order to meet the demand for higher capacity, a nickel-hydrogen secondary battery using a hydrogen storage alloy for the negative electrode has been developed with a battery capacity up to about twice that of the nickel-cadmium secondary battery. . Further, the nickel-hydrogen secondary battery is excellent in large-current discharge characteristics and low-temperature discharge characteristics than the nickel-cadmium secondary battery, is effective in environmental protection because it does not contain cadmium, compatibility with nickel-cadmium secondary battery It has advantages such as having.

【0004】上述したニッケル水素二次電池等に組込ま
れる水素吸蔵合金電極は、通常、次のように製造され
る。まず、水素吸蔵合金粉末を導電材、結着剤及び水な
どと共に混練して活物質ペーストを調製する。この活物
質ペーストを導電性芯体に塗着した後、乾燥,プレス,
裁断する。こうして前記導電性芯体に水素吸蔵合金粉末
を主成分とする活物質合剤を塗着した水素吸蔵合金電極
が製造される。
The hydrogen storage alloy electrode incorporated in the above nickel hydride secondary battery or the like is usually manufactured as follows. First, the hydrogen storage alloy powder is kneaded with a conductive material, a binder, water and the like to prepare an active material paste. After applying this active material paste to the conductive core, drying, pressing,
Cut. Thus, a hydrogen storage alloy electrode in which the conductive core is coated with an active material mixture containing hydrogen storage alloy powder as a main component is manufactured.

【0005】ところで、前記水素吸蔵合金粉末は、空気
中の酸素と反応して酸化皮膜を形成することにより容易
に酸化劣化する。このような酸化劣化した水素吸蔵合金
粉末を含む水素吸蔵合金電極は、有効な水素吸蔵合金粉
末の割合が減少しているため、電池に組込んだ場合に電
池寿命を短くしたり、充放電時の分極を大きくして電池
電圧を低下させる等の問題を生じる。
By the way, the hydrogen storage alloy powder is easily oxidized and deteriorated by reacting with oxygen in the air to form an oxide film. The hydrogen storage alloy electrode containing the hydrogen storage alloy powder that has been oxidized and deteriorated as described above has a reduced ratio of effective hydrogen storage alloy powder. There is a problem that the polarization is increased to lower the battery voltage.

【0006】このようなことから、前記水素吸蔵合金電
極の製造時において水素吸蔵合金粉末が酸化劣化するの
を抑制するため、水素吸蔵合金粉末が湿っている状態で
の空気との接触時間を短くするように製造ラインが組ま
れている。特に水素吸蔵合金粉末の酸化劣化が進行し易
い活物質ペーストの乾燥工程では、高温状態となる時間
を短くしたり、或いは窒素ガスやアルゴンガス等の不活
性ガス雰囲気中又は真空中で乾燥を行なう等の対策がな
されている。
From the above, in order to suppress the oxidative deterioration of the hydrogen storage alloy powder during the production of the hydrogen storage alloy electrode, the contact time with the air in the wet state of the hydrogen storage alloy powder is shortened. The production line is set up to do so. Particularly in the drying process of the active material paste in which the oxidative deterioration of the hydrogen-absorbing alloy powder is apt to proceed, the time to be in a high temperature state is shortened, or drying is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in vacuum. Etc. are taken.

【0007】しかしながら、前記水素吸蔵合金電極は、
電池組込み前の保管時においても空気との接触によって
水素吸蔵合金粉末の酸化劣化が進行してしまうという問
題点がある。
However, the hydrogen storage alloy electrode is
There is a problem that even during storage before the battery is assembled, the hydrogen storage alloy powder progresses oxidative deterioration due to contact with air.

【0008】なお、前記問題点を解消するために、水素
吸蔵合金電極を低温、低湿度の保管庫内、又は不活性ガ
ス雰囲気中や真空中で保管したり、或いは水素吸蔵合金
電極を個別に密封する対策がある。しかしながら、これ
らの対策は、水素吸蔵合金電極の出し入れの度に雰囲気
制御を行なう等の煩雑な作業を要することから量産性を
阻害したり、保管コストの増大を招く等の問題があるた
め本質的な解決には至っていない。
In order to solve the above-mentioned problems, the hydrogen storage alloy electrodes are stored in a storage room at low temperature and low humidity, in an inert gas atmosphere or in a vacuum, or the hydrogen storage alloy electrodes are individually stored. There is a measure to seal it. However, these measures are essential because they require complicated operations such as controlling the atmosphere each time the hydrogen storage alloy electrode is taken in and out, which impedes mass productivity and increases storage costs. It has not been resolved.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、保管時における水
素吸蔵合金粉末の酸化劣化が抑制された水素吸蔵合金電
極を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the conventional problems, and an object thereof is to provide a hydrogen storage alloy electrode in which oxidative deterioration of the hydrogen storage alloy powder during storage is suppressed. It is a thing.

【0010】[0010]

【課題を解決するための手段】本発明は、導電性芯体に
水素吸蔵合金粉末を主成分とする活物質合剤を塗着した
水素吸蔵合金電極において、活物質合剤表面の20%以
上を水溶性結着剤からなる薄膜により被覆したことを特
徴とする水素吸蔵合金電極である。
DISCLOSURE OF THE INVENTION The present invention provides a hydrogen storage alloy electrode in which a conductive core is coated with an active material mixture containing hydrogen storage alloy powder as a main component, and 20% or more of the surface of the active material mixture is used. Is a hydrogen storage alloy electrode, characterized in that: is covered with a thin film of a water-soluble binder.

【0011】前記導電性芯体としては、パンチドメタル
などの穿孔金属板;金属ネット;セルメット(住友電工
社製商品名)等の発泡メタルなどの三次元多孔質構造を
有する金属多孔体が挙げられる。
Examples of the conductive core include a perforated metal plate such as punched metal; a metal net; and a metal porous body having a three-dimensional porous structure such as foamed metal such as Celmet (trade name of Sumitomo Electric Industries, Ltd.). To be

【0012】前記水素吸蔵合金としては、格別制限され
るものではなく、電解液中で電気化学的に発生させた水
素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出
できるものであればよい。例えば、一般式XY5-a a
(但し、XはLaを含む希土類元素、YはNi、ZはC
o、Mn、Al、Fe、Ti、Cu、Zn、Zr、C
r、V、Bから選ばれる少なくとも1種の元素、aは0
≦a<2.0を示す)にて表されるものが用いられる。
具体的にはLaNi5 、MmNi5 、LmNi5(L
m;ランタン富化したミッシュメタル)、及びこれらの
Niの一部をCo、Mn、Al、Fe、Ti、Cu、Z
n、Zr、Cr、V、Bのような元素で置換した多元素
系のものを挙げることができる。
The hydrogen storage alloy is not particularly limited as long as it can store hydrogen electrochemically generated in the electrolytic solution and can easily release the stored hydrogen during discharge. . For example, the general formula XY 5-a Z a
(However, X is a rare earth element containing La, Y is Ni, Z is C
o, Mn, Al, Fe, Ti, Cu, Zn, Zr, C
at least one element selected from r, V and B, and a is 0
≦ a <2.0) is used.
Specifically, LaNi 5 , MmNi 5 , LmNi 5 (L
m; lanthanum-enriched misch metal), and some of these Nis as Co, Mn, Al, Fe, Ti, Cu, Z
Examples thereof include multi-element type ones substituted with elements such as n, Zr, Cr, V and B.

【0013】前記薄膜を形成する水溶性結着剤として
は、例えばポリアクリル酸ソーダ、ポリアクリル酸カリ
ウム等のポリアクリル酸塩、カルボキシメチルセルロー
ス(CMC)、ポリビニルアルコール(PVA)などの
水溶性高分子を挙げることができる。これらの中でも、
アルカリ電池に組込んだ場合に前記薄膜をアルカリ電解
液に速やかに溶して電極性能をより良好に発揮させる観
点から、ポリアクリル酸塩又はカルボキシメチルセルロ
ースが望ましい。
Examples of the water-soluble binder forming the thin film include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, water-soluble polymers such as carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Can be mentioned. Among these,
From the viewpoint of promptly dissolving the thin film in an alkaline electrolyte to improve the electrode performance when incorporated in an alkaline battery, polyacrylate or carboxymethyl cellulose is preferable.

【0014】前記薄膜により被覆される活物質合剤表面
の割合の下限値を限定した理由は、その割合を20%未
満にすると保管時における水素吸蔵合金粉末の酸化劣化
を十分に抑制することが困難となる。更に前記割合の下
限値は前記酸化劣化をより十分に抑制する観点から20
%とすることが望ましい。また、前記割合の上限値は電
池組立初期から電極性能を十分に発揮させる観点から8
0%とすることが望ましい。前記活物質中には、前記水
素吸蔵合金粉末及び水溶性結着剤の他に必要に応じて非
水溶性結着剤、導電材粉末などを配合してもよい。
The reason for limiting the lower limit of the ratio of the surface of the active material mixture coated with the thin film is that if the ratio is less than 20%, the oxidative deterioration of the hydrogen storage alloy powder during storage can be sufficiently suppressed. It will be difficult. Further, the lower limit of the ratio is 20 from the viewpoint of more sufficiently suppressing the oxidative deterioration.
It is desirable to set it as%. The upper limit of the above ratio is 8 from the viewpoint of sufficiently exhibiting electrode performance from the initial stage of battery assembly.
It is desirable to set it to 0%. In the active material, in addition to the hydrogen storage alloy powder and the water-soluble binder, a water-insoluble binder, a conductive material powder, etc. may be blended, if necessary.

【0015】前記非水溶性結着剤としては、例えばポリ
テトラフルオロエチレン(PTFE)などのフッ素系樹
脂を挙げることができる。かかる結着剤の配合割合は、
水素吸蔵合金粉末100重量部に対して0.1〜5重量
部の範囲とすることが望ましい。
Examples of the water-insoluble binder include fluororesins such as polytetrafluoroethylene (PTFE). The mixing ratio of such a binder is
It is desirable that the amount is in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.

【0016】前記導電材粉末としては、例えばカーボン
ブラック、黒鉛、アセチレンブラック等を挙げることが
できる。かかる導電材粉末の配合割合は、水素吸蔵合金
粉末100重量部に対して0.1〜4重量部の範囲とす
ることが望ましい。より好ましい導電性粉末の配合割合
は、水素吸蔵合金粉末100重量部に対して0.1〜2
重量部の範囲である。
Examples of the conductive material powder include carbon black, graphite and acetylene black. The mixing ratio of the conductive material powder is preferably in the range of 0.1 to 4 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. A more preferable mixing ratio of the conductive powder is 0.1 to 2 with respect to 100 parts by weight of the hydrogen storage alloy powder.
The range is parts by weight.

【0017】上述した水素吸蔵合金電極は、例えば次の
ような方法により製造できる。まず、水素吸蔵合金粉末
を水溶性結着剤及び水などと共に混練して活物質ペース
トを調製する。次いで、前記活物質ペーストを導電性芯
体に塗着した後、乾燥,プレス,裁断することにより、
活物質合剤表面の20%以上が前記水溶性結着剤からな
る薄膜により被覆された水素吸蔵合金電極を製造する。
The hydrogen storage alloy electrode described above can be manufactured, for example, by the following method. First, the hydrogen storage alloy powder is kneaded with a water-soluble binder and water to prepare an active material paste. Then, after coating the active material paste on the conductive core, by drying, pressing and cutting,
A hydrogen storage alloy electrode in which 20% or more of the surface of the active material mixture is covered with a thin film composed of the water-soluble binder is manufactured.

【0018】[0018]

【作用】導電性芯体に水素吸蔵合金粉末を主成分とする
活物質合剤を塗着した水素吸蔵合金電極では、保管時に
おいて空気中の酸素が水素吸蔵合金粉末に供給されて該
水素吸蔵合金粉末の酸化劣化が進行する。特に高温、高
湿度下で保管した場合に前記酸素の供給速度が最大とな
って水素吸蔵合金粉末の酸化劣化が著しく進行する。
In the hydrogen storage alloy electrode in which the conductive core is coated with the active material mixture containing hydrogen storage alloy powder as a main component, oxygen in the air is supplied to the hydrogen storage alloy powder during storage and the hydrogen storage alloy powder is stored. The oxidative deterioration of the alloy powder progresses. In particular, when stored under high temperature and high humidity, the oxygen supply rate becomes maximum, and oxidative deterioration of the hydrogen storage alloy powder progresses remarkably.

【0019】本発明によれば、活物質合剤表面の20%
以上を水溶性結着剤からなる薄膜により被覆したことに
よって、前記活物質合剤中の水素吸蔵合金粉末に対する
空気中からの酸素の供給速度が低下する。その結果、保
管時における水素吸蔵合金粉末の酸化劣化が抑制された
水素吸蔵合金電極を得ることができる。また、前記薄膜
はアルカリ電池に組込んだ場合にアルカリ電解液に溶け
るため電極性能を良好に発揮させることができる。
According to the present invention, 20% of the surface of the active material mixture is
By coating the above with a thin film made of a water-soluble binder, the supply rate of oxygen from the air to the hydrogen storage alloy powder in the active material mixture is reduced. As a result, it is possible to obtain a hydrogen storage alloy electrode in which oxidative deterioration of the hydrogen storage alloy powder during storage is suppressed. Also, since the thin film dissolves in the alkaline electrolyte when incorporated in an alkaline battery, the electrode performance can be exhibited well.

【0020】[0020]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1EXAMPLES Examples of the present invention will be described in detail below. Example 1

【0021】まず、ランタン富化ミッシュメタル(L
m)、ニッケル、コバルト、マンガン、アルミニウムを
組成がLmNi4.0 Co0.4 Mn0.3 Al0.3 となるよ
うに秤量して混合した後、高周波誘導炉で溶解,冷却し
て水素吸蔵合金インゴットを作製した。つづいて、この
インゴットを電気炉で熱処理した後、粉砕して平均粒径
50μmの水素吸蔵合金粉末を得た。この水素吸蔵合金
粉末にカーボンブラック1重量%、PTFE1.5重量
%、ポリアクリル酸ソーダ0.2重量%を混合した後、
撹拌しながらペースト状になるまで水を添加して負極活
物質ペーストを調製した。ひきづつき、この負極活物質
ペーストを厚さ80μmのパンチドメタルの両面に均一
に塗着して乾燥,プレスすることにより、ポリアクリル
酸ソーダからなる薄膜により被覆されている活物質合剤
表面の割合(被覆率)が34%である水素吸蔵合金電極
を作製した。なお、前記被覆率は、活物質合剤表面を顕
微鏡で観察しながら該顕微鏡に設置した画像解析装置を
用いてポリアクリル酸ソーダ薄膜の面積を測定すること
により求めた。 実施例2〜4及び比較例1
First, lanthanum-enriched misch metal (L
m), nickel, cobalt, manganese, and aluminum were weighed and mixed so that the composition was LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3, and then melted and cooled in a high-frequency induction furnace to prepare a hydrogen storage alloy ingot. Subsequently, this ingot was heat-treated in an electric furnace and then pulverized to obtain a hydrogen storage alloy powder having an average particle size of 50 μm. After mixing 1% by weight of carbon black, 1.5% by weight of PTFE, and 0.2% by weight of sodium polyacrylate with the hydrogen storage alloy powder,
While stirring, water was added until a paste was formed to prepare a negative electrode active material paste. The surface of the active material mixture coated with a thin film made of sodium polyacrylate is uniformly coated with both surfaces of a punched metal having a thickness of 80 μm, dried, and pressed. A hydrogen storage alloy electrode having a ratio (coverage) of 34% was prepared. The coverage was determined by observing the surface of the active material mixture with a microscope and measuring the area of the polysodium acrylate thin film using an image analyzer installed in the microscope. Examples 2 to 4 and Comparative Example 1

【0022】ポリアクリル酸ソーダの配合量を下記表1
に示すように変えると共に、この配合量の変動に起因す
るペースト粘度の変化を水の添加量及び攪拌時間を調整
することにより塗着性を損なわない範囲内に抑えて負極
活物質ペーストを調製した以外、実施例1と同様に行な
った。これにより、前記被覆率が同表1に示すとおりの
水素吸蔵合金電極を作製した。
The blending amount of sodium polyacrylate is shown in Table 1 below.
In addition, the negative electrode active material paste was prepared by suppressing the change in the paste viscosity due to the change in the compounding amount within a range not impairing the coatability by adjusting the addition amount of water and the stirring time. Except for this, the same procedure as in Example 1 was performed. Thereby, a hydrogen storage alloy electrode having the coverage shown in Table 1 was produced.

【0023】得られた実施例1〜4及び比較例1の水素
吸蔵合金電極について、湿度50%、温度30℃に制御
した恒温恒湿槽内に30日間保管した後、以下に説明す
る(1),(2)の特性試験をそれぞれ行なった。 (1)単極評価用試験セルによる特性試験
The obtained hydrogen storage alloy electrodes of Examples 1 to 4 and Comparative Example 1 were stored for 30 days in a thermo-hygrostat controlled to a humidity of 50% and a temperature of 30 ° C., and then described below (1). ) And (2) were tested. (1) Characteristic test using a unipolar evaluation test cell

【0024】まず、各水素吸蔵合金電極を2つの大容量
のニッケル電極間にポリプロピレン製のセパレータを介
して挟み込み、これらをケース内に収容されたアルカリ
電解液中にそれぞれ浸漬して図1に示す単極評価用の試
験セルを組立てた。即ち、この試験セルは、上方が開口
したケース1を備える。このケース1内には、アルカリ
電解液2が収容されている。このアルカリ電解液2中に
は、水素吸蔵合金電極3が2つのニッケル電極4間にセ
パレータ5を介して縦置きに挾持されて浸漬されてい
る。前記2つのニッケル電極4の両側面には、押え板6
がそれぞれ配置されてボルト7及びナット8により固定
されている。前記水素吸蔵合金電極3は負極リード9に
より導出され、前記2つのニッケル電極4は正極リード
10により導出されている。
First, each hydrogen storage alloy electrode is sandwiched between two large-capacity nickel electrodes via a separator made of polypropylene, and these are immersed in an alkaline electrolyte contained in a case, as shown in FIG. A test cell for unipolar evaluation was assembled. That is, this test cell includes the case 1 having an open top. An alkaline electrolyte 2 is contained in the case 1. In this alkaline electrolyte solution 2, a hydrogen storage alloy electrode 3 is vertically held between two nickel electrodes 4 with a separator 5 interposed therebetween and immersed therein. A pressing plate 6 is provided on each side of the two nickel electrodes 4.
Are arranged and fixed by bolts 7 and nuts 8, respectively. The hydrogen storage alloy electrode 3 is led out by a negative electrode lead 9, and the two nickel electrodes 4 are led out by a positive electrode lead 10.

【0025】次いで、これらの試験セルを0.3CmA
で過充電した後、1Aで放電することにより水素吸蔵合
金電極の容量と平均作動電圧を測定した。その結果を下
記表1に併記する。 (2)電池モデルセルによる特性試験
Next, these test cells were set to 0.3 CmA.
After being overcharged at 1 A, the capacity and average operating voltage of the hydrogen storage alloy electrode were measured by discharging at 1 A. The results are also shown in Table 1 below. (2) Characteristic test with battery model cell

【0026】まず、各水素吸蔵合金電極をそれぞれニッ
ケル電極と共にポリプロピレン製のセパレータを介して
捲回して電極群を作製した。これらの電極群を圧力検出
器を付けた容器のAAサイズの空間にそれぞれ挿入した
後、この空間にアルカリ電解液を注液し、封口して図2
に示すような電池のモデルセルを組立てた。即ち、この
モデルセルは、容器本体11と蓋体12とからなる容器
を備える。前記容器本体11の中心部には、AAサイズ
の電池缶と同一の内径及び高さを有する空間13が形成
されており、この空間13内部には電極群14が収納さ
れ、更にアルカリ電解液が注液されている。前記蓋体1
2は、封口板の役割を果たしていると共に、圧力検出器
15を取り付けて空間13の内圧を検出できるようにな
っている。前記容器本体11上には、前記蓋体12がゴ
ムシート16及びOリング17を介してボルト18及び
ナット19により気密に固定されている。前記電極群1
4の水素吸蔵合金電極からの負極リード20と同電極群
14のニッケル電極からの正極リード21とは、それぞ
れ前記ゴムシート16と前記Oリング17との間を通し
て導出されている。
First, each hydrogen storage alloy electrode was wound together with a nickel electrode via a polypropylene separator to prepare an electrode group. After inserting each of these electrode groups into an AA size space of a container equipped with a pressure detector, an alkaline electrolyte is injected into this space, and the space is sealed, as shown in FIG.
A model cell of a battery as shown in Fig. 3 was assembled. That is, this model cell includes a container including the container body 11 and the lid 12. A space 13 having the same inner diameter and height as an AA size battery can is formed in the center of the container body 11, and an electrode group 14 is housed in the space 13 and further an alkaline electrolyte is stored therein. It has been infused. The lid 1
The numeral 2 serves as a sealing plate, and a pressure detector 15 is attached so that the internal pressure of the space 13 can be detected. On the container body 11, the lid 12 is airtightly fixed by a bolt 18 and a nut 19 via a rubber sheet 16 and an O-ring 17. The electrode group 1
The negative electrode lead 20 from the hydrogen storage alloy electrode 4 and the positive electrode lead 21 from the nickel electrode of the same electrode group 14 are led out through between the rubber sheet 16 and the O-ring 17, respectively.

【0027】次いで、これらのモデルセルを0.1Cm
Aで150%充電した後、1Aで0.8Vまで放電し
た。つづいて、1CmAで300%時間充電し、モデル
セルの最大内圧を測定した。その結果を下記表1に併記
する。
Next, these model cells are set to 0.1 Cm.
The battery was charged to 150% with A and then discharged to 0.8 V with 1A. Subsequently, the battery was charged at 1 CmA for 300% time, and the maximum internal pressure of the model cell was measured. The results are also shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように実施例1〜4の水
素吸蔵合金電極は、比較例1の水素吸蔵合金電極と比べ
て電極容量が大きいことがわかる。これは、活物質合剤
表面の20%以上がポリアクリル酸ソーダからなる薄膜
により被覆されていることから、恒温恒湿槽内での保管
時における水素吸蔵合金粉末の酸化劣化が抑制されてい
たことによるものである。
As is apparent from Table 1, the hydrogen storage alloy electrodes of Examples 1 to 4 have a larger electrode capacity than the hydrogen storage alloy electrodes of Comparative Example 1. This is because 20% or more of the surface of the active material mixture was covered with a thin film made of sodium polyacrylate, so that the oxidative deterioration of the hydrogen storage alloy powder during storage in the constant temperature and humidity chamber was suppressed. This is due to the fact.

【0030】なお、実施例4の水素吸蔵合金電極は、両
特性試験時においてポリアクリル酸ソーダからなる薄膜
がアルカリ電解液に溶解されずに残ったため、この残存
薄膜が抵抗成分となって平均作動電圧を低下させ、かつ
過充電時の酸素ガスとの反応面積が減少してモデルセル
の最大内圧を高くしている。従って、充放電初期では電
極性能が十分に発揮されないことがわかる。ただし、そ
の後、充放電サイクルを繰返すと水素吸蔵合金粉末の膨
脹・収縮によって前記薄膜が溶解・剥離して電極性能が
十分に発揮されるようになる。
In the hydrogen storage alloy electrode of Example 4, the thin film made of sodium polyacrylate remained without being dissolved in the alkaline electrolyte during both characteristic tests, and thus the remaining thin film became a resistance component and averaged operation. The maximum internal pressure of the model cell is increased by lowering the voltage and decreasing the reaction area with oxygen gas during overcharge. Therefore, it is understood that the electrode performance is not sufficiently exhibited at the initial stage of charge / discharge. However, when the charge / discharge cycle is repeated thereafter, the thin film is melted / peeled by the expansion / contraction of the hydrogen storage alloy powder, and the electrode performance is sufficiently exhibited.

【0031】上記実施例では、水溶性結着剤であるポリ
アクリル酸ソーダの配合量を変えることにより前記被覆
率を制御したが、負極活物質ペースト中の他の成分の配
合量、乾燥条件、プレス条件などを変えることにより前
記被覆率を制御することも可能である。
In the above examples, the coverage was controlled by changing the blending amount of the water-soluble binder sodium polyacrylate. However, the blending amount of other components in the negative electrode active material paste, the drying conditions, It is also possible to control the coverage by changing the press conditions and the like.

【0032】[0032]

【発明の効果】以上詳述した如く、本発明によれば保管
時における水素吸蔵合金粉末の酸化劣化が抑制された水
素吸蔵合金電極を提供することができる。
As described in detail above, according to the present invention, it is possible to provide a hydrogen storage alloy electrode in which the oxidative deterioration of the hydrogen storage alloy powder during storage is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた単極評価用の試験セルを示す断
面図。
FIG. 1 is a cross-sectional view showing a test cell for unipolar evaluation used in an example.

【図2】実施例で用いた電池のモデルセルを示す断面
図。
FIG. 2 is a cross-sectional view showing a model cell of a battery used in an example.

【符号の説明】[Explanation of symbols]

1…ケース、2…アルカリ電解液、3…水素吸蔵合金電
極、4…ニッケル電極、5…セパレータ、11…容器本
体、12…蓋体、14…電極群、15…圧力検出器。
DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Alkaline electrolyte solution, 3 ... Hydrogen storage alloy electrode, 4 ... Nickel electrode, 5 ... Separator, 11 ... Container main body, 12 ... Lid body, 14 ... Electrode group, 15 ... Pressure detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 雅史 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 佐藤 優治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masafumi Fujiwara 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research and Development Center (72) Inventor Kazuta Takeno 3-chome Minami-Shinagawa, Shinagawa-ku, Tokyo No. 4-10 Toshiba Battery Co., Ltd. (72) Inventor Yuji Sato No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated, Toshiba Research and Development Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性芯体に水素吸蔵合金粉末を主成分
とする活物質合剤を塗着した水素吸蔵合金電極におい
て、活物質合剤表面の20%以上を水溶性結着剤からな
る薄膜により被覆したことを特徴とする水素吸蔵合金電
極。
1. A hydrogen storage alloy electrode having a conductive core coated with an active material mixture containing hydrogen storage alloy powder as a main component, wherein 20% or more of the surface of the active material mixture is composed of a water-soluble binder. A hydrogen storage alloy electrode characterized by being covered with a thin film.
JP5048977A 1993-03-10 1993-03-10 Hydrogen storage alloy electrode Pending JPH06267536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5048977A JPH06267536A (en) 1993-03-10 1993-03-10 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5048977A JPH06267536A (en) 1993-03-10 1993-03-10 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH06267536A true JPH06267536A (en) 1994-09-22

Family

ID=12818321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5048977A Pending JPH06267536A (en) 1993-03-10 1993-03-10 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH06267536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method
JP4717192B2 (en) * 1999-09-09 2011-07-06 キヤノン株式会社 Secondary battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5571636A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
EP0522297B1 (en) Hydrogen storage electrode
EP0149846A1 (en) Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy
US5695530A (en) Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
EP0383991B1 (en) Alkaline storage battery using hydrogen absorbing alloy
EP0923146A1 (en) Alkaline storage battery
US8530091B2 (en) Lithiated oxide for a positive electrode of an alkaline accumulator
EP0554617B1 (en) Active material of hydrogen storage alloy electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
EP0307209A1 (en) A battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP0810681A1 (en) Nonaqueous electrolyte secondary battery
US5766792A (en) Hydrogen storage alloy electrode and manufacturing method of the same
JPH06267536A (en) Hydrogen storage alloy electrode
US6197448B1 (en) Hydrogen storage alloy
CN1107259A (en) Ni/metal hydride secondary cell
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
CN100517816C (en) Composite partile, nickel-hydrogen secondary cell negative-pole and cell and method for making same
JPH0562428B2 (en)
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
EP0567132B1 (en) Sealed type nickel/hydrogen alkaline storage battery