JPH0626677B2 - Vertical roll mill operation control method - Google Patents

Vertical roll mill operation control method

Info

Publication number
JPH0626677B2
JPH0626677B2 JP62190278A JP19027887A JPH0626677B2 JP H0626677 B2 JPH0626677 B2 JP H0626677B2 JP 62190278 A JP62190278 A JP 62190278A JP 19027887 A JP19027887 A JP 19027887A JP H0626677 B2 JPH0626677 B2 JP H0626677B2
Authority
JP
Japan
Prior art keywords
mill
crushed
crushing
variable
variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62190278A
Other languages
Japanese (ja)
Other versions
JPS6434448A (en
Inventor
正機 三隅
昌宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62190278A priority Critical patent/JPH0626677B2/en
Publication of JPS6434448A publication Critical patent/JPS6434448A/en
Publication of JPH0626677B2 publication Critical patent/JPH0626677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セメント工業などの窯業や鉄鋼業において用
いられる竪型ローラミルの運転制御方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to an operation control method for a vertical roller mill used in the ceramic industry such as the cement industry or the steel industry.

[従来の技術] 第2図は、従来の代表的な竪型ローラミルの概略系統図
である。ローラミルに供給される被粉砕物(以下ニュー
フィードと称す)1は、被粉砕物供給管2を通じて、駆
動モータ3によって垂直軸回りに回転する粉砕テーブル
4の中央部に投入され、遠心力により粉砕テーブル4上
を半径方向に飛ばされ、前記粉砕テーブル4とこの粉砕
テーブル4の円周上に配置された複数の粉砕ローラ5と
の間に噛込まれ粉砕される。粉砕された粉砕物は粉砕テ
ーブル4の外周部下方からミル内に吹込まれるガス流6
により分級作用を受け、粗粒子と比較的細かな粒子とに
分けられる。粗粒子は前記ガス流6に逆らって下へと落
下し、排石7としてベルトコンベアやバッケトエレベー
タで上方に運ばれ、前記ニューフィード1と一緒にな
り、再度被粉砕物として前記粉砕テーブル4中央に投入
される。一方、比較的細かな粒子はガス流6と共に粉砕
テーブル4上に位置し垂直軸回りに回転するエアセパレ
ータ8へと運ばれ、ここで2回目の分級作用を受ける。
エアセパレータ8を通過した微粒子は吸引ファン27で
吸引され下流のバグブィルタ9で製品10として捕集さ
れる。エアセパレータ8を通過することができずに分離
された粒子は、ミル下部へ落下し、粉砕されるべく再び
粉砕テーブル4上へ導かれる。
[Prior Art] FIG. 2 is a schematic system diagram of a typical conventional vertical roller mill. An object to be ground (hereinafter referred to as a new feed) 1 supplied to a roller mill is thrown into a central portion of a grinding table 4 which is rotated around a vertical axis by a drive motor 3 through a material supply pipe 2 to be ground and ground by a centrifugal force. It is blown on the table 4 in the radial direction, and is crushed by being caught between the crushing table 4 and a plurality of crushing rollers 5 arranged on the circumference of the crushing table 4. The pulverized pulverized product is blown into the mill from below the outer periphery of the pulverizing table 4 by a gas flow 6
The particles are subjected to a classification action by and are divided into coarse particles and relatively fine particles. The coarse particles fall downward against the gas flow 6 and are carried upward as a stone discharge 7 by a belt conveyor or a bucket elevator to be combined with the new feed 1 and again as an object to be crushed, at the center of the crushing table 4 Be thrown into. On the other hand, the relatively fine particles are carried together with the gas flow 6 to the air separator 8 which is located on the crushing table 4 and rotates around the vertical axis, and undergoes the second classification action there.
The fine particles that have passed through the air separator 8 are sucked by the suction fan 27 and collected as the product 10 by the downstream bag filter 9. The particles that cannot pass through the air separator 8 and are separated fall into the lower part of the mill and are guided again onto the grinding table 4 so as to be ground.

このような竪型ローラミルにおいて、従来はミル入出口
の差圧(以下ミル差圧と称する)が所定の値になるよう
にニューフィード量を自動的に調整する制御方法が採ら
れている(ミル差圧定値制御方法)。さらに、製品の粒
度(平均径や比表面積)をある一定のレベルに保つため
に、ある一定の時間毎に製品のサンプルの粒度を測定
し、目標との偏差に応じて、前記エアセパレータ8の回
転数あるいはミル内を流れるガス流の流量(以下ミル風
量と称する)の設定値をオペレータが手動操作によって
変更している。
In such a vertical roller mill, conventionally, a control method has been adopted in which the new feed amount is automatically adjusted so that the differential pressure at the mill entrance and exit (hereinafter referred to as mill differential pressure) becomes a predetermined value (mill. Differential pressure constant value control method). Further, in order to maintain the particle size (average diameter or specific surface area) of the product at a certain level, the particle size of the sample of the product is measured at certain time intervals, and the air separator 8 is adjusted according to the deviation from the target. The operator manually changes the set value of the rotational speed or the flow rate of the gas flow flowing in the mill (hereinafter referred to as the mill airflow).

[発明が解消しようとする問題点] 通常ミル差圧は、竪型ローラミル内に滞留する原料の量
や排石量が増加すると大きくなり、逆に少なくなると小
さくなる。先に述べた竪型ローラミルの制御方法におい
てニューフィードの被粉砕性が変化した場合、たとえば
粉砕されにくくなった場合、次のように応答する。粒子
が全体的に粗くなるため、竪型ローラミル内に浮遊する
あるいは粉砕テーブル上に存在するミル内原料の滞留量
および排石量が増加し、その結果ミル差圧が増大し、あ
らかじめ定められた設定値から外れて自動的にニューフ
ィード量が減少する。このニューフィード量の減少によ
って大きくなった粉砕物粒度は再び細かくなり、ミル内
原料滞留量も以前の状態に戻る。ニューフィードの被粉
砕性が向上した場合には、この逆の操作が行われる。
[Problems to be Solved by the Invention] Normally, the differential pressure of a mill increases as the amount of raw material staying in the vertical roller mill and the amount of discharged stone increase, and decreases when the amount decreases. In the control method of the vertical roller mill described above, when the pulverizability of the new feed changes, for example, when it becomes difficult to pulverize, the following response is given. Since the particles become coarser as a whole, the amount of accumulated raw materials in the mill floating in the vertical roller mill or existing on the crushing table and the amount of discharged stones increase, and as a result, the differential pressure of the mill increases, which is predetermined. The new feed amount will decrease automatically if it deviates from the set value. The particle size of the pulverized product, which has increased due to the decrease in the new feed amount, becomes finer again, and the raw material retention amount in the mill also returns to the previous state. When the pulverizability of the new feed is improved, the reverse operation is performed.

従来の制御方法における制御の方法は、確かにミルの安
定化の方向と一致している。しかし、このようにミル内
の粉砕状態をミル差圧だけで代表させ、これをニューフ
ィード量の1操作変数で制御するミル差圧定値制御には
次のような問題がある。
The control method in the conventional control method certainly agrees with the stabilization direction of the mill. However, the mill differential pressure constant value control in which the pulverized state in the mill is represented by only the mill differential pressure and is controlled by one operation variable of the new feed amount has the following problems.

(1)被制御変数としてのミル差圧は、操作変数である
ニューフィード量に対する応答性が悪い上、ミル内の粉
砕状態が変化しても、その変化が排石量やミル内滞留量
の変化を通じてミル差圧に伝えられるために、ミル差圧
定値制御は非常に無駄時間のある遅れた制御になる。
(1) The mill differential pressure as a controlled variable has poor responsiveness to the new feed amount, which is an operation variable, and even if the pulverization state in the mill changes, the change does not affect the amount of discharged stones or the amount of retention in the mill. Since the mill differential pressure is transmitted through the change, the mill differential pressure constant value control becomes a delayed control with a very dead time.

(2)ミル差圧は外乱の大きさによる差圧の変動が小さ
いので、感度の点から被制御変数としてあまり好ましく
ない。
(2) The mill differential pressure is less preferable as a controlled variable from the viewpoint of sensitivity, because the fluctuation of the differential pressure due to the magnitude of disturbance is small.

(3)前述のようにミル差圧は、応答性、並びに感度の
悪い竪型ローラミル全体の粉砕状態を唯一代表する被制
御変数であるために、安定性を求めて、ミル差圧を小さ
く設定するとニューフィード量がオーバーアクションに
陥り、運転状態の変動を招きやすい。
(3) As described above, the mill differential pressure is a controlled variable that is the only representative of the pulverization state of the entire vertical roller mill, which has poor responsiveness and sensitivity. Therefore, the stability is required and the mill differential pressure is set small. Then, the new feed amount falls into over-action, which tends to cause a change in the operating condition.

(4)ミル運転の基準は製品の粒度であり、ミル差圧定
値制御が必ずしも製品粒度を一定に保つものではない。
製品粒度を代表する変数としては、ミルから発生する振
動や層厚の方がはるかに優れている。また、ニューフィ
ード量の製品粒度に対する影響度は小さく、たとえニュ
ーフィード量の操作によってミル差圧が一定に保たれて
いるとしても、製品粒度がある基準範囲内に管理されて
いるとはかぎらない。実際、実機竪型ローラミルではミ
ル差圧制御をおこなっているにもかかわらず、サンプリ
ングして分析した製品の粒度は変動している。そのため
に製品粒度が所定の管理値から外れないように、エアセ
パレータ回転数やミル風量の設定値をオペレータが手動
操作で操作し調整を行うことが多い。また、このミル風
量の設定値変更は、ミル差圧に直接影響を与え外乱要因
となるため、製品粒度がある基準範囲から外れないよう
にするためには、ミル差圧定値制御を外し、ニューフィ
ード量を手動あるいは自動定値制御に切換える必要があ
る。
(4) The standard of the mill operation is the particle size of the product, and constant mill differential pressure control does not always keep the product particle size constant.
Vibration and layer thickness generated from the mill are far superior as variables representative of product grain size. Also, the influence of the new feed amount on the product particle size is small, and even if the mill differential pressure is kept constant by the operation of the new feed amount, the product particle size is not always controlled within a certain standard range. . In fact, in the actual vertical roller mill, although the mill differential pressure control is performed, the particle size of the sampled and analyzed product varies. Therefore, in order to prevent the product grain size from deviating from a predetermined control value, the operator often manually adjusts the set values of the air separator rotation speed and the mill air flow rate. In addition, this change of the set value of the mill air flow directly affects the mill differential pressure and becomes a disturbance factor.Therefore, in order to prevent the product grain size from deviating from a certain reference range, remove the mill differential pressure constant value control It is necessary to switch the feed amount to manual or automatic constant value control.

(5)ミル差圧定値制御によって常に運転状態をミルの
消費電力原単位を最小にするような最適制御レベルに保
つことはできない。被制御変数ミル差圧が応答の遅い変
数である上、1操作変数によって制御するため上述のオ
ーバーアクションにみられるようにどうしても無理が生
じ、最適運転点からズレた点での運転になる。
(5) It is impossible to always maintain the operating state at the optimum control level that minimizes the power consumption of the mill by the constant value control of the mill differential pressure. The controlled variable mill differential pressure has a slow response, and since it is controlled by one manipulated variable, it is inevitable that there is an overshoot as seen in the above-mentioned overaction, and the operation is at a point deviated from the optimum operating point.

[問題点を解決するための手段] 先に、従来の制御方式の問題は、すべてミル差圧が被制
御変数として適当でないことにその原因があると述べ
た。そこで応答性,制御性に優れ、さらには製品粒度を
代表するような変数を被制御変数として用いれば、これ
らの問題を解決することができる。実機竪型ローラミル
に関する調査の結果、被制御変数の1つである振動は、
粉砕ローラと粉砕テーブルによって噛込まれた被粉砕物
の粉砕状態を表わし、また他の1つである層厚はニュー
フィード量を表わすことが分った。したがって、これら
振動と層厚の2変数の被制御変数と関係が強いニューフ
ィード量、ミル風量、粉砕ローラの圧縮力の3変数の操
作変数との関係より、振動と層厚の値によって、刻々操
作変数の操作量を計算し、操作量の変更を行うことによ
り、ローラミル運転の安定化を図るものである。
[Means for Solving Problems] It was stated above that all the problems of the conventional control method are caused by the fact that the mill differential pressure is not suitable as a controlled variable. Therefore, these problems can be solved by using, as the controlled variable, a variable having excellent responsiveness and controllability and which is representative of the product grain size. As a result of the investigation on the actual vertical roller mill, the vibration which is one of the controlled variables is
It has been found that the crushed state of the material crushed by the crushing roller and the crushing table represents the crushed state, and the other one, the layer thickness, represents the new feed amount. Therefore, from the relationship between these three variables, the new feed amount, the mill air flow, and the compression force of the crushing roller, which have a strong relationship with the two controlled variables of the vibration and the layer thickness, the values of the vibration and the layer thickness are changed every moment. The operation amount of the operation variable is calculated, and the operation amount is changed to stabilize the roller mill operation.

[作用] 時々刻々補正される振動と層厚の情報により、ニューフ
ィード量、ミル風量および粉砕ローラ圧縮力の適正な操
作値が自動的に積算される。その操作値を運転に用いる
ことによってミルの変動を素早く抑える。
[Operation] Appropriate operation values of the new feed amount, mill air amount, and crushing roller compression force are automatically integrated based on the vibration and layer thickness information that is corrected moment by moment. By using the operation value for operation, the fluctuation of the mill can be quickly suppressed.

[実施例] 本発明の制御方法をセメントクリンカ粉砕に適用した1
実施例を第1図に示し、以下にその詳細について説明す
る。
[Example] Application of the control method of the present invention to cement clinker grinding 1
An embodiment is shown in FIG. 1 and the details will be described below.

ニューフィード1であるセメントクリンカは、被粉砕物
供給管2を通じて、駆動モータ3によって垂直軸回りに
回転する粉砕テーブル4中央に投入され、遠心力によっ
て粉砕テーブル4上を半径方向に飛ばされ、前記粉砕テ
ーブル4と粉砕ローラ5の間に噛み込まれ粉砕される。
粉砕された粉砕物は粉砕テーブル4外周部下方からミル
内に吹込まれるガス流6により分級作用を受け、粗粒子
と比較的細かな粒子とに分けられる。粗粒子は前記ガス
流6に逆らって下へと落下し、排石7としてベルトコン
ベアやバケットエレベータで上方に運ばれ、ニューフィ
ード1と一緒になり、再度被粉砕物として粉砕テーブル
4中央に投入される。一方、比較的細かな粒子はガス流
6と共に粉砕テーブル4上に位置し垂直軸回りに回転す
るエアセパレータ8へと運ばれ、ここで2回目の分級作
用を受ける。エアセパレータ8を通った微粒子は吸引フ
ァン27で吸引され下流のバグフィルタ9で製品10と
して捕集される。エアセパレータ8を通過することがで
きずに分離された粒子はミル下部へ落下し、粉砕される
べく再び粉砕テーブル4上へ導かれる。
The cement clinker as the new feed 1 is thrown into the center of the crushing table 4 which is rotated around the vertical axis by the driving motor 3 through the crushed object supply pipe 2, and is blown in the radial direction on the crushing table 4 by the centrifugal force. It is bitten between the crushing table 4 and the crushing roller 5 and crushed.
The pulverized pulverized material is subjected to classification by the gas flow 6 blown into the mill from below the outer peripheral portion of the pulverization table 4, and is divided into coarse particles and relatively fine particles. The coarse particles fall downward against the gas flow 6, are carried upward as a stone discharge 7 by a belt conveyor or a bucket elevator, and are combined with the new feed 1 to be thrown into the center of the pulverizing table 4 again as an object to be pulverized. To be done. On the other hand, the relatively fine particles are carried together with the gas flow 6 to the air separator 8 which is located on the crushing table 4 and rotates around the vertical axis, and undergoes the second classification action there. The fine particles that have passed through the air separator 8 are sucked by a suction fan 27 and collected as a product 10 by a bag filter 9 located downstream. The particles which cannot pass through the air separator 8 and are separated fall to the lower part of the mill and are introduced again onto the crushing table 4 so as to be crushed.

このような竪型ローラミル粉砕システムにおいて本発明
を実施するために、まずミル本体には振動計11が、粉
砕ローラのアーム12およびミル本体には層厚計13
が、ニューフィード供給装置14には計量装置15が、
粉砕ローラ緊張圧調整ユニット16には緊張圧力計17
が、バグフィルタ出口ダクト18には風量測定装置1
9、ダンパ開度調節装置20がそれぞれ設置されてい
る。振動計11によって検出された信号はフィルタ21
を通り、不必要な周波数成分が除去され、コントローラ
26に送られる。同様に、層厚計13からの信号、計量
装置15からの信号、緊張圧力計17からの信号、ミル
風量測定装置19からの信号も、それぞれフィルタ2
2,23,24,25を通り、コントローラ26へ送ら
れる。これら5つの信号をもとに、コントローラ26内
部ではあらかじめ定められた計算式によりニューフィー
ド量、粉砕ローラ緊張圧力およびミル風量の操作量が計
算され、この計算値にしたがってニューフィード供給装
置14と緊張圧力調整ユニット16およびミル風量調整
用のダンパ開度調節装置20が自動的に制御される。
In order to carry out the present invention in such a vertical roller mill grinding system, first, a vibrometer 11 is provided on the mill body, and a layer thickness meter 13 is provided on the arm 12 of the milling roller and the mill body.
However, the new feed supply device 14 has a weighing device 15,
The crushing roller tension pressure adjusting unit 16 includes a tension pressure gauge 17
However, the air volume measuring device 1 is installed in the bag filter outlet duct 18.
9. A damper opening adjustment device 20 is installed. The signal detected by the vibrometer 11 is filtered by the filter 21.
Unnecessary frequency components are removed and sent to the controller 26. Similarly, the signal from the layer thickness gauge 13, the signal from the metering device 15, the signal from the tension pressure gauge 17, and the signal from the mill air flow measuring device 19 are also respectively filtered.
It is sent to the controller 26 through 2, 23, 24 and 25. Based on these five signals, the operation amounts of the new feed amount, the crushing roller tension pressure, and the mill air amount are calculated in the controller 26 by a predetermined calculation formula, and the new feed supply device 14 and the tension are controlled according to the calculated values. The pressure adjusting unit 16 and the damper opening adjusting device 20 for adjusting the mill air flow rate are automatically controlled.

このような竪型ローラミル粉砕システムにおいては、操
作変数である被粉砕物のニューフィード量を大きくする
と、被粉砕物の層厚は大きくなり、ミル振動が小さくな
る。別の操作変数であるミル風量を大きくすると、被粉
砕物の層厚は小さくなり、ミル振動が小さくなる。さら
にもう一つの操作変数であるローラ緊張圧力を大きくす
ると、被粉砕物の層厚は小さくなり、ミル振動が大きく
なる。
In such a vertical roller mill crushing system, when the new feed amount of the crushed object, which is an operation variable, is increased, the layer thickness of the crushed object is increased and the mill vibration is reduced. When the amount of mill air flow, which is another operation variable, is increased, the layer thickness of the object to be crushed is reduced, and the mill vibration is reduced. When the roller tension pressure, which is another operation variable, is increased, the layer thickness of the object to be crushed is reduced, and the mill vibration is increased.

このことの理由について詳述すると、 ニューフィード量を大きくすると、粉砕テーブル4上
の被粉砕物の層厚が大きくなり、被粉砕物を圧下してい
る粉砕ローラ5は持ち上げられて上昇傾向になるが、粉
砕ローラ5と粉砕テーブル4の間の被粉砕物層が厚くな
るため被粉砕物がクッションとなってミル振動は低下減
少する。
The reason for this will be described in detail. When the new feed amount is increased, the layer thickness of the material to be ground on the grinding table 4 is increased, and the grinding roller 5 pressing down the material to be ground is lifted and tends to rise. However, since the crushed object layer between the crushing roller 5 and the crushing table 4 becomes thick, the crushed object serves as a cushion, and the vibration of the mill decreases and decreases.

ニューフィード量を減少すると、層厚、ミル振動ともこ
の逆の動きをする。
When the amount of new feed is decreased, the layer thickness and mill vibration move in the opposite direction.

ミル通過風量を大きくすると、エアセパレータ8を通
過する原料粉のうち、エアセパレータ8で捕集された原
料粉(エアセパレータ8を通過することができずに分離
された粒子)が風速に負けて下方の粉砕テーブル4方向
に向かわずにミル排出口へ流れ、結果としてミルの粉砕
テーブル4上に落下する原料粉の量が減少する。このた
め、粉砕テーブル4上の被粉砕物には粉が減ってきて、
被粉砕の層厚が減少し、さらに、粉砕テーブル4と粉砕
ローラ5の間の微粉が減少することにより、粉砕ローラ
5のスリップが低減し、被粉砕物の噛み込みがよくな
り、ミル振動は低減する。なお、粉が粉砕テーブル4上
に多いと被粉砕物層厚中でスリップしやすくなる。
When the flow rate through the mill is increased, among the raw material powders passing through the air separator 8, the raw material powders collected by the air separator 8 (particles separated without being able to pass through the air separator 8) lose to the wind speed. The amount of the raw material powder flowing to the mill discharge port without going to the lower crushing table 4 and falling on the crushing table 4 of the mill is reduced. Therefore, the amount of powder on the crushed object on the crushing table 4 is reduced,
By reducing the layer thickness of the crushed powder and further reducing the fine powder between the crushing table 4 and the crushing roller 5, the slip of the crushing roller 5 is reduced, the crushing of the crushed material is improved, and the mill vibration is reduced. Reduce. It should be noted that if a large amount of powder is present on the crushing table 4, slipping easily occurs in the crushed object layer thickness.

ミル風量を減少させると、全く逆の現象が起こる。When the mill air volume is reduced, the exact opposite phenomenon occurs.

ローラ緊張圧力を増加させると、粉砕テーブル4上の
被粉砕物は粉砕ローラ5に圧下されて層厚が減少する。
より強く原料が圧密されるため粉砕テーブル4上の被粉
砕物は微粉に粉砕されやすくなり、粉砕テーブル4上に
粉が多くなる。このため、被粉砕物層内でスリップが発
生し、被粉砕物が不安定になり、ミル振動は増加する。
When the roller tension pressure is increased, the material to be ground on the grinding table 4 is pressed down by the grinding roller 5 and the layer thickness is reduced.
Since the raw material is more strongly consolidated, the object to be crushed on the crushing table 4 is easily crushed into fine powder, and the powder on the crushing table 4 increases. For this reason, slip occurs in the crushed material layer, the crushed material becomes unstable, and the mill vibration increases.

ローラ緊張圧力を減少させると全く逆の現象が起こる。The opposite phenomenon occurs when the roller tension pressure is reduced.

以上のように、被制御変数である層厚とミル振動の信号
の動きは、操作変数であるニューフィード量、ミル風
量、ローラ緊張圧力のうち何を操作するかによって前記
、、の通りの因果関係によりそれぞれ別の動きを
する。
As described above, the movements of the layer thickness which is a controlled variable and the signal of the mill vibration depend on what is manipulated among the new feed amount, the mill air flow, and the roller tension pressure which are the operating variables. Each move differently depending on the relationship.

このような5つの変数相互間の影響を考慮して多変数制
御系としてはつぎのように動作させる。
In consideration of such influence among the five variables, the multivariable control system is operated as follows.

即ち、被制御変数としてのミル振動が大きくなったら、
その程度に応じて、操作変数のミルへの被粉砕物のニュ
ーフィード量を大きくし、操作変数のローラ緊張圧力を
小さくし、操作変数のミル風量を大きくするようにし
て、被制御変数としてのミル振動を小さくし、もとの安
定した状態に復帰させる。
That is, if the mill vibration as the controlled variable becomes large,
Depending on the degree, the new feed amount of the crushed material to the mill, which is an operation variable, is increased, the roller tension pressure, which is an operation variable, is decreased, and the mill air flow, which is an operation variable, is increased. Reduces mill vibration and restores the original stable state.

また、被制御変数としての被粉砕物の層厚が大きくなっ
たら、その程度に応じて、操作変数のミルへの被粉砕物
のニューフィード量を小さくし、操作変数のローラ緊張
圧力を大きくし、操作変数のミル風量を大きくするよう
にして、被制御変数としての被粉砕物の層厚を小さく
し、もとの安定した状態に復帰させる。
Also, when the layer thickness of the crushed object as the controlled variable becomes large, the new feed amount of the crushed object to the mill of the manipulated variable is decreased and the roller tension pressure of the operated variable is increased according to the degree. By increasing the mill variable of the operation variable, the layer thickness of the crushed object as the controlled variable is decreased, and the original stable state is restored.

なお、前記被制御変数としてのミル振動や被粉砕物の層
厚が前記とは逆の状態の大きさになったときには、前記
3つの操作変数をそれぞれ前記とは逆の状態の大きさに
なるようにして、もとの安定した状態に戻すなどの逆操
作をさせることは勿論である。
When the mill vibration as the controlled variable or the layer thickness of the material to be crushed becomes the size of the state opposite to the above, each of the three operation variables becomes the size of the state opposite to the above. Thus, it goes without saying that a reverse operation such as returning to a stable state is performed.

[発明の効果] 以上説明したように、本発明によって従来の竪型ローラ
ミルの制御方法の持つ問題点を解決することができ、次
のような効果がある。
[Effects of the Invention] As described above, the present invention can solve the problems of the conventional control method for the vertical roller mill, and has the following effects.

(1)ミルから発生する振動と、粉砕テーブルと粉砕ロ
ーラとの間にはさまれた粉砕物の層厚の2変数を被制御
変数とするため、ミル内の粉砕状態と粉砕物の量を正確
に、かつ素早く検知でき、反動に対して適切な対応を措
ることができる。
(1) Since the two variables of the vibration generated from the mill and the layer thickness of the crushed material sandwiched between the crushing table and the crushing roller are the controlled variables, the crushed state in the mill and the amount of crushed material are controlled. It can detect accurately and quickly, and can take appropriate measures against recoil.

(2)ニューフィード量,粉砕ローラ緊張圧力,ミル風
量の3変数を操作変数とするために、振動や層厚によっ
て検出された外乱による変動を素早く制御することがで
きる。
(2) Since the three variables of the new feed amount, the crushing roller tension pressure, and the mill air volume are used as the operating variables, the fluctuation due to the disturbance detected by the vibration or the layer thickness can be quickly controlled.

(3)3つの操作変数で制御するために各操作変数の操
作幅が小さくオーバーアクションにならず、ミルに対し
余計な外乱を与えるようなことがない。また、最適運転
状態から大きく外れることもなく、常に最適運転点近辺
での運転が可能となる。
(3) Since the operation width of each operation variable is small because it is controlled by three operation variables, no overaction occurs and no extra disturbance is given to the mill. Further, it is possible to always operate in the vicinity of the optimum operating point without largely deviating from the optimum operating state.

(4)上記(1),(2) の理由で、ミルの運転状態が非常に
安定し、製品の粒度の変動を極めて小さく抑えることが
できる。
(4) Due to the reasons (1) and (2) above, the mill operating conditions are very stable, and fluctuations in the product grain size can be suppressed to an extremely small level.

(5)上記(3) の理由によりミルの効率的運転が可能に
なるため、省エネルギ化を図ることができる。
(5) Because of the reason (3) above, the mill can be efficiently operated, and energy can be saved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例を示す概略系統図、第2図は
従来の代表的な竪型ローラミルの概略系統図である。 1……ニューフィード、2……被粉砕物供給管、 3……駆動モータ、4……粉砕テーブル、 5……粉砕ローラ、6……ガス流、 7……排石、8……エアセパレータ、 9……バグフィルタ、10……製品、 11……振動計、12……アーム、 13……層厚計、 14……ニューフィード供給装置、 15……計量装置、 16……粉砕ローラ緊張圧調整ユニット、 17……緊張圧力計、 18……バグフィルタ出口ダクト、 19……風量測定装置、 20……ダンパ開度調節装置、 21〜25……フィルタ、 26……コントローラ、 27……吸引ファン。
FIG. 1 is a schematic system diagram showing one embodiment of the present invention, and FIG. 2 is a schematic system diagram of a typical conventional vertical roller mill. 1 ... New feed, 2 ... Grinding material supply pipe, 3 ... Drive motor, 4 ... Grinding table, 5 ... Grinding roller, 6 ... Gas flow, 7 ... Stone discharge, 8 ... Air separator , 9 ... Bag filter, 10 ... Product, 11 ... Vibrometer, 12 ... Arm, 13 ... Layer thickness gauge, 14 ... New feed supply device, 15 ... Measuring device, 16 ... Grinding roller tension Pressure adjusting unit, 17 ... tension pressure gauge, 18 ... bag filter outlet duct, 19 ... air volume measuring device, 20 ... damper opening adjusting device, 21-25 ... filter, 26 ... controller, 27 ... Suction fan.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水平に回転する粉砕テーブルとこの粉砕テ
ーブル上面に押圧されつつ回転する粉砕ローラとの間で
被粉砕物を粉砕し、粉砕した被粉砕物を粉砕テーブル上
方のエアセパレータで粗粉と微粉に分級し粗粉を粉砕テ
ーブル上へ戻して再粉砕する竪型ローラミルにおいて、
前記竪型ローラミルから発生する振動と、前記粉砕テー
ブルと粉砕ローラとの間に挟まれた被粉砕物の層厚の2
変数を被制御変数とし、かつ竪型ローラミルへ新しく供
給される被粉砕物の量と、前記粉砕テーブルに前記粉砕
ローラを押し付ける緊張圧力および前記粉砕テーブル下
方より竪型ローラミル内に導入されるガス流量の3変数
を操作変数として、以上5変数を多変数制御系に組入
れ、被制御変数としての前記振動が大きくなったとき、
操作変数としての前記ミルへの被粉砕物の供給量、前記
緊張圧力、および前記ミルに導入されるガス流量を、そ
れぞれ、大、小、大、になるようにし、また、被制御変
数としての前記層厚が大きくなったとき、操作変数とし
ての前記ミルへの被粉砕物の供給量、前記緊張圧力、お
よび前記ミルに導入されるガス流量を、それぞれ小、
大、大、になるようにして、被制御変数をもとの大きさ
に戻し、もとの安定した状態に復帰させるように、被制
御変数と操作変数相互間の影響を考慮して、前記2被制
御変数と3操作変数の5変数をもって総合的に運転を制
御することを特徴とする竪型ローラミルの運転制御方
法。
1. A crushed object is crushed between a horizontally rotating crushing table and a crushing roller which is rotated while being pressed against the upper surface of the crushing table, and the crushed crushed object is coarse powdered by an air separator above the crushing table. In a vertical roller mill that classifies into fine powder and returns coarse powder to the crushing table and crushes again
The vibration generated from the vertical roller mill and the layer thickness of the crushed object sandwiched between the crushing table and the crushing roller are 2
The variable is a controlled variable, and the amount of the crushed material newly supplied to the vertical roller mill, the tension pressure for pressing the crushing roller against the crushing table, and the gas flow rate introduced into the vertical roller mill from below the crushing table. When the above-mentioned 5 variables are incorporated into a multivariable control system and the above-mentioned vibrations as controlled variables become large,
The supply amount of the material to be crushed to the mill as an operation variable, the tension pressure, and the gas flow rate introduced into the mill are set to be large, small, and large, respectively. When the layer thickness becomes large, the supply amount of the pulverized material to the mill as an operation variable, the tension pressure, and the gas flow rate introduced into the mill are small, respectively.
Considering the influence between the controlled variable and the manipulated variable in order to return the controlled variable to the original size and to return to the original stable state by setting the large and large, An operation control method for a vertical roller mill, characterized in that the operation is comprehensively controlled by using 5 variables, 2 controlled variables and 3 operation variables.
JP62190278A 1987-07-31 1987-07-31 Vertical roll mill operation control method Expired - Lifetime JPH0626677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62190278A JPH0626677B2 (en) 1987-07-31 1987-07-31 Vertical roll mill operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62190278A JPH0626677B2 (en) 1987-07-31 1987-07-31 Vertical roll mill operation control method

Publications (2)

Publication Number Publication Date
JPS6434448A JPS6434448A (en) 1989-02-03
JPH0626677B2 true JPH0626677B2 (en) 1994-04-13

Family

ID=16255502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62190278A Expired - Lifetime JPH0626677B2 (en) 1987-07-31 1987-07-31 Vertical roll mill operation control method

Country Status (1)

Country Link
JP (1) JPH0626677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795362B2 (en) * 1991-10-15 1998-09-10 宇部興産株式会社 Crushing equipment
JP2795363B2 (en) * 1991-10-18 1998-09-10 宇部興産株式会社 Crushing equipment
JP2709666B2 (en) * 1991-10-18 1998-02-04 宇部興産株式会社 Vertical crusher
JPH10325358A (en) 1997-05-26 1998-12-08 Isuzu Motors Ltd Structure and method for assembling cylinder block and crank case
JP2007309513A (en) * 2006-04-20 2007-11-29 Isel Co Ltd Fixing structure and fixing method
JP7069799B2 (en) * 2018-02-16 2022-05-18 株式会社Ihi Control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287260A (en) * 1985-10-11 1987-04-21 日鉄鉱業株式会社 Automatic operation controller for roller mill

Also Published As

Publication number Publication date
JPS6434448A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
KR900000885B1 (en) Sand producing method and apparatus
US4640464A (en) Roller mill control system
JPH0626677B2 (en) Vertical roll mill operation control method
JP6261585B2 (en) Crushing method
JP2795363B2 (en) Crushing equipment
JPH0584447A (en) Vertical grinder
JPH08309225A (en) Pulverizer equipped with fluidized bed type classifier
JP2613509B2 (en) Vertical crusher
JP5057214B2 (en) Control method of vertical crusher
JPH05104011A (en) Automatic operation of vertical pulverizer
JP2001340780A (en) Classification control method for vertical mill
JP2817859B2 (en) Vertical crusher
JP2795361B2 (en) Crushing equipment
JP3036669B2 (en) Crushing equipment
JP2709666B2 (en) Vertical crusher
JPH0515805A (en) Grinding device
JPH04210254A (en) Crushing method by jet mill
JP2711775B2 (en) Vertical crusher
JPH0380063B2 (en)
JP2711774B2 (en) Operating method of vertical mill
JP2795362B2 (en) Crushing equipment
JPH0479704B2 (en)
JP2613508B2 (en) Vertical crusher
JPH07328466A (en) Roller mill, method of controlling feed quantity of raw material for the same and device therefor
JPH0418938A (en) Operating method for vertical type roller mill