JPH06265741A - Optical semiconductor device and its production - Google Patents

Optical semiconductor device and its production

Info

Publication number
JPH06265741A
JPH06265741A JP4972393A JP4972393A JPH06265741A JP H06265741 A JPH06265741 A JP H06265741A JP 4972393 A JP4972393 A JP 4972393A JP 4972393 A JP4972393 A JP 4972393A JP H06265741 A JPH06265741 A JP H06265741A
Authority
JP
Japan
Prior art keywords
waveguide
clad layer
region
waveguides
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4972393A
Other languages
Japanese (ja)
Inventor
Hirohide Kurakake
博英 倉掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4972393A priority Critical patent/JPH06265741A/en
Publication of JPH06265741A publication Critical patent/JPH06265741A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To strictly control the coupling length of the vertical type directional coupler. CONSTITUTION:This vertical type directional coupler has waveguides at the top and bottom thereof. A buffer layer having a transparent region and absorption region to using light exists between the upper and lower waveguides. This process for production has stages for successively growing a lower clad layer 2, the lower waveguide 3 and an upper clad layer 4 of the lower waveguide on a substrate 1, opening the region including the lower waveguide in a stripe form on this upper clad layer, forming a selective growth mask 9 having the region of the large stripe width and region of the small stripe width in the direction perpendicular to the waveguides on both sides of the aperture, removing this selective growth mask, successively growing the lower clad layer 6 of the upper waveguide, the upper waveguide 7 and the upper clad layer of the upper waveguide on the substrate to cover the buffer layer and working the layers from the upper clad layer down to at least the buffer layer in the stripe form along the waveguide direction so as to make the width smaller than the opening width.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光半導体装置に係り,特
に,光通信システムにおいて光スイッチを行う縦型方向
性結合器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device, and more particularly to a vertical directional coupler for performing an optical switch in an optical communication system.

【0002】光ファイバを伝送路として用いる光通信シ
ステムの実用化が進み,近年,加入者系への対応が考え
られるようになっている。このシステムでは光信号を自
由に分岐できる光スイッチ素子が重要な役割を持ってお
り,コンパクトな光スイッチ素子の実現が望まれる。
An optical communication system using an optical fiber as a transmission line has been put into practical use, and in recent years, it has been considered to support a subscriber system. In this system, an optical switch element that can freely branch optical signals plays an important role, and it is desirable to realize a compact optical switch element.

【0003】[0003]

【従来の技術】方向性結合器では,2個以上の導波路が
光学的に結合することで,導波路間の光の移行が行われ
る。従来の縦型方向性結合器は図2に示されるように,
半導体基板上に上下2個の導波路を形成し,一方の導波
路に電圧を加えて屈折率を変化させて両方の導波路の結
合係数を変えて導波路間の光の移行(光のスイッチン
グ)を行っている。
2. Description of the Related Art In a directional coupler, two or more waveguides are optically coupled to each other, whereby light is transferred between the waveguides. The conventional vertical directional coupler is as shown in FIG.
Two upper and lower waveguides are formed on a semiconductor substrate, a voltage is applied to one of the waveguides to change the refractive index, and the coupling coefficient of both waveguides is changed to shift light between the waveguides (optical switching). )It is carried out.

【0004】方向性結合器の等の複数の導波路を持つ構
造では, 光の界分布に2つの奇対象モードができる。こ
の2つのモードが導波路中を進む速さが異なるため,方
向性結合器の始点からの距離によって2つのモードの位
相が違っている。2つのモードの位相が一致するような
場所では2つのモードは強め合い,例えば,上側の導波
路にのみ光の界分布が現れる。位相がπ/2ずれたとき
には,2つのモードは打ち消し合って下側の導波路にの
み光の界分布を持つ。
In a structure having a plurality of waveguides such as a directional coupler, there are two odd target modes in the field distribution of light. Since the two modes travel at different speeds in the waveguide, the phases of the two modes differ depending on the distance from the starting point of the directional coupler. In a place where the phases of the two modes coincide with each other, the two modes strengthen each other, and, for example, the field distribution of light appears only in the upper waveguide. When the phases are deviated by π / 2, the two modes cancel each other and have a light field distribution only in the lower waveguide.

【0005】通常,上側の導波路にのみ光の界分布が存
在する位置から,下側の導波路にのみ光の界分布が存在
する位置までの距離を完全移行長と呼び,この長さでは
上側の導波路に入れた光はすべて下側の導波路に移行す
る。
Usually, the distance from the position where the light field distribution exists only in the upper waveguide to the position where the light field distribution exists only in the lower waveguide is called the complete transition length. All the light entering the upper waveguide is transferred to the lower waveguide.

【0006】この完全移行長は複数の導波路を持つ構造
の2つの奇対象モードの進む速さの違いによって決まる
が,この量は導波路間の距離や屈折率に大きく依存して
いる。従って,電圧により屈折率が変化することにより
完全移行長が変化し,電圧を印加しない場合には上側の
導波路に入れた光が下側の導波路に移っていたのに,電
圧を印加することにより下側の導波路から全く光を取り
出すことができなくなる。このようにして,光のスイッ
チングを行うことができる。
The complete transition length is determined by the difference in the traveling speeds of the two odd symmetrical modes in the structure having a plurality of waveguides, and this amount greatly depends on the distance between the waveguides and the refractive index. Therefore, when the voltage is not applied, the complete transition length is changed by changing the refractive index with the voltage, and when the voltage is not applied, the light that was put in the upper waveguide is transferred to the lower waveguide, but the voltage is applied. As a result, no light can be extracted from the lower waveguide. In this way, light switching can be performed.

【0007】[0007]

【発明が解決しようとする課題】方向性結合器では,2
個の導波路の結合する長さ(結合長)により,一方の導
波路から他方の導波路へ移行する光の割合が決まる。従
来例では,結合長は素子長であり,素子長を厳密に制御
することは難しく,素子ごとの結合長が一定しないでば
らついていた。また, 従来例では結合長=素子長である
ため素子のモノリシック集積化が困難であった。
In the directional coupler, 2
The coupling length of the individual waveguides (coupling length) determines the proportion of light that travels from one waveguide to the other. In the conventional example, the coupling length is the element length, and it is difficult to strictly control the element length, and the coupling length varies from element to element. Further, in the conventional example, it was difficult to monolithically integrate the elements because the coupling length = the element length.

【0008】本発明は縦型方向性結合器の結合長を厳密
に制御することを目的とする。
The object of the present invention is to strictly control the coupling length of a vertical directional coupler.

【0009】[0009]

【課題を解決するための手段】上記課題の解決は, 1)結合器を構成する2つの導波路が上下に積層された
縦型方向性結合器であって,該上下の導波路間に使用光
に対して透明領域と吸収領域とを有するバッファ層が存
在する光半導体装置,あるいは 2)半導体基板 1上に下部導波路の下側クラッド層 2,
下部導波路 3, 下部導波路の上側クラッド層 4を順に成
長する工程と,下部導波路の上側クラッド層上に,該下
部導波路を含んだ領域がストライプ状に開口され,開口
部の両側に導波路に垂直な方向のストライプ幅が大きい
領域と小さい領域を有する選択成長マスク9を形成し,
バッファ層 5を成長する工程と,該選択成長マスクを除
去し,該バッファ層を覆って, 該基板上に上部導波路の
下側クラッド層 6, 上部導波路 7 ,上部導波路の上側ク
ラッド層 8を順に成長する工程と,該開口幅より小さく
なるように,上側クラッド層より少なくとも該バッファ
層まで導波路方向に沿ってストライプ状に加工する工程
とを有する光半導体装置の製造方法により達成される。
Means for Solving the Problems To solve the above problems, 1) a vertical directional coupler in which two waveguides constituting a coupler are stacked one above the other is used between the upper and lower waveguides. An optical semiconductor device having a buffer layer having a transparent region and an absorption region for light, or 2) a lower clad layer for a lower waveguide on a semiconductor substrate 1,
The step of growing the lower waveguide 3 and the upper clad layer 4 of the lower waveguide in order, and the region including the lower waveguide is opened in a stripe shape on the upper clad layer of the lower waveguide, and on both sides of the opening. Forming a selective growth mask 9 having a region with a large stripe width and a region with a small stripe width in the direction perpendicular to the waveguide,
Growing the buffer layer 5, removing the selective growth mask, covering the buffer layer, the lower clad layer 6 of the upper waveguide on the substrate 6, the upper waveguide 7, the upper clad layer of the upper waveguide This is achieved by a method for manufacturing an optical semiconductor device, which includes a step of sequentially growing 8 and a step of processing from the upper cladding layer to at least the buffer layer in a stripe shape along the waveguide direction so as to be smaller than the opening width. It

【0010】[0010]

【作用】本発明では上下導波路に挿入されるバッファ層
の成長の際に, ストライプ状の開口部をもつ選択成長マ
スクのストライプ幅を透明領域で狭くし,吸収領域で広
くして成長することにより,開口の広域領域と狭域領域
に取り込まれる原料の比率を変えて両領域の成長膜のバ
ンドギャップを変えている。すなわち,両方の領域のバ
ンドギャップを変えている。光の結合部でない部分では
吸収領域が存在するため導波路間に界分布の重畳が起こ
らず結合しない。ところが結合部ではバッファ層が透明
であるため,上下の導波路間に結合が起こり,透明領域
の長さが結合長となる。この結果,結合長はマスクの精
度で決まり厳密に制御することができ,導波路間の光の
移行割合も厳密に制御できる。
According to the present invention, when the buffer layers inserted in the upper and lower waveguides are grown, the stripe width of the selective growth mask having a stripe-shaped opening is narrowed in the transparent region and grown in the absorption region. As a result, the band gap of the growth film in both regions is changed by changing the ratio of the raw material taken into the wide area and the narrow area of the opening. That is, the band gaps of both regions are changed. Since there is an absorption region in the part other than the light coupling part, the field distribution does not overlap between the waveguides, and the light is not coupled. However, since the buffer layer is transparent at the coupling portion, coupling occurs between the upper and lower waveguides, and the length of the transparent region becomes the coupling length. As a result, the coupling length is determined by the precision of the mask and can be strictly controlled, and the light transfer ratio between the waveguides can also be strictly controlled.

【0011】マスクのストライプ幅によりバッファ層の
バンドギャップが変わる理由は以下のように考えられ
る。マスクを開口部の両側に形成した場合,マスク上に
は成長しないため,マスク上の気相から開口部へと原料
種の濃度勾配がつき,この濃度勾配によって拡散してく
る原料種の量が異なる。マスク幅が広いほど多くの原料
種が開口部に集まってくる。このような成長法では,開
口部に成長した材料は両側のマスクの幅によって組成お
よび膜厚が変わる。
The reason why the band gap of the buffer layer changes depending on the stripe width of the mask is considered as follows. When the mask is formed on both sides of the opening, it does not grow on the mask, so that there is a concentration gradient of the raw material species from the vapor phase on the mask to the opening, and the concentration of the raw material species diffused by this concentration gradient. different. The wider the mask width, the more raw material species will gather in the openings. In such a growth method, the composition and film thickness of the material grown in the opening changes depending on the widths of the masks on both sides.

【0012】この方法により多重量子井戸(MQW) を成長
すると, 主に膜厚がマスク幅の広いところで厚くなり,
量子効果のためにエネルギーギャップが短波長側へとシ
フトする。
When a multiple quantum well (MQW) is grown by this method, the film thickness increases mainly in the wide mask width,
The energy gap shifts to the short wavelength side due to the quantum effect.

【0013】[0013]

【実施例】図1(A),(B) は本発明の実施例の説明図であ
る。図1(A) は断面図, 図1(B) はバッファ層の選択成
長マスクの平面図である。
Embodiments FIGS. 1A and 1B are explanatory views of an embodiment of the present invention. FIG. 1 (A) is a sectional view, and FIG. 1 (B) is a plan view of a selective growth mask for a buffer layer.

【0014】図1(A) において,半導体基板 1の上に下
部導波路の下側クラッド層 2, 下部導波路 3, 下部導波
路の上側クラッド層 4を順に成長する。次に, 下部導波
路の上側クラッド層 4上に図1(B) の二酸化シリコン(S
iO2)膜からなる選択成長マスク 9を形成し,バッファ層
5を成長する。
In FIG. 1A, a lower clad layer 2, a lower waveguide 3, and an upper clad layer 4 of the lower waveguide 4 are sequentially grown on a semiconductor substrate 1. Next, on the upper clad layer 4 of the lower waveguide, the silicon dioxide (S
The selective growth mask 9 made of iO 2 ) film is formed, and the buffer layer is formed.
Grow up 5.

【0015】このとき, マスクのストライプ幅Wにより
バッファ層 5の組成EL (エレクトロルミネセンス) 波長
が変化し,マスクのストライプ幅の狭い領域が透明領域
となり,広い領域が吸収領域となる。
At this time, the composition EL (electroluminescence) wavelength of the buffer layer 5 changes depending on the stripe width W of the mask, and the narrow area of the mask stripe becomes the transparent area and the wide area becomes the absorption area.

【0016】次に,マスク 9を除去し,ストライプ状に
加工されたバッファ層 5を覆って,上部導波路の下側ク
ラッド層 6, 上部導波路 7, 上部導波路の上側クラッド
層 8を順に成長する。
Next, the mask 9 is removed, the buffer layer 5 processed into a stripe shape is covered, and the lower clad layer 6 of the upper waveguide 6, the upper waveguide 7, and the upper clad layer 8 of the upper waveguide are sequentially formed. grow up.

【0017】次に, 選択成長されたバッファ層 5のスト
ライプ幅より小さくなるように, 上側クラッド層 8から
バッファ層 5を含んでエッチングする。次に, 各部の諸
元の一例を示す。
Next, the upper cladding layer 8 and the buffer layer 5 are etched so as to be smaller than the stripe width of the selectively grown buffer layer 5. Next, an example of specifications of each part is shown.

【0018】[0018]

【表1】 符号 組成 導電型 ドーパント 不純物濃度 (cm-3) 厚さ (μm) 1 InP n Se 1E18 − 2 InP n Se 1E18 1 3 InGaAsP n Se 1E18 0.1 (λg =1.45μm) 4 InP n Se 1E18 0.2 5 MQW n Se 1E18 − 6 InP n Se 1E18 0.2 7 InGaAsP p Zn 1E18 0.1 (λg =1.45μm) 8 InP p Zn 1E18 0.1 9 SiO2 − − − 1 ここで,バッファMQW 層 5は, ウエル層として厚さ10nm
のInGaAsP(λg =1.55μm) を20層, バリア層として厚
さ10nmのInGaAsP(λg =1.3 μm) を21層交互に積層さ
れる。
[Table 1] Code composition Conductivity type dopant Impurity concentration (cm -3 ) Thickness (μm) 1 InP n Se 1E18 − 2 InP n Se 1E18 1 3 InGaAsP n Se 1E18 0.1 (λ g = 1.45 μm) 4 InP n Se 1E18 0.2 5 MQW n Se 1E18 − 6 InP n Se 1E18 0.2 7 InGaAsP p Zn 1E18 0.1 (λ g = 1.45 μm) 8 InP p Zn 1E18 0.1 9 SiO 2 − − − 1 where the buffer MQW layer 5 is the well 10 nm thickness as a layer
20 layers of InGaAsP (λ g = 1.55 μm) and 21 layers of InGaAsP (λ g = 1.3 μm) with a thickness of 10 nm are alternately laminated as a barrier layer.

【0019】また,バッファMQW 層の成長条件の一例を
次に示す。 原料ガス:アルシン(AH3),フォスフィン(PH3),トリメチ
ルイジウム(TMI),トリエチルガリウム(TEG). ガス圧力:75 Torr 基板温度: 700℃ マスクのストライプ幅:透明領域(小)3μm/吸収領域
(大)10μm この時のバッファ層の組成はエネルギー表示(波長表
示)で,透明領域で0.84eV(1.48μm), 吸収領域で0.
785 eV(1.58μm)となる。
An example of growth conditions for the buffer MQW layer is shown below. Source gas: arsine (AH 3 ), phosphine (PH 3 ), trimethylidium (TMI), triethylgallium (TEG). Gas pressure: 75 Torr Substrate temperature: 700 ° C Mask stripe width: Transparent area (small) 3 μm / Absorption area (large) 10 μm The composition of the buffer layer at this time is energy display (wavelength display), 0.84 eV (1.48 μm) in the transparent area, and 0 in the absorption area.
It becomes 785 eV (1.58 μm).

【0020】なお,実施例の方向性結合器に使用する光
の波長は 1.5μmである。
The wavelength of light used in the directional coupler of the embodiment is 1.5 μm.

【0021】[0021]

【発明の効果】本発明によれば,縦型方向性結合器の結
合長をバッファ層の成長マスクの幅により厳密に制御す
ることができるようになった。この結果,導波路間の光
の移行割合を一定化して素子間のばらつきを抑えること
ができた。
According to the present invention, the coupling length of the vertical directional coupler can be strictly controlled by the width of the growth mask of the buffer layer. As a result, the rate of light transfer between the waveguides was kept constant and variations among the devices could be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 従来例の説明図FIG. 2 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 下部導波路の下側クラッド層 3 下部導波路 4 下部導波路の上側クラッド層 5 バッファ層 6 上部導波路の下側クラッド層 7 上部導波路 8 上部導波路の上側クラッド層 9 バッファ層の成長マスク 1 semiconductor substrate 2 lower clad layer of lower waveguide 3 lower waveguide 4 upper clad layer of lower waveguide 5 buffer layer 6 lower clad layer of upper waveguide 7 upper waveguide 8 upper clad layer of upper waveguide 9 buffer Layer growth mask

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結合器を構成する2つの導波路が上下に
積層された縦型方向性結合器であって,該上下の導波路
間に使用光に対して透明領域と吸収領域とを有するバッ
ファ層が存在することを特徴とする光半導体装置。
1. A vertical directional coupler in which two waveguides constituting a coupler are stacked one above the other and having a transparent region and an absorption region for the used light between the upper and lower waveguides. An optical semiconductor device having a buffer layer.
【請求項2】 半導体基板(1) 上に下部導波路の下側ク
ラッド層(2) , 下部導波路(3), 下部導波路の上側クラ
ッド層(4)を順に成長する工程と,下部導波路の上側ク
ラッド層上に,該下部導波路を含んだ領域がストライプ
状に開口され,開口部の両側に導波路に垂直な方向のス
トライプ幅が大きい領域と小さい領域を有する選択成長
マスク(9) を形成し,バッファ層(5) を成長する工程
と,該選択成長マスクを除去し,該バッファ層を覆っ
て, 該基板上に上部導波路の下側クラッド層(6) , 上部
導波路(7) , 上部導波路の上側クラッド層(8) を順に成
長する工程と,該開口幅より小さくなるように,上側ク
ラッド層より少なくとも該バッファ層まで導波路方向に
沿ってストライプ状に加工する工程とを有することを特
徴とする光半導体装置の製造方法。
2. A step of growing a lower clad layer (2) of the lower waveguide, a lower waveguide (3), and an upper clad layer (4) of the lower waveguide in this order on a semiconductor substrate (1), A region including the lower waveguide is opened in a stripe shape on the upper clad layer of the waveguide, and a selective growth mask (9) having a region with a large stripe width and a region with a small stripe width in the direction perpendicular to the waveguide on both sides of the opening (9 ) Is formed and the buffer layer (5) is grown, the selective growth mask is removed, the buffer layer is covered, and the lower cladding layer (6) of the upper waveguide and the upper waveguide are formed on the substrate. (7) Step of sequentially growing the upper clad layer (8) of the upper waveguide, and processing in a stripe shape from the upper clad layer to at least the buffer layer along the waveguide direction so as to be smaller than the opening width. A method of manufacturing an optical semiconductor device, comprising:
JP4972393A 1993-03-11 1993-03-11 Optical semiconductor device and its production Withdrawn JPH06265741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4972393A JPH06265741A (en) 1993-03-11 1993-03-11 Optical semiconductor device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4972393A JPH06265741A (en) 1993-03-11 1993-03-11 Optical semiconductor device and its production

Publications (1)

Publication Number Publication Date
JPH06265741A true JPH06265741A (en) 1994-09-22

Family

ID=12839112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4972393A Withdrawn JPH06265741A (en) 1993-03-11 1993-03-11 Optical semiconductor device and its production

Country Status (1)

Country Link
JP (1) JPH06265741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949935A (en) * 1995-08-09 1997-02-18 Nec Corp Manufacture of semiconductor light wavelength discriminating circuit
KR100348602B1 (en) * 1999-07-30 2002-08-13 송재원 Vertical asymmetric optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949935A (en) * 1995-08-09 1997-02-18 Nec Corp Manufacture of semiconductor light wavelength discriminating circuit
KR100348602B1 (en) * 1999-07-30 2002-08-13 송재원 Vertical asymmetric optical device

Similar Documents

Publication Publication Date Title
US5720893A (en) Tapered beam expander waveguide integrated with a diode lasesr
US5659640A (en) Integrated waveguide having an internal optical grating
KR100329681B1 (en) Semiconductor integrated circuit and manufacturing method
US20020141682A1 (en) Spot-size converter integratrd laser diode and method for fabricating the same
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
JPH09178963A (en) Light wavelength discrimination circuit and manufacture therefor
JPH07302952A (en) Manufacture of semiconductor device
JP3920164B2 (en) Semiconductor light receiving device and manufacturing method thereof
US6692980B2 (en) Method for fabricating monolithic integrated semiconductor photonic device
US5889902A (en) Monolithic integrated optoelectronic semiconductor component and process for manufacturing the same
JPH06265741A (en) Optical semiconductor device and its production
JP3104798B2 (en) Integrated optical coupler and method of manufacturing the same
JP3007928B2 (en) Method for manufacturing optical semiconductor device
JP2511492B2 (en) Semiconductor optical waveguide device
KR930010131B1 (en) Tapered semiconductor waveguides and method of making same
KR100241342B1 (en) Grating-assisted codirectional vertical coupler optical filter having well-suppressed sidelobe characteristics and method of realizing the same
JP3116912B2 (en) Semiconductor optical integrated device, optical communication module using the same, optical communication system and method of manufacturing the same
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
JP3112114B2 (en) Method for manufacturing semiconductor optical waveguide
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
WO2024089892A1 (en) Optical circuit and method for producing optical circuit
KR100276075B1 (en) Grating-assisted codirectional vertical coupler tunable optical filter
JPH04369269A (en) Manufacture of optical integrated circuit
JPH01186693A (en) Semiconductor device and manufacture thereof
KR100198426B1 (en) Method for manufacturing taper-type optical waveguide of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530