JPH06265331A - Optical displacement detector - Google Patents

Optical displacement detector

Info

Publication number
JPH06265331A
JPH06265331A JP5092393A JP5092393A JPH06265331A JP H06265331 A JPH06265331 A JP H06265331A JP 5092393 A JP5092393 A JP 5092393A JP 5092393 A JP5092393 A JP 5092393A JP H06265331 A JPH06265331 A JP H06265331A
Authority
JP
Japan
Prior art keywords
light
optical
plate
reciprocating
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5092393A
Other languages
Japanese (ja)
Other versions
JP3034718B2 (en
Inventor
Takahiro Moronaga
高宏 諸永
Hiroyoshi Suzuki
尋善 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5050923A priority Critical patent/JP3034718B2/en
Publication of JPH06265331A publication Critical patent/JPH06265331A/en
Application granted granted Critical
Publication of JP3034718B2 publication Critical patent/JP3034718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain an optical displacement detector which can accurately detect a rotary angle irrespective of an extent of an angle detecting range, facilitates both shaft structures, and has a small size and a long life of a light source. CONSTITUTION:The optical displacement detector comprises a rotary shaft 1 engaged with an element to be measured and as a part of the element to be measured, a rotary plate 40 rotating integrally with the shaft 1 and having a side periphery as an optical diffusion surface and a radius becoming different in response to rotation of the shaft 1, a light source 3 for irradiating the diffusion surface of the plate 40 with a light, a condenser lens 45 for condensing a reflected light from the diffusing surface of the plate 40, and an optical position detecting element 5 disposed substantially at the condensing position of the lens 45.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、物体の変位を非接触
で検出する光学式変位検出装置に関し、特に受光素子と
して例えば光位置検出素子を用いた光位置検出形の光学
式変位検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement detecting device for detecting the displacement of an object in a non-contact manner, and more particularly to an optical position detecting type optical displacement detecting device using, for example, an optical position detecting element as a light receiving element. It is a thing.

【0002】[0002]

【従来の技術】近年、高い耐久性、信頼性をもって物体
の回転角度を検出するために、可変抵抗器を用いて物体
に対して電気的に接触した状態で、物体の回転角度を検
出する回転角度検出装置に代わり、被測定体から放射、
或いは被測定体で反射、透過される光を抵抗層を備えた
光位置検出素子で受光し、この光位置検出素子での受光
位置に応じて被測定体の回転角度を検出する非接触形の
光学式変位検出装置が用いられている。このような光学
式変位検出装置としては例えば図12及び図13、並び
に図14に示すようなものが提案されている。図12及
び図13は特開昭61−246620号公報において開
示されている従来の光学式変位検出装置を示す構成図及
び光位置検出素子を示す断面図、図14Aは特開昭61
−124821号公報において開示されている従来の光
学式変位検出装置の光学系の構成図、図14Bは図14
Aに示す従来の光学式変位検出装置の光学系の上視図で
ある。
2. Description of the Related Art In recent years, in order to detect the rotation angle of an object with high durability and reliability, a rotation for detecting the rotation angle of the object while being in electrical contact with the object using a variable resistor. Radiation from the object to be measured instead of the angle detection device,
Alternatively, a non-contact type in which the light reflected and transmitted by the object to be measured is received by an optical position detection element equipped with a resistance layer and the rotation angle of the object to be measured is detected according to the light receiving position at this optical position detection element An optical displacement detection device is used. As such an optical displacement detection device, for example, devices shown in FIGS. 12 and 13 and 14 have been proposed. 12 and 13 are configuration diagrams showing a conventional optical displacement detecting device disclosed in Japanese Patent Laid-Open No. 61-246620 and cross-sectional views showing an optical position detecting element, and FIG.
FIG. 14B is a configuration diagram of an optical system of a conventional optical displacement detection device disclosed in Japanese Patent Publication No. 124821.
It is a top view of the optical system of the conventional optical displacement detection apparatus shown in A.

【0003】先ず、図12を参照して特開昭61−24
6620号公報において開示されている従来の光学式変
位検出装置について説明する。図において、1は図示し
ない被測定体としての回転物体に接続されている回転
軸、2はこの回転軸1に挿通されて取り付けられ、この
回転軸1を回転軸として回転する回転スリット板、2a
はこの回転スリット板2に螺旋状に形成され、回転スリ
ット板2の回転に応じてその半径が変化する螺旋状スリ
ット、3は光源、4はこの光源3の光軸の範囲内、且
つ、回転スリット板2と互いに平行に配置される固定ス
リット板、4aはこの固定スリット板4に螺旋状、且
つ、回転スリット板2に形成され螺旋状スリット2aと
交差するように形成された固定スリット、5は光源3か
ら出射され、回転スリット板2の螺旋状スリット2a及
び固定スリット板4の固定スリット4aを介して供給さ
れる光を受光するため、その受光軸が回転スリット板2
の半径方向となるように配置された光位置検出素子、6
及び8はこの光位置検出素子5の検出電流出力用の検出
電極、7は図示しない電源回路からのバイアス用電圧を
光位置検出素子5に供給するためのバイアス電圧印加用
電極である。
First, referring to FIG. 12, Japanese Patent Laid-Open No. 61-24
A conventional optical displacement detection device disclosed in Japanese Patent No. 6620 will be described. In the figure, reference numeral 1 denotes a rotary shaft connected to a rotary object as an object to be measured (not shown), and 2 denotes a rotary slit plate which is inserted through and attached to the rotary shaft 1 and which rotates about the rotary shaft 1 as a rotary shaft 2a.
Is a spiral slit formed on the rotary slit plate 2 and its radius changes in accordance with the rotation of the rotary slit plate 2, 3 is a light source, and 4 is within the range of the optical axis of the light source 3 and is rotated. Fixed slit plates 4a arranged in parallel with the slit plate 2 are fixed slits formed in the fixed slit plate 4 spirally and formed in the rotary slit plate 2 so as to intersect the spiral slits 2a. Receives the light emitted from the light source 3 and supplied through the spiral slit 2a of the rotary slit plate 2 and the fixed slit 4a of the fixed slit plate 4, so that its light receiving axis has a rotary axis.
An optical position detecting element arranged in the radial direction of
Reference numerals 8 and 8 denote detection electrodes for outputting a detection current of the optical position detection element 5, and reference numeral 7 denotes a bias voltage application electrode for supplying a bias voltage from a power supply circuit (not shown) to the optical position detection element 5.

【0004】続いて検出回路8Aの構成について説明す
る。9は上記光位置検出素子5の検出電極に接続され、
光位置検出素子5からの検出電流I1が供給される入力
端子で、この入力端子9は電流/電圧変換回路12の抵
抗器R1を介して演算増幅回路13の反転入力端子
(−)に接続されると共に、抵抗器R1及びR2を介し
て加算回路14の抵抗器R3の一端に接続される。この
電流/電圧変換回路12の演算増幅回路13の反転入力
端子(−)は抵抗器R2を介してその出力端子に接続さ
れ、この演算増幅回路13の非反転入力端子(+)は接
地されている。また、10は上記光位置検出素子5のバ
イアス電圧印加用電極に接続され、上記光位置検出素子
5のバイアス電圧印加用電極を電流/電圧変換回路12
の接地電位にするための入力端子で、接地されている。
すなわち、この電流/電圧変換回路12は光位置検出素
子5からの検出電流I1を電圧V1に変換するものであ
る。
Next, the structure of the detection circuit 8A will be described. 9 is connected to the detection electrode of the optical position detection element 5,
An input terminal to which the detection current I1 from the optical position detection element 5 is supplied. The input terminal 9 is connected to the inverting input terminal (-) of the operational amplifier circuit 13 via the resistor R1 of the current / voltage conversion circuit 12. At the same time, it is connected to one end of the resistor R3 of the adding circuit 14 via the resistors R1 and R2. The inverting input terminal (-) of the operational amplifier circuit 13 of the current / voltage conversion circuit 12 is connected to its output terminal via the resistor R2, and the non-inverting input terminal (+) of the operational amplifier circuit 13 is grounded. There is. Reference numeral 10 is connected to the bias voltage applying electrode of the optical position detecting element 5, and the bias voltage applying electrode of the optical position detecting element 5 is connected to the current / voltage converting circuit 12.
This is an input terminal for setting the ground potential of and is grounded.
That is, the current / voltage conversion circuit 12 converts the detection current I1 from the optical position detection element 5 into the voltage V1.

【0005】加算回路14の抵抗器R3の他端は抵抗器
R5を介して比較積分回路16の抵抗器R6の一端に接
続されると共に、演算増幅回路15の反転入力端子
(−)に接続され、また、この反転入力端子(−)は抵
抗器R5を介して出力端子に接続され、更に抵抗器R4
を介して後述する電流電圧変換回路19の演算増幅回路
20の出力端子に接続され、演算増幅回路15の非反転
入力端子(+)は接地されている。比較積分回路16の
抵抗器R6の他端はコンデンサC1を介して後述する発
光回路24の入力端子に接続されると共に、演算増幅回
路17の反転入力端子(−)に接続され、この演算増幅
回路17の非反転入力端子(+)は基準電源18を介し
て接地されている。すなわち、この比較積分回路16は
反転入力端子(−)に供給される電圧と、非反転入力端
子(+)に供給される電圧を比較し、その結果に基いて
発光回路24を制御する。この発光回路24は制御端子
25を介して光源3を駆動する。
The other end of the resistor R3 of the adder circuit 14 is connected to one end of a resistor R6 of the comparison and integration circuit 16 via a resistor R5, and is also connected to the inverting input terminal (-) of the operational amplifier circuit 15. Further, the inverting input terminal (-) is connected to the output terminal through the resistor R5, and further the resistor R4
Is connected to the output terminal of the operational amplifier circuit 20 of the current-voltage conversion circuit 19 which will be described later, and the non-inverting input terminal (+) of the operational amplifier circuit 15 is grounded. The other end of the resistor R6 of the comparison and integration circuit 16 is connected to the input terminal of the light emitting circuit 24 described later via the capacitor C1 and also to the inverting input terminal (-) of the operational amplification circuit 17, and this operational amplification circuit is connected. The non-inverting input terminal (+) of 17 is grounded via the reference power supply 18. That is, the comparison and integration circuit 16 compares the voltage supplied to the inverting input terminal (−) with the voltage supplied to the non-inverting input terminal (+), and controls the light emitting circuit 24 based on the result. The light emitting circuit 24 drives the light source 3 via the control terminal 25.

【0006】11は上記光位置検出素子5の検出電極8
に接続され、光位置検出素子5からの検出電流I2が供
給される入力端子で、この入力端子11は電流/電圧変
換回路12の抵抗器R7を介して演算増幅回路20の反
転入力端子(−)に接続されると共に、抵抗器R7及び
R8を介して増幅回路21の抵抗器R9の一端に接続さ
れる。この電流/電圧変換回路19の演算増幅回路20
の反転入力端子(−)は抵抗器R8を介してその出力端
子に接続され、この演算増幅回路20の非反転入力端子
(+)は接地されている。すなわち、この電流/電圧変
換回路19は光位置検出素子5からの検出電流I2を電
圧V2に変換するものである。
Reference numeral 11 is a detection electrode 8 of the optical position detection element 5.
Is an input terminal to which the detection current I2 from the optical position detecting element 5 is supplied. The input terminal 11 is connected to the inverting input terminal (-) of the operational amplifier circuit 20 via the resistor R7 of the current / voltage conversion circuit 12. ), And is also connected to one end of a resistor R9 of the amplifier circuit 21 via resistors R7 and R8. The operational amplifier circuit 20 of the current / voltage conversion circuit 19
The inverting input terminal (-) is connected to its output terminal via the resistor R8, and the non-inverting input terminal (+) of this operational amplifier circuit 20 is grounded. That is, the current / voltage conversion circuit 19 converts the detection current I2 from the optical position detection element 5 into the voltage V2.

【0007】増幅回路21の抵抗器R9の他端は抵抗器
R10を介して変位検出出力Vθ用の出力端子23に接
続されると共に、演算増幅回路22の反転入力端子
(−)に接続され、演算増幅回路15の非反転入力端子
(+)は接地されている。次に、図13を参照して、図
12に示した光位置検出素子5の構成について更に詳し
く説明する。この図に示すように、光位置検出素子5は
光電変換層5aを透明抵抗層5b、バイアス電圧印加用
電極7で挟持され、透明抵抗層5bの両端に検出電極6
及び8がそれぞれ設けられた構造とされている。また、
この検出電極6及び8からはそれぞれリード5c及び5
dが接続され、バイアス電圧印加用電極10にはリード
5eが接続され、図12に示した検出回路8の出力端子
10を介して所定バイアス電圧(ここでは接地の場合を
示す)が供給される。
The other end of the resistor R9 of the amplifier circuit 21 is connected to the output terminal 23 for the displacement detection output V θ via the resistor R10 and to the inverting input terminal (−) of the operational amplifier circuit 22. The non-inverting input terminal (+) of the operational amplifier circuit 15 is grounded. Next, with reference to FIG. 13, the configuration of the optical position detecting element 5 shown in FIG. 12 will be described in more detail. As shown in this figure, in the optical position detecting element 5, the photoelectric conversion layer 5a is sandwiched between the transparent resistance layer 5b and the bias voltage applying electrode 7, and the detection electrodes 6 are provided at both ends of the transparent resistance layer 5b.
And 8 are provided respectively. Also,
From the detection electrodes 6 and 8, leads 5c and 5 respectively.
d is connected, the lead 5e is connected to the bias voltage applying electrode 10, and a predetermined bias voltage (here, the case of grounding is shown) is supplied through the output terminal 10 of the detection circuit 8 shown in FIG. .

【0008】次に動作について説明する。発光回路24
の駆動により光源3から光が回転スリット板2の方向に
出射されると、出射された光は回転スリット板2上の投
射範囲に投射され、この投射光の内、回転スリット板2
の螺旋状スリット2aと固定スリット板4の固定スリッ
ト4aの交差範囲を通過する光のみが光位置検出素子5
の受光面に入射する。光位置検出素子5の受光面に光束
が入射すると、入射光束は透明抵抗層5bを透過し、光
電変換層5aで光電変換され、その検出電流I1及びI
2が透明抵抗層5bをその両端の検出電極6及び8に向
かって流れる。このとき、検出電流I及びI2の大きさ
は各検出電極6及び8までの距離によって異なるので、
検出電極6からの受光位置Xは、検出電流I1及びI2
から次のように表すことができる。
Next, the operation will be described. Light emitting circuit 24
When light is emitted from the light source 3 in the direction of the rotary slit plate 2 by driving, the emitted light is projected onto the projection range on the rotary slit plate 2, and among the projected light, the rotary slit plate 2
Only the light passing through the crossing range of the spiral slit 2a of the fixed slit 4a of the fixed slit plate 4
Is incident on the light receiving surface of. When a light beam is incident on the light receiving surface of the light position detection element 5, the incident light beam passes through the transparent resistance layer 5b and is photoelectrically converted by the photoelectric conversion layer 5a, and the detected currents I1 and I are detected.
2 flows through the transparent resistance layer 5b toward the detection electrodes 6 and 8 at both ends thereof. At this time, since the magnitudes of the detection currents I and I2 differ depending on the distances to the detection electrodes 6 and 8,
The light receiving position X from the detection electrode 6 is the detection currents I1 and I2.
Therefore, it can be expressed as follows.

【0009】 X=L×I2/(I1+I2) ・・・(1)X = L × I2 / (I1 + I2) (1)

【0010】但し、上記(1)式において、Lは光位置
検出素子5の受光長である。そこで、図12の検出回路
8Aにおいて、検出電流I1及びI2を各々電流/電圧
変換回路12及び19で電圧V1及びV2に変換し、加
算回路14で加算出力(V1+V2)を求め、この加算
出力(V1+V2)が所定の値となるよう比較積分回路
16で発光回路24を介して光源3の発光強度を制御
し、一方の電流I2に相当する電圧V2を増幅回路21
で所定のゲインをかけて出力することにより、光位置検
出素子5の受光位置Xに相当し、回転スリット板2の回
転角度θに対応した回転角度出力Vθを得る。つまり、
回転スリット板2が回転軸1と共に回転すると、回転ス
リット板2の螺旋状スリット2aと固定スリット板4の
固定スリット4aの交差範囲は回転スリット板2の半径
方向に順次移動し、光位置検出素子5上での受光位置は
回転スリット板2の半径方向に移動して回転スリット板
2の回転角度に応じて変化するので、光位置検出素子5
上での受光位置を光位置検出素子5の検出電極6及び8
からの出力電流の出力電流比を図12に示す検出回路8
Aで検出することによって、回転軸1の回転角度を検出
することができる。従って、回転軸1を接続している被
測定体の回転角度を検出することができる。
However, in the above formula (1), L is the light receiving length of the light position detecting element 5. Therefore, in the detection circuit 8A of FIG. 12, the detection currents I1 and I2 are converted into the voltages V1 and V2 by the current / voltage conversion circuits 12 and 19, respectively, and the addition output (V1 + V2) is obtained by the addition circuit 14 and this addition output ( (V1 + V2) becomes a predetermined value, the light emission intensity of the light source 3 is controlled by the comparison and integration circuit 16 through the light emission circuit 24, and the voltage V2 corresponding to one current I2 is amplified by the amplification circuit 21.
Then, by applying a predetermined gain and outputting, a rotation angle output V θ corresponding to the light receiving position X of the light position detecting element 5 and corresponding to the rotation angle θ of the rotary slit plate 2 is obtained. That is,
When the rotary slit plate 2 rotates together with the rotary shaft 1, the intersecting range of the spiral slit 2a of the rotary slit plate 2 and the fixed slit 4a of the fixed slit plate 4 sequentially moves in the radial direction of the rotary slit plate 2 to detect the optical position detecting element. Since the light receiving position on 5 moves in the radial direction of the rotary slit plate 2 and changes according to the rotation angle of the rotary slit plate 2, the light position detecting element 5
The light receiving position on the above is determined by the detection electrodes 6 and 8 of the light position detecting element 5.
The output current ratio of the output current from the detection circuit 8 shown in FIG.
By detecting at A, the rotation angle of the rotary shaft 1 can be detected. Therefore, it is possible to detect the rotation angle of the measured object to which the rotation shaft 1 is connected.

【0011】次に、図14を参照して特開昭61−12
4821号公報において開示されている従来の光学式変
位検出装置について説明する。この図14において、図
12及び図13と対応する部分には同一符号を付し、そ
の詳細説明を省略する。図において、30は図14Aに
示すようにその形状が筒状となっているケース、31は
回転軸1を支持するための回転軸受け、32はケース9
の内側、且つ、このケース3の回転軸受け31側に取り
付けられた環状の素子支持基板、33はケース30の内
側、且つ、ケース30の内側に取り付けられた環状の素
子支持基板32上に素子支持基板32と同様に取り付け
られた環状の光位置検出素子である。また、34はケー
ス30の内側にその光出射方向を向け、回転軸1と光軸
が一致するようケース30の孔に取り付けられ、光源3
からの光を光位置検出素子33に入射させるための回転
スリット部材である。この回転スリット部材34は、そ
の内部に光反射層34dが形成されている透光体34a
からなり、この透光体34aは、光源3からの光を通過
させるための光源側スリット34b、光源側スリット3
4bから入射した光を反射させるため第1反射面34
c、この第1反射面34cで反射された光を反射する第
2反射面34e、この第2反射面34eで反射された光
を光位置検出素子33に入射させるための受光側スリッ
ト34fが形成されている。
Next, referring to FIG. 14, Japanese Patent Laid-Open No. 61-12
The conventional optical displacement detection device disclosed in Japanese Patent No. 4821 will be described. In FIG. 14, parts corresponding to those in FIGS. 12 and 13 are designated by the same reference numerals, and detailed description thereof will be omitted. In the figure, 30 is a case whose shape is cylindrical as shown in FIG. 14A, 31 is a rotary bearing for supporting the rotary shaft 1, and 32 is a case 9.
An annular element support substrate attached to the inside of the case 3 on the rotary bearing 31 side of the case 3, 33 is an element support on the inside of the case 30 and on an annular element support substrate 32 attached to the inside of the case 30. It is an annular optical position detection element that is mounted similarly to the substrate 32. The light source 34 is attached to the hole of the case 30 such that the light emitting direction is directed to the inside of the case 30 and the optical axis coincides with the rotation axis 1.
It is a rotary slit member for making the light from the light incident on the optical position detecting element 33. The rotary slit member 34 has a light-transmitting body 34a in which a light-reflecting layer 34d is formed.
The translucent body 34a includes a light source side slit 34b for passing light from the light source 3 and a light source side slit 3b.
4b for reflecting the light incident from 4b.
c, a second reflecting surface 34e for reflecting the light reflected by the first reflecting surface 34c, and a light receiving side slit 34f for making the light reflected by the second reflecting surface 34e incident on the light position detecting element 33. Has been done.

【0012】次に動作について説明する。光源3から光
が出射されると、この出射光の一部が回転スリット部材
34の光源側スリット34bから透光体34aに入射す
る。この光は、図14Aにおいて実線の矢印で示すよう
に、この透光体34a内部に形成された第1反射面34
cの光反射層34dで反射され、この透光体34aを透
過して第2反射面34eに到達し、この第2反射面34
eの光反射層で反射され、更にこの透光体34aを透過
した後に受光側スリット34fから光位置検出素子33
の受光面に入射する。この場合、回転スリット部材34
の回転と共に光位置検出素子33に対する光の投射範囲
(スポット)35が変化するので、光位置検出素子33
上での受光位置を光位置検出素子33の検出電極に接続
されている出力端子6及び8からの出力電流の出力電流
比を図示しない検出系で検出することによって、回転軸
1の回転角度を検出することができる。従って、回転軸
1を接続している被測定体の回転角度を検出することが
できる。
Next, the operation will be described. When light is emitted from the light source 3, a part of the emitted light enters the light transmitting body 34a through the light source side slit 34b of the rotary slit member 34. This light is reflected by the first reflecting surface 34 formed inside the translucent body 34a, as indicated by the solid arrow in FIG. 14A.
The light is reflected by the light reflecting layer 34d of c, passes through the light transmitting body 34a, and reaches the second reflecting surface 34e.
The light position detecting element 33 is reflected from the light receiving side slit 34f after being reflected by the light reflecting layer of FIG.
Is incident on the light receiving surface of. In this case, the rotary slit member 34
Since the projection range (spot) 35 of light on the optical position detecting element 33 changes with the rotation of the optical position detecting element 33,
The rotation angle of the rotary shaft 1 is determined by detecting the output current ratio of the output currents from the output terminals 6 and 8 connected to the detection electrodes of the light position detection element 33 at the light receiving position above. Can be detected. Therefore, it is possible to detect the rotation angle of the measured object to which the rotation shaft 1 is connected.

【0013】[0013]

【発明が解決しようとする課題】従来の光学式変位検出
装置は以上のように構成されているので、図12及び図
13を用いて説明した光学式変位検出装置においては、
回転角度変化を光位置検出素子5の半径方向の受光位置
でスリット位置変化に対して1対1で検出するようにし
ているので、螺旋状スリット2a及び固定スリット4a
を細かくしないで検出精度を向上させようとすると、半
径方向に検出距離を伸ばさざるを得なくなり、装置の径
が大きくなり、しかも光源3からスリットを介して所定
のスポット径を得るようにしているので、光源3の発光
量を増す必要があり、それだけ光源3の寿命が短くなる
などの問題点があった。
Since the conventional optical displacement detection device is constructed as described above, the optical displacement detection device described with reference to FIGS.
Since the change in the rotation angle is detected at the light receiving position in the radial direction of the light position detecting element 5 in a one-to-one manner with respect to the change in the slit position, the spiral slit 2a and the fixed slit 4a.
If it is attempted to improve the detection accuracy without making it fine, the detection distance must be extended in the radial direction, the diameter of the device becomes large, and a predetermined spot diameter is obtained from the light source 3 through the slit. Therefore, it is necessary to increase the light emission amount of the light source 3, and there is a problem that the life of the light source 3 is shortened accordingly.

【0014】また、図14を用いて説明した光学式変位
検出装置においては、光位置検出素子33の受光面での
スポットの径が、受光側スリット34fを透過する斜め
透過光の存在により、図14bに示す光の投射範囲(ス
ポット)35の径が、受光側スリット34fの径よりも
大きくなるので、光位置検出素子33の受光長を有効に
利用することができず、検出角度範囲が狭い場合や、検
出角度範囲が2πに近い場合の測定には不向きであると
共に、回転軸1と同軸に光源3が配置されているので両
軸構成を採用することができないなどの問題点があっ
た。
Further, in the optical displacement detection device described with reference to FIG. 14, the diameter of the spot on the light receiving surface of the light position detection element 33 is reduced by the presence of obliquely transmitted light passing through the light receiving side slit 34f. Since the diameter of the projection area (spot) 35 of the light shown in 14b is larger than the diameter of the light receiving side slit 34f, the light receiving length of the light position detecting element 33 cannot be effectively used, and the detection angle range is narrow. In this case, it is not suitable for measurement when the detection angle range is close to 2π, and there is a problem that the biaxial configuration cannot be adopted because the light source 3 is arranged coaxially with the rotating shaft 1. .

【0015】この発明はこのような問題点を解決するた
めになされたもので、角度検出範囲の大小にかかわらず
高い精度で被測定体の変位を検出できると共に、簡単に
両軸化が実現でき、小型、且つ、光源の長寿命化を図る
ことのできる光学式変位検出装置を得ることを目的とす
る。
The present invention has been made in order to solve such a problem, and it is possible to detect the displacement of the object to be measured with high accuracy regardless of the size of the angle detection range, and it is possible to easily realize the double axis. It is an object of the present invention to obtain an optical displacement detection device that is small in size and can extend the life of a light source.

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明に係
る光学式変位検出装置は、被測定体に取り付けられるか
その一部である回転軸と、この回転軸に取り付けられて
一体に回転し、側周部が光学拡散面とされた回転板と、
この回転板の上記光学拡散面に光を照射する光源と、上
記回転板の上記光学拡散面からの反射光を集光する集光
光学系と、この集光光学系の略集光位置に配置された光
位置検出素子とを備え、上記回転板は上記集光光学系と
上記側周部の光反射位置との間の距離が上記回転軸の回
転角度に応じて異なるように形成され、上記光位置検出
素子上の光入射位置に基いて上記被測定体の変位を検出
するようにしたものである。
An optical displacement detecting device according to a first aspect of the present invention includes a rotary shaft which is attached to a part to be measured or is a part thereof, and a rotary shaft which is attached to the rotary shaft and integrally rotates. Then, with a rotating plate whose side peripheral portion is an optical diffusion surface,
A light source that irradiates the optical diffusion surface of the rotating plate with light, a condensing optical system that condenses the reflected light from the optical diffusion surface of the rotating plate, and the light condensing optical system is arranged at a substantially condensing position. And a rotating plate is formed such that the distance between the condensing optical system and the light reflecting position of the side peripheral portion is different according to the rotation angle of the rotating shaft, The displacement of the object to be measured is detected based on the light incident position on the light position detecting element.

【0017】また請求項2記載の発明に係る光学式変位
検出装置は、被測定体に取り付けられるかその一部であ
る回転軸と、この回転軸に取り付けられて一体に回転
し、側周部が光学拡散面とされた回転板と、この回転板
の上記光学拡散面に光を照射する光源と、上記回転板の
上記光学拡散面からの反射光を集光する集光光学系と、
この集光光学系の略集光位置に配置された光位置検出素
子とを備え、上記回転板は上記集光光学系と上記側周部
の光反射位置との距離が上記回転軸の回転角度に応じて
異なるように形成され、上記回転軸の回転角度と上記回
転板の半径の関係を、上記被測定体の回転角度に応じて
決定し、上記光位置検出素子上の光入射位置に基いて上
記被測定体のを検出するようにしたものである。
According to a second aspect of the present invention, there is provided an optical displacement detecting device, which is attached to the object to be measured or is a part thereof, and a rotating shaft which is attached to the rotating shaft and integrally rotates to form a side peripheral portion. A rotating plate having an optical diffusing surface, a light source for irradiating the optical diffusing surface of the rotating plate with light, and a condensing optical system for condensing the reflected light from the optical diffusing surface of the rotating plate,
The rotating plate is provided with a light position detecting element arranged at a substantially condensing position of the condensing optical system, and the rotating plate has a distance between the condensing optical system and a light reflecting position of the side peripheral portion is a rotation angle of the rotating shaft. The relationship between the rotation angle of the rotary shaft and the radius of the rotary plate is determined according to the rotation angle of the measured object, and the relationship is determined based on the light incident position on the light position detection element. In addition, the object of the object to be measured is detected.

【0018】また請求項3記載の発明に係る光学式変位
検出装置は、被測定体に取り付けられるかその一部であ
る往復軸と、この往復軸に取り付けられて一体に移動
し、側辺部が光学拡散面とされた往復板と、この往復板
の上記光学拡散面に光を照射する光源と、上記往復板の
上記光学拡散面からの反射光を集光する集光光学系と、
この集光光学系の略集光位置に配置された光位置検出素
子とを備え、上記往復板は上記集光光学系と上記側辺部
の光反射位置との距離が上記往復軸のストロークによっ
て異なるように形成され、上記光位置検出素子上の光入
射位置に基いて上記被測定体の変位を検出するようにし
たものである。
An optical displacement detecting device according to a third aspect of the present invention is a reciprocating shaft that is attached to or a part of an object to be measured, and is attached to the reciprocating shaft to move integrally with the side portion. A reciprocating plate that is an optical diffusing surface, a light source that irradiates the optical diffusing surface of the reciprocating plate with light, and a condensing optical system that condenses the reflected light from the optical diffusing surface of the reciprocating plate,
The reciprocating plate is provided with a light position detecting element disposed at a substantially condensing position of the condensing optical system, and a distance between the condensing optical system and a light reflecting position of the side portion of the reciprocating plate depends on a stroke of the reciprocating shaft. Differently formed, the displacement of the object to be measured is detected based on the light incident position on the light position detecting element.

【0019】また請求項4記載の発明に係る光学式変位
検出装置は、被測定体に取り付けられるかその一部であ
る往復軸と、この往復軸に取り付けられて一体に移動
し、側辺部が光学拡散面とされた往復板と、この往復板
の上記光学拡散面に光を照射する光源と、上記往復板の
上記光学拡散面からの反射光を集光する集光光学系と、
この集光光学系の略集光位置に配置された光位置検出素
子とを備え、上記往復板は上記集光光学系と上記側辺部
の光反射位置との距離が上記往復軸のストロークによっ
て異なるように形成され、上記往復軸のストローク変位
と上記往復板の側辺部の関係を、上記被測定体のストロ
ークに応じて決定し、上記光位置検出素子上の光入射位
置に基いて上記被測定体の変位を検出するようにしたも
のである。
According to a fourth aspect of the present invention, there is provided an optical displacement detecting device, wherein a reciprocating shaft which is attached to a part to be measured or is a part of the reciprocating shaft and which is attached to the reciprocating shaft and moves integrally with the reciprocating shaft. A reciprocating plate that is an optical diffusing surface, a light source that irradiates the optical diffusing surface of the reciprocating plate with light, and a condensing optical system that condenses the reflected light from the optical diffusing surface of the reciprocating plate,
The reciprocating plate is provided with a light position detecting element disposed at a substantially condensing position of the condensing optical system, and a distance between the condensing optical system and a light reflecting position of the side portion of the reciprocating plate depends on a stroke of the reciprocating shaft. Differently formed, the relationship between the stroke displacement of the reciprocating shaft and the side portion of the reciprocating plate is determined according to the stroke of the object to be measured, and the relationship is determined based on the light incident position on the light position detecting element. The displacement of the object to be measured is detected.

【0020】[0020]

【作用】請求項1記載の発明においては、回転板の光学
拡散面からの反射光を集光する集光光学系の略集光位置
に配置された光位置検出素子上の光入射位置により、三
角測距の原理に基いて、被測定体の回転角度を検出す
る。これにより、これにより、角度検出範囲の大小にか
かわらず精度良く回転角度を検出でき、両軸構成が容
易、且つ、小型で、光源が長寿命の装置を得ることがで
きる。
According to the first aspect of the present invention, the light incident position on the light position detecting element arranged at the substantially condensing position of the condensing optical system for condensing the reflected light from the optical diffusion surface of the rotating plate The rotation angle of the object to be measured is detected based on the principle of triangulation. As a result, the rotation angle can be accurately detected regardless of the size of the angle detection range, and a device having a simple biaxial configuration and a small light source with a long life can be obtained.

【0021】また請求項2記載の発明においては、回転
軸の回転角と回転板の半径の関係を、三角測距の原理に
基いて、被測定体の回転角度に応じてリニアな出力が得
られるよう回転板の半径変化を決定する。これにより、
角度検出範囲の大小にかかわらず精度良く回転角度を検
出でき、両軸構成が容易、且つ、小型で安価であり、且
つ光源が長寿命の装置を得ることができる。
According to the second aspect of the present invention, the relationship between the rotation angle of the rotary shaft and the radius of the rotary plate is obtained as a linear output according to the rotation angle of the object to be measured based on the principle of triangulation. The radius change of the rotating plate is determined so that This allows
A rotation angle can be accurately detected regardless of the size of the angle detection range, a biaxial configuration is easy, and a small and inexpensive light source having a long life can be obtained.

【0022】また請求項3記載の発明においては、往復
板の往復中心から側辺部までの距離が往復軸のストロー
クによって異なるように形成された往復板光学拡散面か
らの反射光を集光光学系で集光し、この集光光学系の略
集光位置に配置された光位置検出素子上の光入射位置に
より、三角測距の原理に基いて、被測定体のストローク
変位を検出する。これにより、ストローク検出範囲の大
小にかかわらず精度良くストローク変位を検出でき、両
軸構成が容易、且つ、小型で、光源が長寿命の装置を得
ることができる。
According to the third aspect of the present invention, the reflected light from the optical diffusing surface of the reciprocating plate, which is formed so that the distance from the reciprocating center of the reciprocating plate to the side portion varies depending on the stroke of the reciprocating shaft, is used as a condenser optics. Based on the principle of triangulation, the stroke displacement of the object to be measured is detected by the light incident position on the light position detecting element which is focused by the system and is arranged at the substantially focusing position of this focusing optical system. As a result, the stroke displacement can be accurately detected regardless of the size of the stroke detection range, and a device having a simple two-axis configuration and a small size and a long light source can be obtained.

【0023】また請求項4記載の発明においては、往復
軸のストローク変位と往復板の側辺部の関係を、三角測
距の原理に基いて、被測定体のストロークに応じてリニ
アな出力が得られるよう往復板の側辺部変化を決定す
る。これにより、ストローク検出範囲の大小にかかわら
ず精度良くストローク変位を検出でき、両軸構成が容
易、且つ、小型で安価であり、且つ光源が長寿命の装置
を得ることができる。
According to the fourth aspect of the present invention, the linear relationship between the stroke displacement of the reciprocating shaft and the side of the reciprocating plate is linearly output according to the stroke of the object to be measured based on the principle of triangulation. The change in the side portion of the reciprocating plate is determined so as to be obtained. As a result, a stroke displacement can be accurately detected regardless of the size of the stroke detection range, the two-axis configuration is easy, and the device is small and inexpensive, and the light source has a long life.

【0024】[0024]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の一実施例の光学変位検出装置の
光学系を示す構成図であり、図において、図12〜図1
4と対応する部分には同一符号を付し、その詳細説明を
省略する。図において、回転軸受け31をケース30の
両端に取り付け、この2つの回転軸受け31で回転軸1
を支持し、両軸構成にする。また、40はその外周面
(側周部)を光学拡散面とした回転板で、この回転板4
0を回転軸1に固定し、この回転軸1と連動して回転す
るようにする。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an optical system of an optical displacement detecting device according to an embodiment of the present invention.
The same reference numerals are given to the portions corresponding to 4, and the detailed description thereof will be omitted. In the figure, the rotary bearings 31 are attached to both ends of the case 30, and the rotary shaft 1 is attached by the two rotary bearings 31.
To support both axes. Reference numeral 40 denotes a rotary plate whose outer peripheral surface (side peripheral portion) is an optical diffusion surface.
0 is fixed to the rotary shaft 1 so that it rotates in conjunction with the rotary shaft 1.

【0025】41は素子支持基板、42は絞り部材、4
3はコリメータレンズ、44は支持部材、45は回転板
40の光学拡散面からの反射光を光位置検出素子5に集
光するためのコンデンサレンズであり、この図に示すよ
うに、素子支持基板45をケース30の内部の天井部分
に取り付け、この素子支持基板45にその光出射方向を
回転軸1の方向となるよう例えばLED等の光源3を取
り付け、絞り部材42を光源3との光軸を合致させるよ
うに光源3の外周面にはめ合わせて固定し、この支持部
材42でコリメータレンズ43を支持し、支持部材44
を光位置検出素子5の外周面にはめ合わせて固定し、こ
の支持部材44でコンデンサレンズ45を支持するよう
にする。回転の角度検出範囲の大小にかかわらず高い精
度で被測定体の回転角度を検出できると共に、光学系を
ケース30内の片側にコンパクトに形成できるので、簡
単に両軸化を実現することができ、且つ、装置を小型に
することができる。
Reference numeral 41 is an element supporting substrate, 42 is a diaphragm member, 4
3 is a collimator lens, 44 is a support member, and 45 is a condenser lens for condensing the light reflected from the optical diffusion surface of the rotary plate 40 on the optical position detection element 5. As shown in this figure, the element support substrate 45 is attached to a ceiling portion inside the case 30, a light source 3 such as an LED is attached to the element supporting substrate 45 so that the light emitting direction thereof is the direction of the rotation axis 1, and the diaphragm member 42 is an optical axis with the light source 3. Are fixed to the outer peripheral surface of the light source 3 so as to match with each other, and the supporting member 42 supports the collimator lens 43.
Is fixed to the outer peripheral surface of the optical position detecting element 5 so that the condenser lens 45 is supported by the supporting member 44. The rotation angle of the object to be measured can be detected with high accuracy regardless of the size of the rotation angle detection range, and the optical system can be compactly formed on one side of the case 30, so that it is possible to easily achieve dual axes. In addition, the device can be downsized.

【0026】ここで、上記コリメータレンズ43及びコ
ンデンサレンズ45は例えばポリメチルメタアクリレー
ト(PMMA)、ポリカーボネイト(PC)等の光学プ
ラスチックで成形したプラスチック成形品を用いればコ
ストを削減することができっる。次に動作について説明
する。図1Bにおいて光源3から照射された光はコリメ
ータレンズ43、絞り42を透過して所定径の平行光束
となって回転板40の外周面に入射し、この外周面上の
光学拡散面で反射される。そしてこの反射光はコンデン
サレンズ45によって光位置検出素子5の受光面上に集
束する。ここで回転軸1が回転すると、この集束したス
ポット光が光位置検出素子5上を移動する。従って、光
位置検出素子5の光入射位置は回転板40、すなわち、
回転軸1の回転角度と等しくなり、図12〜図14を参
照して説明した従来装置と同様に光位置検出素子5の検
出電極から検出電流I1及びI2が得られ、例えばこの
検出電流I1及びI2を従来装置と同様の検出回路で検
出すれば光入射位置Xに相当する回転角度Vθを得るこ
とができる。
Here, if the collimator lens 43 and the condenser lens 45 are made of plastic molded products made of optical plastic such as polymethylmethacrylate (PMMA) and polycarbonate (PC), the cost can be reduced. . Next, the operation will be described. In FIG. 1B, the light emitted from the light source 3 is transmitted through the collimator lens 43 and the diaphragm 42, becomes a parallel light flux of a predetermined diameter, enters the outer peripheral surface of the rotating plate 40, and is reflected by the optical diffusion surface on the outer peripheral surface. It Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the rotary shaft 1 rotates here, the focused spot light moves on the optical position detecting element 5. Therefore, the light incident position of the light position detection element 5 is the rotation plate 40, that is,
It becomes equal to the rotation angle of the rotary shaft 1, and the detection currents I1 and I2 are obtained from the detection electrodes of the optical position detection element 5 as in the conventional device described with reference to FIGS. If I2 is detected by the same detection circuit as in the conventional device, the rotation angle V θ corresponding to the light incident position X can be obtained.

【0027】この例においては、三角測距の原理に基い
ており、反射面と受光部の距離変化率を大きくすること
で、受光面の端から端までを有効に検出できるので、検
出角度範囲が狭くても精度良く検出できると共に、最大
検出角度範囲をほぼ2πとでき、更に小径の受光面の光
位置検出素子であっても精度良く検出できるので、装置
を小径の小型なものにできると共に、両軸構成とするこ
とができる。また、光源3はスリットを介在することな
く直接光源拡散面を照射するので、それだけ発光量を小
さくすることができ、長寿命化が可能となる。
This example is based on the principle of triangulation, and by increasing the distance change rate between the reflecting surface and the light receiving portion, it is possible to effectively detect from one end of the light receiving surface to the other. Can detect with high accuracy even if the width is narrow, and can detect the maximum detection angle range to about 2π, and even with the light position detecting element of the light receiving surface having a small diameter, the device can be made small and small in diameter. A double shaft configuration can be used. Further, since the light source 3 directly irradiates the light source diffusion surface without interposing a slit, the amount of light emission can be reduced correspondingly, and the life can be extended.

【0028】実施例2.上記実施例においては、光源3
からの光を絞り部材42及びコリメータレンズ43を介
して回転板40の光学拡散面に照射するようにした場合
について説明したが、図2Aに示すように、ケース30
に回転板40の光学拡散面に対して45度の反射面を有
するプリズム47を支持固定するようにしても良い。こ
の場合、コリメータレンズ43及び絞り部材42を透過
した光源3からの光がプリズム47で90度偏向され、
回転板40の光学拡散面にその偏向光が照射され、回転
板40の光学拡散面で反射した光がプリズム47で再び
90度に偏向され、その偏向光がコンデンサレンズ45
により光位置検出素子5の受光面上に入射される。この
場合も上述と同様に、検出角度範囲が狭くても精度良く
検出できると共に、最大検出角度範囲をほぼ2πとで
き、更に小径の受光面の光位置検出素子であっても精度
良く検出できるので、装置を小径の小型なものにできる
と共に、両軸構成とすることができ、光源を長寿命化す
ることができる。更に、反射面にAl等の金属を蒸着し
て反射鏡を形成すれば反射率を向上させることができ
る。
Example 2. In the above embodiment, the light source 3
The case has been described in which the light from the above is applied to the optical diffusion surface of the rotating plate 40 via the diaphragm member 42 and the collimator lens 43. However, as shown in FIG.
Alternatively, the prism 47 having a reflection surface of 45 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed. In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is deflected by 90 degrees by the prism 47,
The deflected light is applied to the optical diffusion surface of the rotating plate 40, and the light reflected by the optical diffusion surface of the rotating plate 40 is deflected again by 90 degrees by the prism 47, and the deflected light is condensed by the condenser lens 45.
Is incident on the light receiving surface of the optical position detecting element 5. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended. Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0029】実施例3.また、図2Bに示すように、ケ
ース30に回転板40の光学拡散面に対して45度の角
度の平面反射鏡48を支持固定するようにしても良い。
この場合、コリメータレンズ43及び絞り部材42を透
過した光源3からの光が平面反射板48で90度偏向さ
れ、回転板40の光学拡散面にその偏向光が照射され、
回転板40の光学拡散面で反射した光が平面反射板48
で再び90度に偏向され、その偏向光がコンデンサレン
ズ45により光位置検出素子5の受光面上に入射され
る。この場合も上述と同様に、検出角度範囲が狭くても
精度良く検出できると共に、最大検出角度範囲をほぼ2
πとでき、更に小径の受光面の光位置検出素子であって
も精度良く検出できるので、装置を小径の小型なものに
できると共に、両軸構成とすることができ、光源を長寿
命化することができる。更に、反射面にAl等の金属を
蒸着して反射鏡を形成すれば反射率を向上させることが
できる。
Example 3. Further, as shown in FIG. 2B, a flat reflecting mirror 48 having an angle of 45 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed to the case 30.
In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is deflected by 90 degrees by the flat reflecting plate 48, and the deflected light is irradiated on the optical diffusion surface of the rotating plate 40.
Light reflected by the optical diffusion surface of the rotating plate 40 is reflected by the flat reflecting plate 48.
Is again deflected by 90 degrees, and the deflected light is incident on the light receiving surface of the optical position detecting element 5 by the condenser lens 45. Also in this case, similarly to the above, even if the detection angle range is narrow, it is possible to detect with high accuracy, and the maximum detection angle range is approximately
Since it can be set to π, and even the light position detection element of the light receiving surface having a small diameter can be detected with high accuracy, the device can be made small in size and small in size, and can have a biaxial structure, thus extending the life of the light source. be able to. Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0030】実施例4.また、図2Cに示すように、ケ
ース30の表面にメッキ、蒸着等で回転板40の光学拡
散面に対して45度の角度の鏡面30aを形成しても良
い。この場合、コリメータレンズ43及び絞り部材42
を透過した光源3からの光が鏡面30aで90度偏向さ
れ、回転板40の光学拡散面にその偏向光が照射され、
回転板40の光学拡散面で反射した光が鏡面30aで再
び90度に偏向され、その偏向光がコンデンサレンズ4
5により光位置検出素子5の受光面上に入射される。こ
の場合も上述と同様に、検出角度範囲が狭くても精度良
く検出できると共に、最大検出角度範囲をほぼ2πとで
き、更に小径の受光面の光位置検出素子であっても精度
良く検出できるので、装置を小径の小型なものにできる
と共に、両軸構成とすることができ、光源を長寿命化す
ることができる。更に、反射面にAl等の金属を蒸着し
て反射鏡を形成すれば反射率を向上させることができ
る。
Example 4. Further, as shown in FIG. 2C, a mirror surface 30a having an angle of 45 degrees with respect to the optical diffusion surface of the rotary plate 40 may be formed on the surface of the case 30 by plating, vapor deposition or the like. In this case, the collimator lens 43 and the diaphragm member 42
The light from the light source 3 that has passed through is reflected by the mirror surface 30a by 90 degrees, and the optical diffusion surface of the rotating plate 40 is irradiated with the deflected light.
The light reflected by the optical diffusion surface of the rotating plate 40 is again deflected by 90 degrees on the mirror surface 30a, and the deflected light is condensed by the condenser lens 4
The light is incident on the light receiving surface of the optical position detecting element 5 by the light source 5. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended. Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0031】実施例5.上記実施例においては、光源3
からの光を絞り部材42及びコリメータレンズ43を介
して回転板40の光学拡散面に照射するようにした場合
について説明したが、図3Aに示すように、ケース30
に回転板40の光学拡散面に対して90度の狭角をなす
2つの反射面を有する台形プリズム49を支持固定する
ようにしても良い。この場合、コリメータレンズ43及
び絞り部材42を透過した光源3からの光が台形プリズ
ム49で2回90度偏向、すなわち、180度偏向さ
れ、回転板40の光学拡散面にその偏向光が照射され、
回転板40の光学拡散面で反射された光が台形プリズム
49で再び2回90度偏向、すなわち、180度に偏向
され、その偏向光がコンデンサレンズ45により光位置
検出素子5の受光面上に入射される。
Example 5. In the above embodiment, the light source 3
The case has been described in which the light from the above is applied to the optical diffusion surface of the rotating plate 40 via the diaphragm member 42 and the collimator lens 43. However, as shown in FIG.
Further, a trapezoidal prism 49 having two reflecting surfaces forming a narrow angle of 90 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed. In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is twice deflected by the trapezoidal prism 49 by 90 degrees, that is, 180 degrees, and the optical diffusion surface of the rotary plate 40 is irradiated with the deflected light. ,
The light reflected by the optical diffusion surface of the rotary plate 40 is deflected twice by the trapezoidal prism 49 by 90 degrees, that is, by 180 degrees, and the deflected light is reflected by the condenser lens 45 on the light receiving surface of the optical position detecting element 5. It is incident.

【0032】この場合も上述と同様に、検出角度範囲が
狭くても精度良く検出できると共に、最大検出角度範囲
をほぼ2πとでき、更に小径の受光面の光位置検出素子
であっても精度良く検出できるので、装置を小径の小型
なものにできると共に、両軸構成とすることができ、光
源を長寿命化することができる。更に、反射面にAl等
の金属を蒸着して反射鏡を形成すれば反射率を向上させ
ることができる。
In this case as well, similar to the above, even if the detection angle range is narrow, it is possible to detect with high accuracy, and the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately measured. Since it can be detected, the device can be made small in diameter and small in size, and can have a biaxial structure, so that the life of the light source can be extended. Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0033】実施例6.また、図3Bに示すように、ケ
ース30に回転板40の光学拡散面に対して90度の狭
角をなす2つの平面反射鏡50及び51を支持固定して
も良い。この場合、コリメータレンズ43及び絞り部材
42を透過した光源3からの光が平面反射鏡51及び5
0で順次90度ずつ合計180度偏向され、回転板40
の光学拡散面にその偏向光が照射され、回転板40の光
学拡散面で反射した光が平面反射鏡50及び51順次9
0度ずつ合計180度偏向され、その偏向光がコンデン
サレンズ45により光位置検出素子5の受光面上に入射
される。この場合も上述と同様に、検出角度範囲が狭く
ても精度良く検出できると共に、最大検出角度範囲をほ
ぼ2πとでき、更に小径の受光面の光位置検出素子であ
っても精度良く検出できるので、装置を小径の小型なも
のにできると共に、両軸構成とすることができ、光源を
長寿命化することができる。更に、反射面にAl等の金
属を蒸着して反射鏡を形成すれば反射率を向上させるこ
とができる。
Example 6. Further, as shown in FIG. 3B, two flat reflecting mirrors 50 and 51 forming a narrow angle of 90 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed to the case 30. In this case, the light from the light source 3 which has passed through the collimator lens 43 and the diaphragm member 42 is reflected by the plane reflecting mirrors 51 and 5.
At 0, it is sequentially deflected by 90 degrees, for a total of 180 degrees.
The deflected light is applied to the optical diffusing surface of the rotating plate 40, and the light reflected by the optical diffusing surface of the rotary plate 40 is sequentially reflected by the plane reflecting mirrors 50 and 51.
The light is deflected by 0 ° for a total of 180 °, and the deflected light is incident on the light receiving surface of the optical position detection element 5 by the condenser lens 45. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended. Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0034】実施例7.また、図3Cに示すように、ケ
ース30の表面にメッキ、蒸着等で回転板40の光学拡
散面に対して90度の狭角をなす2つの鏡面30a及び
30bを形成するようにしても良い。この場合、コリメ
ータレンズ43及び絞り部材42を透過した光源3から
の光が鏡面30b及び30aで順次90度ずつ合計18
0度偏向され、回転板40の光学拡散面にその偏向光が
照射され、回転板40の光学拡散面で反射した光が鏡面
30a及び30b順次90度ずつ合計180度偏向さ
れ、その偏向光がコンデンサレンズ45により光位置検
出素子5の受光面上に入射される。この場合も上述と同
様に、検出角度範囲が狭くても精度良く検出できると共
に、最大検出角度範囲をほぼ2πとでき、更に小径の受
光面の光位置検出素子であっても精度良く検出できるの
で、装置を小径の小型なものにできると共に、両軸構成
とすることができ、光源を長寿命化することができる。
更に、反射面にAl等の金属を蒸着して反射鏡を形成す
れば反射率を向上させることができる。
Example 7. Further, as shown in FIG. 3C, two mirror surfaces 30a and 30b may be formed on the surface of the case 30 by plating, vapor deposition, or the like, forming a narrow angle of 90 degrees with respect to the optical diffusion surface of the rotating plate 40. . In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is sequentially reflected on the mirror surfaces 30b and 30a by 90 degrees, for a total of 18 degrees.
The deflected light is deflected by 0 degrees, and the deflected light is applied to the optical diffusion surface of the rotating plate 40. The light reflected by the optical diffusion surface of the rotating plate 40 is deflected by 90 degrees in order by 90 degrees in total for a total of 180 degrees. The light is incident on the light receiving surface of the optical position detecting element 5 by the condenser lens 45. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended.
Furthermore, if a metal such as Al is deposited on the reflecting surface to form a reflecting mirror, the reflectance can be improved.

【0035】実施例8.図4はこの発明の更に他の実施
例の光学式変位検出装置の光学系の構成を示す構造概略
図である。この図4において、図1〜図3と対応する部
分には同一符号を付し、その詳細説明を省略する。この
例においては、回転板53の内周部分53aを光学拡散
面としたものであり、この場合、コリメータレンズ43
及び絞り部材42を透過した光源3からの光が回転板5
3の内周部分53aに形成した光学拡散面で反射され、
この光学拡散面で反射された光がコンデンサレンズ45
により光位置検出素子5の受光面上に入射される。
Example 8. FIG. 4 is a structural schematic diagram showing a configuration of an optical system of an optical displacement detecting device according to still another embodiment of the present invention. 4, parts corresponding to those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted. In this example, the inner peripheral portion 53a of the rotary plate 53 is an optical diffusion surface, and in this case, the collimator lens 43 is used.
And the light from the light source 3 that has passed through the diaphragm member 42
Is reflected by the optical diffusion surface formed on the inner peripheral portion 53a of 3,
The light reflected by this optical diffusion surface is the condenser lens 45.
Is incident on the light receiving surface of the optical position detecting element 5.

【0036】この場合も上述と同様に、検出角度範囲が
狭くても精度良く検出できると共に、最大検出角度範囲
をほぼ2πとでき、更に小径の受光面の光位置検出素子
であっても精度良く検出できるので、装置を小径の小型
なものにできると共に、両軸構成とすることができ、光
源を長寿命化することができる。更にこの構成によれ
ば、光源3からなる発光手段、光位置検出素子5からな
る受光手段を回転軸1近傍に配置することとなるので、
装置をより小径化することができる。尚、この例におい
ても上記実施例2〜実施例7のように光学径90度、1
80度の偏向手段を用いることができる。
Also in this case, similarly to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, and the maximum detection angle range can be set to approximately 2π, and even if the light position detecting element of the light receiving surface having a smaller diameter is used, it is possible to accurately detect it. Since it can be detected, the device can be made small in diameter and small in size, and can have a biaxial structure, so that the life of the light source can be extended. Further, according to this configuration, since the light emitting means including the light source 3 and the light receiving means including the light position detecting element 5 are arranged in the vicinity of the rotation axis 1,
The device can be made smaller. In this example also, the optical diameter is 90 degrees, as in Examples 2 to 7 above.
An 80 degree deflection means can be used.

【0037】実施例9.図5はこの発明の更に他の実施
例の光学式変位検出装置の光学系の構成を示す構造概略
図である。この図5において、図1〜図4と対応する部
分には同一符号を付し、その詳細説明を省略する。この
例においては、回転板54の内周部分54a及び外周部
分54bをそれぞれ回転角度に応じて半径が変わるよう
にし、更に内周部分54a及び外周部分54bの表面に
それぞれ光学拡散面を形成し、光源3、光位置検出素子
5、コリメータレンズ43、支持部材42及び44、コ
ンデンサレンズ45でなるユニットを回転板53の内外
に1つずつ設けたものである。
Example 9. FIG. 5 is a structural schematic diagram showing a configuration of an optical system of an optical displacement detecting device according to still another embodiment of the present invention. 5, parts corresponding to those in FIGS. 1 to 4 are designated by the same reference numerals, and detailed description thereof will be omitted. In this example, the radii of the inner peripheral portion 54a and the outer peripheral portion 54b of the rotary plate 54 are changed according to the rotation angle, and optical diffusion surfaces are formed on the surfaces of the inner peripheral portion 54a and the outer peripheral portion 54b, respectively. A unit including the light source 3, the light position detection element 5, the collimator lens 43, the supporting members 42 and 44, and the condenser lens 45 is provided inside and outside the rotating plate 53, respectively.

【0038】この場合、コリメータレンズ43及び絞り
部材42を透過した光源3からの光が回転板54の内周
部分54aに形成した光学拡散面で反射され、この光学
拡散面で反射された光がコンデンサレンズ45により光
位置検出素子5の受光面上に入射される。同様にコリメ
ータレンズ43及び絞り部材42を透過した光源3から
の光が回転板54の外周部分54aに形成した光学拡散
面で反射され、この光学拡散面で反射された光がコンデ
ンサレンズ45により光位置検出素子5の受光面上に入
射される。このような構成にした場合、内周部分54a
及び外周部分54bの半径変化率を異なったもの、或い
はズレを生じさせておけば、それぞれ異なった検出信号
が得られるので、両者の検出信号を比較することでより
精度良く検出できる利点がある。この場合も上述と同様
に、検出角度範囲が狭くても精度良く検出できると共
に、最大検出角度範囲をほぼ2πとでき、更に小径の受
光面の光位置検出素子であっても精度良く検出できるの
で、装置を小径の小型なものにできると共に、両軸構成
とすることができ、光源を長寿命化することができる。
更にこの構成によれば、光源3からなる発光手段、光位
置検出素子5からなる受光手段を回転軸1近傍に配置す
ることとなるので、装置をより小径化することができ
る。尚、この例においても上記実施例2〜実施例7のよ
うに光学径90度、180度の偏向手段を用いることが
できる。
In this case, the light from the light source 3 which has passed through the collimator lens 43 and the diaphragm member 42 is reflected by the optical diffusion surface formed on the inner peripheral portion 54a of the rotating plate 54, and the light reflected by this optical diffusion surface is The light is incident on the light receiving surface of the optical position detecting element 5 by the condenser lens 45. Similarly, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is reflected by the optical diffusion surface formed on the outer peripheral portion 54 a of the rotating plate 54, and the light reflected by this optical diffusion surface is converted by the condenser lens 45. The light is incident on the light receiving surface of the position detection element 5. In the case of such a configuration, the inner peripheral portion 54a
If the radius change rates of the outer peripheral portion 54b and the outer peripheral portion 54b are different or different from each other, different detection signals can be obtained. Therefore, there is an advantage that the detection signals can be detected with higher accuracy. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended.
Further, according to this configuration, since the light emitting means including the light source 3 and the light receiving means including the light position detecting element 5 are arranged in the vicinity of the rotating shaft 1, the diameter of the device can be further reduced. Also in this example, the deflecting means having the optical diameters of 90 degrees and 180 degrees can be used as in the second to seventh embodiments.

【0039】また、光学系を利用することで1つの光源
3に対して2つの光位置検出素子5を用いることもでき
る。また、この例においては他の手法として、回転板5
4を2枚重ね合わせることもできる。更に、内周面及び
外周面の何れか一方に凹凸を設け、パルス状の出力を得
られるようにしたもので、パルス数をカウントすれば相
対的変位を検出でき、しかも他面は上述と同様に角度に
応じて半径を変化させ、両検出部から得られる信号に基
いて精度の良好な検出を行うことが可能となる。尚、回
転板54を2枚重ねるようにした場合においてもこの方
法を適用することが可能である。
Further, two optical position detecting elements 5 can be used for one light source 3 by utilizing an optical system. Further, in this example, as another method, the rotating plate 5
It is also possible to stack 2 sheets of 4. Furthermore, it is possible to obtain a pulsed output by providing irregularities on either the inner or outer peripheral surface, the relative displacement can be detected by counting the number of pulses, and the other surface is the same as above. It is possible to change the radius according to the angle and to perform detection with good accuracy based on the signals obtained from both detection units. Note that this method can be applied even when the two rotary plates 54 are stacked.

【0040】実施例10.図6はこの発明の更に他の実
施例の光学式変位検出装置の回転板40の回転角度θと
半径rの関係を示す原理図である。この図6において、
図1〜図5と対応する部分には同一符号を付し、その詳
細説明を省略する。三角測距の原理により、この図6A
に示す場合においては次の式が成り立つ。
Example 10. FIG. 6 is a principle diagram showing the relationship between the rotation angle θ of the rotary plate 40 and the radius r of the optical displacement detection device of still another embodiment of the present invention. In this FIG.
1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. Due to the principle of triangulation, this Figure 6A
In the case shown in, the following equation holds.

【0041】 h/B=f/X ・・・(2)H / B = f / X (2)

【0042】従って、光位置検出素子5上を移動するス
ポットXは次のように表すことができる。
Therefore, the spot X moving on the optical position detecting element 5 can be expressed as follows.

【0043】 X=Bf/h=Bf/(L−r) ・・・(3)X = Bf / h = Bf / (Lr) (3)

【0044】すなわち、半径rとの関係で示される。次
に、半径rと回転角度θの関係は次のように表すことが
できる。
That is, it is shown in relation to the radius r. Next, the relationship between the radius r and the rotation angle θ can be expressed as follows.

【0045】 1/(L−r)=aθ+b ・・・(4)1 / (L−r) = aθ + b (4)

【0046】 r=L−1/(aθ+b) ・・・(5)R = L−1 / (aθ + b) (5)

【0047】上記(5)式を利用して、回転板40の半
径rを決定する。これによって出力Vθと回転角度θの
関係は図6Bに示すようにリニアとなり、回転角度の検
出を精度良く行うことができる。
The radius r of the rotary plate 40 is determined using the above equation (5). As a result, the relationship between the output Vθ and the rotation angle θ becomes linear as shown in FIG. 6B, and the rotation angle can be detected accurately.

【0048】実施例11.図7はこの発明の更に他の実
施例の光学式変位検出装置の光学系の構成を示す構造概
略図である。この図7において、図1〜図6と対応する
部分には同一符号を付し、その詳細説明を省略する。図
おいて、60は往復軸受けであり、この図に示すよう
に、この往復軸受け60をケース30の両端に取り付け
る。そしてこの2つの往復軸受け60でケース30に対
して往復する往復軸61を支持し、両軸構成にする。ま
た、62はその外辺部分を光学拡散面とした往復板で、
この往復板62を往復軸61に固定し、この往復軸61
と連動してケース60に対して往復するようにする。す
なわち、この例に示す光学式変位検出装置は、ストロー
ク変位検出の構造としたものである。
Example 11. FIG. 7 is a structural schematic diagram showing the configuration of an optical system of an optical displacement detecting device according to still another embodiment of the present invention. In FIG. 7, parts corresponding to those in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted. In the figure, 60 is a reciprocating bearing, and as shown in this figure, the reciprocating bearing 60 is attached to both ends of the case 30. The two reciprocating bearings 60 support the reciprocating shaft 61 that reciprocates with respect to the case 30 to form a double shaft structure. Further, 62 is a reciprocating plate whose outer peripheral portion has an optical diffusion surface,
The reciprocating plate 62 is fixed to the reciprocating shaft 61.
It is made to reciprocate with respect to the case 60 in conjunction with. That is, the optical displacement detection device shown in this example has a structure for stroke displacement detection.

【0049】41は素子支持基板で、42は絞り部材、
43はコリメータレンズ、44は支持部材、45は往復
板62の光学拡散面からの反射光を光位置検出素子5に
集光するためのコンデンサレンズであり、この図に示す
ように、素子支持基板45をケース30の内部の底の部
分に取り付け、この素子支持基板45にその光出射方向
を往復軸1の方向となるよう例えばLED等の光源3を
取り付け、絞り部材42を光源3との光軸を合致させる
ように光源3の外周面にはめ合わせて固定し、この支持
部材42でコリメータレンズ43を支持し、支持部材4
4を光位置検出素子5の外周面にはめ合わせて固定し、
この支持部材44でコンデンサレンズ45を支持するよ
うにする。
Reference numeral 41 is an element supporting substrate, 42 is a diaphragm member,
Reference numeral 43 is a collimator lens, 44 is a support member, and 45 is a condenser lens for condensing the light reflected from the optical diffusion surface of the reciprocating plate 62 on the optical position detection element 5. As shown in this figure, the element support substrate 45 is attached to the bottom portion inside the case 30, a light source 3 such as an LED is attached to the element support substrate 45 so that the light emitting direction thereof is the direction of the reciprocating axis 1, and the diaphragm member 42 is used for the light from the light source 3. The light source 3 is fitted and fixed to the outer peripheral surface so as to match the axes, and the supporting member 42 supports the collimator lens 43.
4 is fitted and fixed to the outer peripheral surface of the optical position detecting element 5,
The supporting lens 44 supports the condenser lens 45.

【0050】ここで、上記コリメータレンズ43及びコ
ンデンサレンズ45は例えばポリメチルメタアクリレー
ト(PMMA)、ポリカーボネイト(PC)等の光学プ
ラスチックで成形したプラスチック成形品を用いればコ
ストを削減することができる。次に動作について説明す
る。図7において光源3から照射された光はコリメータ
レンズ43、絞り42を透過して所定径の平行光束とな
って往復板62の外辺部分に入射し、この外辺部分の光
学拡散面で反射される。そしてこの反射光はコンデンサ
レンズ45によって光位置検出素子5の受光面上に集束
する。ここで往復軸61が往復すると、図7Aにおいて
2点鎖線で示すように往復板62が同様に往復し、これ
によって光位置検出素子5上に集束したスポット光が光
位置検出素子5上を移動する。従って、光位置検出素子
5の光入射位置は往復板62、すなわち、往復板62の
ストローク変位と等しくなり、図12〜図14を参照し
て説明した従来装置と同様に光位置検出素子5の検出電
極から検出電流I1及びI2が得られ、例えばこの検出
電流I1及びI2を従来装置と同様の検出回路で検出す
れば光入射位置Xに相当する回転角度VZを得ることが
できる。
Here, the collimator lens 43 and the condenser lens 45 can be manufactured at a reduced cost by using a plastic molded product molded from an optical plastic such as polymethylmethacrylate (PMMA) or polycarbonate (PC). Next, the operation will be described. In FIG. 7, the light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light flux of a predetermined diameter, enters the outer peripheral portion of the reciprocating plate 62, and is reflected by the optical diffusion surface of the outer peripheral portion. To be done. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the reciprocating shaft 61 reciprocates here, the reciprocating plate 62 also reciprocates as shown by a chain double-dashed line in FIG. 7A, whereby the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. To do. Therefore, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 62, that is, the stroke displacement of the reciprocating plate 62, and the light position detecting element 5 is moved in the same manner as the conventional device described with reference to FIGS. Detection currents I1 and I2 are obtained from the detection electrodes. For example, if the detection currents I1 and I2 are detected by a detection circuit similar to the conventional device, the rotation angle V Z corresponding to the light incident position X can be obtained.

【0051】この例においては、三角測距の原理に基い
ており、反射面と受光部の距離変化率を大きくすること
で、受光面の端から端までを有効に検出できるので、検
出ストローク範囲が狭くても精度良く検出できると共
に、光位置検出素子5の光電変換層をアモルファスシリ
コンにした場合は最大ストローク範囲を広げることがで
きる。更に小径の受光面の光位置検出素子であっても精
度良く検出できるので、装置を小径の小型なものにでき
ると共に、両軸構成とすることができ、光源を長寿命化
することができる。また、上記実施例2〜実施例7にお
いて説明した90度、180度偏向を行うための構成を
適用することもできる。
This example is based on the principle of triangulation, and by increasing the distance change rate between the reflecting surface and the light receiving portion, it is possible to effectively detect the edge of the light receiving surface. If the photoelectric conversion layer of the optical position detecting element 5 is made of amorphous silicon, the maximum stroke range can be widened even if it is narrow. Further, since the light position detecting element of the light receiving surface having a small diameter can be detected with high accuracy, the device can be made small in diameter and small in size, and can have a biaxial structure, and the life of the light source can be extended. Further, the configuration for performing the 90-degree and 180-degree deflection described in the above-described second to seventh embodiments can be applied.

【0052】実施例12.上記実施例11においては往
復板62の外辺部分を光学拡散面としたが、図8に示す
ように、その内辺部分を光学拡散面とした往復板63を
用いるようにしても良い。この場合は図に示すように、
光源3から照射された光はコリメータレンズ43、絞り
42を透過して所定径の平行光束となって往復板63の
内辺部分に入射し、この内辺部分の光学拡散面で反射さ
れる。そしてこの反射光はコンデンサレンズ45によっ
て光位置検出素子5の受光面上に集束する。ここで往復
軸61が往復すると、往復板63が同様に往復し、これ
によって光位置検出素子5上に集束したスポット光が光
位置検出素子5上を移動する。従って、光位置検出素子
5の光入射位置は往復板63、すなわち、往復板63の
ストローク変位と等しくなり、図12〜図14を参照し
て説明した従来装置と同様に光位置検出素子5の検出電
極から検出電流I1及びI2が得られ、例えばこの検出
電流I1及びI2を従来装置と同様の検出回路で検出す
れば光入射位置Xに相当する回転角度VZを得ることが
できる。
Example 12 Although the outer side portion of the reciprocating plate 62 is the optical diffusion surface in the eleventh embodiment, a reciprocating plate 63 having the inner side portion thereof as the optical diffusion surface may be used as shown in FIG. In this case, as shown in the figure,
The light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light flux of a predetermined diameter, enters the inner side portion of the reciprocating plate 63, and is reflected by the optical diffusion surface of the inner side portion. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the reciprocating shaft 61 reciprocates here, the reciprocating plate 63 also reciprocates, so that the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. Accordingly, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 63, that is, the stroke displacement of the reciprocating plate 63, and the light position detecting element 5 is moved in the same manner as in the conventional device described with reference to FIGS. The detection currents I1 and I2 are obtained from the detection electrodes. For example, if the detection currents I1 and I2 are detected by a detection circuit similar to the conventional device, the rotation angle VZ corresponding to the light incident position X can be obtained.

【0053】この例においても上記実施例11と同様
に、三角測距の原理に基いており、反射面と受光部の距
離変化率を大きくすることで、受光面の端から端までを
有効に検出できるので、検出ストローク範囲が狭くても
精度良く検出できると共に、光位置検出素子5の光電変
換層をアモルファスシリコンにした場合は最大ストロー
ク範囲を広げることができる。更に小径の受光面の光位
置検出素子であっても精度良く検出できるので、装置を
小径の小型なものにできると共に、両軸構成とすること
ができ、光源を長寿命化することができる。また、上記
実施例2〜実施例7において説明した90度、180度
偏向を行うための構成を適用することもできる。
Similar to the eleventh embodiment, this example is also based on the principle of triangulation, and by increasing the distance change rate between the reflecting surface and the light receiving portion, the edge of the light receiving surface can be made effective. Since it can be detected, it can be detected accurately even if the detection stroke range is narrow, and the maximum stroke range can be widened when the photoelectric conversion layer of the light position detection element 5 is made of amorphous silicon. Further, since the light position detecting element of the light receiving surface having a small diameter can be detected with high accuracy, the device can be made small in diameter and small in size, and can have a biaxial structure, and the life of the light source can be extended. Further, the configuration for performing the 90-degree and 180-degree deflection described in the above-described second to seventh embodiments can be applied.

【0054】実施例13.上記実施例11においては往
復板62の外辺部分を光学拡散面としたが、図9に示す
ように、その内辺部分及び外辺部分を何れも光学拡散面
とした往復板64を用い、往復軸62を中心に図7に示
した光源3、光位置検出素子5、支持部材42及び4
4、コリメータレンズ43、コンデンサレンズ45をそ
れぞれ上下に配置するようにしても良い。この場合は図
に示すように、光源3から照射された光はコリメータレ
ンズ43、絞り42を透過して所定径の平行光束となっ
て往復板64の内辺部分に入射し、この内辺部分の光学
拡散面で反射される。そしてこの反射光はコンデンサレ
ンズ45によって光位置検出素子5の受光面上に集束す
る。ここで往復軸61が往復すると、往復板64が同様
に往復し、これによって光位置検出素子5上に集束した
スポット光が光位置検出素子5上を移動する。
Example 13. In the eleventh embodiment, the outer peripheral portion of the reciprocating plate 62 is used as the optical diffusion surface, but as shown in FIG. 9, the reciprocating plate 64 is used in which both the inner peripheral portion and the outer peripheral portion are optical diffusion surfaces. The light source 3, the optical position detecting element 5, the supporting members 42 and 4 shown in FIG.
4, the collimator lens 43, and the condenser lens 45 may be arranged vertically. In this case, as shown in the figure, the light emitted from the light source 3 is transmitted through the collimator lens 43 and the diaphragm 42 and becomes a parallel light beam of a predetermined diameter, which is incident on the inner side portion of the reciprocating plate 64. Is reflected by the optical diffusion surface of. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. Here, when the reciprocating shaft 61 reciprocates, the reciprocating plate 64 reciprocates in the same manner, whereby the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5.

【0055】一方、光源3から照射された光はコリメー
タレンズ43、絞り42を透過して所定径の平行光束と
なって往復板64の外辺部分に入射し、この外辺部分の
光学拡散面で反射される。そしてこの反射光はコンデン
サレンズ45によって光位置検出素子5の受光面上に集
束する。ここで往復軸61が往復すると、往復板64が
同様に往復し、これによって光位置検出素子5上に集束
したスポット光が光位置検出素子5上を移動する。従っ
て、光位置検出素子5の光入射位置は往復板64、すな
わち、往復板64のストローク変位と等しくなり、図1
2〜図14を参照して説明した従来装置と同様に光位置
検出素子5の検出電極から検出電流I1及びI2が得ら
れ、例えばこの検出電流I1及びI2を従来装置と同様
の検出回路で検出すれば光入射位置Xに相当する回転角
度VZを得ることができる。
On the other hand, the light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light beam of a predetermined diameter, and enters the outer peripheral portion of the reciprocating plate 64, and the optical diffusion surface of this outer peripheral portion. Is reflected by. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. Here, when the reciprocating shaft 61 reciprocates, the reciprocating plate 64 reciprocates in the same manner, whereby the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. Therefore, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 64, that is, the stroke displacement of the reciprocating plate 64.
2 to 14, detection currents I1 and I2 are obtained from the detection electrodes of the optical position detecting element 5 as in the conventional device described with reference to FIGS. 2 to 14, and the detection currents I1 and I2 are detected by the same detection circuit as in the conventional device. Then, the rotation angle V Z corresponding to the light incident position X can be obtained.

【0056】外辺部分及び内辺部分はそれぞれストロー
クに応じて往復軸61からの距離を変化させており、外
辺部分、内辺部分の距離変化率を異なったもの、或いは
ズレを生じさせておけば、それぞれ異なった検出信号を
得られるので、両者の検出信号を比較することでより精
度良く検出できる利点がある。この例においても上記実
施例11と同様に、三角測距の原理に基いており、反射
面と受光部の距離変化率を大きくすることで、受光面の
端から端までを有効に検出できるので、検出ストローク
範囲が狭くても精度良く検出できると共に、光位置検出
素子5の光電変換層をアモルファスシリコンにした場合
は最大ストローク範囲を広げることができる。
The outer side portion and the inner side portion respectively change the distance from the reciprocating shaft 61 according to the stroke, so that the outer side portion and the inner side portion have different distance change rates, or a deviation occurs. If so, different detection signals can be obtained, so that there is an advantage that the detection signals can be detected more accurately by comparing the detection signals of the two. Similar to the eleventh embodiment, this example is also based on the principle of trigonometric distance measurement, and by increasing the distance change rate between the reflecting surface and the light receiving portion, it is possible to effectively detect the edge of the light receiving surface. Even if the detection stroke range is narrow, the detection can be performed with high accuracy, and the maximum stroke range can be widened when the photoelectric conversion layer of the light position detection element 5 is made of amorphous silicon.

【0057】また、小径の受光面の光位置検出素子であ
っても精度良く検出できるので、装置を小径の小型なも
のにできると共に、両軸構成とすることができ、光源を
長寿命化することができる。また、上記実施例2〜実施
例7において説明した90度、180度偏向を行うため
の構成を適用することもできる。また、光学系を利用す
ることで1つの光源3に対して2つの光位置検出素子5
を用いることも可能である。
Further, since it is possible to accurately detect even a light position detecting element of a light receiving surface having a small diameter, the device can be made small in diameter and small in size, and can have a biaxial structure, so that the light source has a long life. be able to. Further, the configuration for performing the 90-degree and 180-degree deflection described in the above-described second to seventh embodiments can be applied. Further, by using the optical system, two light position detecting elements 5 are provided for one light source 3.
It is also possible to use.

【0058】実施例14.上記実施例11では往復板6
2の外辺部分を光学拡散面としたが、図10に示すよう
に、その外辺部分を光学拡散面とした2枚の往復板65
a及び65bを重ね合わせて用い、光源3からの光をこ
れら2枚の往復板65a及び65bの光学拡散面で反射
させこれを2つのコンデンサレンズ45で2つの光位置
検出素子5にそれぞれ入射させるようにしても良い。こ
の場合は図に示すように、光源3から照射された光は所
定径の平行光束となって往復板65a及び65bの各外
辺部分に入射し、この外辺部分の光学拡散面でそれぞれ
反射される。そしてこの反射光はそれぞれコンデンサレ
ンズ45によって光位置検出素子5の受光面上にそれぞ
れ集束する。ここで往復軸61が往復すると、往復板6
5a及び65bがそれぞれ同様に往復し、これによって
光位置検出素子5上に集束したスポット光がそれぞれ光
位置検出素子5上を移動する。
Example 14 In the eleventh embodiment, the reciprocating plate 6
The outer peripheral portion of 2 is an optical diffusing surface, but two reciprocating plates 65 whose outer peripheral portion is an optical diffusing surface as shown in FIG.
The light from the light source 3 is reflected by the optical diffusion surfaces of the two reciprocating plates 65a and 65b and is made incident on the two optical position detecting elements 5 by the two condenser lenses 45, respectively. You may do it. In this case, as shown in the figure, the light emitted from the light source 3 becomes a parallel light flux having a predetermined diameter, enters the outer peripheral portions of the reciprocating plates 65a and 65b, and is reflected by the optical diffusion surfaces of the outer peripheral portions. To be done. Then, the reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the reciprocating shaft 61 reciprocates here, the reciprocating plate 6
5a and 65b respectively reciprocate in the same manner, whereby the spot lights focused on the optical position detecting element 5 move on the optical position detecting element 5, respectively.

【0059】従って、光位置検出素子5の光入射位置は
往復板65a及び65b、すなわち、往復板65a及び
65bの各ストローク変位と等しくなり、図12〜図1
4を参照して説明した従来装置と同様に光位置検出素子
5の検出電極から検出電流I1及びI2が得られ、例え
ばこの検出電流I1及びI2を従来装置と同様の検出回
路で検出すれば光入射位置Xに相当する回転角度VZ
得ることができる。この場合、小径の受光面の光位置検
出素子であっても精度良く検出できるので、装置を小径
の小型なものにできると共に、両軸構成とすることがで
き、光源を長寿命化することができる。また、上記実施
例2〜実施例7において説明した90度、180度偏向
を行うための構成を適用することもできる。さらには、
2枚の往復板65a及び65bを用いる場合、往復板6
5a及び65bの内1枚に凹凸を設け、パルス状の出力
を得られるようにしても良い。この場合パルス数をカウ
ントすれば相対的変位を検出でき、しかも他の1枚は上
述と同様ストロークに応じて往復軸61からの距離の変
化を持たせておけば、2つの検出部から得られる信号に
基いて精度の高い検出を行うことができる。また、内辺
及び外辺部分を利用した1枚の往復板65を用いてもこ
れは可能である。
Therefore, the light incident position of the light position detecting element 5 becomes equal to the stroke displacement of the reciprocating plates 65a and 65b, that is, the reciprocating plates 65a and 65b, and FIGS.
4, the detection currents I1 and I2 are obtained from the detection electrodes of the optical position detecting element 5 as in the conventional device described with reference to FIG. The rotation angle V Z corresponding to the incident position X can be obtained. In this case, even the light position detecting element of the light receiving surface having a small diameter can be detected with high accuracy, so that the device can be made small in diameter and small in size, and can have a biaxial structure, and the light source can have a long life. it can. Further, the configuration for performing the 90-degree and 180-degree deflection described in the above-described second to seventh embodiments can be applied. Moreover,
When two reciprocating plates 65a and 65b are used, the reciprocating plate 6
One of 5a and 65b may be provided with irregularities so that a pulsed output can be obtained. In this case, the relative displacement can be detected by counting the number of pulses, and the other one can be obtained from the two detectors if the distance from the reciprocating shaft 61 is changed in accordance with the stroke as described above. Highly accurate detection can be performed based on the signal. This is also possible by using one reciprocating plate 65 that uses the inner and outer edges.

【0060】実施例15.図11はこの発明の更に他の
実施例の光学式変位検出装置の往復板62のストローク
と往復軸61との距離yの関係を示した原理図である。
この図11において、図1〜図10と対応する部分には
同一符号を付し、その詳細説明を省略する。三角測距の
原理により、この図11Aに示す場合においては次の式
が成り立つ。
Example 15 FIG. 11 is a principle diagram showing the relationship between the stroke of the reciprocating plate 62 and the distance y between the reciprocating shaft 61 and the optical displacement detecting device according to still another embodiment of the present invention.
11, parts corresponding to those in FIGS. 1 to 10 are designated by the same reference numerals, and detailed description thereof will be omitted. Due to the principle of triangulation, the following equation holds in the case shown in FIG. 11A.

【0061】 h/B=f/X ・・・(6)H / B = f / X (6)

【0062】従って、光位置検出素子5上を移動するス
ポットXは次のように表すことができる。
Therefore, the spot X moving on the optical position detecting element 5 can be expressed as follows.

【0063】 X=Bf/h=Bf/(K−y) ・・・(7)X = Bf / h = Bf / (K−y) (7)

【0064】すなわち、距離yとの関係で示される。次
に、距離yとストロークZの関係は次のように表すこと
ができる。
That is, it is shown in relation to the distance y. Next, the relationship between the distance y and the stroke Z can be expressed as follows.

【0065】 1/(K−y)=aZ+b ・・・(8)1 / (K−y) = aZ + b (8)

【0066】上記(8)式より、距離yは次のように表
すことができる。
From the above equation (8), the distance y can be expressed as follows.

【0067】 y=K−1/(aZ+b) ・・・(9)Y = K−1 / (aZ + b) (9)

【0068】上記(9)式を利用して、往復板62の往
復軸61からの距離yを決定する。これによって出力V
Zとストローク変位Zの関係は図11Bに示すようにリ
ニアとなり、回転角度の検出を精度良く行うことができ
る。
The distance y of the reciprocating plate 62 from the reciprocating shaft 61 is determined using the above equation (9). This gives the output V
The relationship between Z and stroke displacement Z is linear as shown in FIG. 11B, and the rotation angle can be detected accurately.

【0069】実施例16.上記実施例においては光源3
と光位置検出素子5を各々別々に素子支持基板45にハ
ンダ付け等で取り付けた場合について説明したが、ガラ
ス等の支持基板上に光源3と光位置検出素子5を同時に
形成するようにしても良いし、また、素子支持基板45
の表面の一部を処理して光源3と光位置検出素子5を形
成しても良い。また、コリメート手段、コンデンサ手
段、偏向手段からなる光学系は図示する以外の種々のレ
ンズ、反射鏡、プリズム等を組み合わせて構成できるこ
とはいうまでもない。
Example 16. In the above embodiment, the light source 3
Although the case where the light position detecting element 5 and the light position detecting element 5 are separately attached to the element supporting substrate 45 by soldering or the like has been described, the light source 3 and the light position detecting element 5 may be simultaneously formed on the supporting substrate such as glass. Good, and the element support substrate 45
The light source 3 and the light position detection element 5 may be formed by processing a part of the surface of the. Further, it goes without saying that the optical system including the collimating means, the condenser means, and the deflecting means can be configured by combining various lenses, reflecting mirrors, prisms and the like other than those shown in the drawing.

【0070】[0070]

【発明の効果】以上のように、請求項1記載の発明によ
れば、被測定体に取り付けられるかその一部である回転
軸と、この回転軸に取り付けられて一体に回転し、側周
部が光学拡散面とされた回転板と、この回転板の上記光
学拡散面に光を照射する光源と、上記回転板の上記光学
拡散面からの反射光を集光する集光光学系と、この集光
光学系の略集光位置に配置された光位置検出素子とを備
え、上記回転板は上記集光光学系と上記側周部の光反射
位置との間の距離が上記回転軸の回転角度に応じて異な
るように形成され、上記光位置検出素子上の光入射位置
に基いて上記被測定体の変位を検出するようにしたの
で、角度検出範囲の大小にかかわらず精度良く回転角度
を検出でき、両軸構成が容易、且つ、小型で、光源が長
寿命の装置を得ることができるという効果がある。
As described above, according to the first aspect of the present invention, the rotary shaft which is attached to the object to be measured or is a part of the rotary shaft and the rotary shaft which is attached to the rotary shaft to rotate integrally with the rotary shaft. A rotating plate whose part is an optical diffusing surface, a light source for irradiating the optical diffusing surface of the rotating plate with light, and a condensing optical system for condensing reflected light from the optical diffusing surface of the rotating plate, The rotating plate is provided with a light position detecting element disposed substantially at a light collecting position of the light collecting optical system, and the rotation plate has a distance between the light collecting position of the light collecting optical system and the light reflection position of the side peripheral portion of the rotating shaft. It is formed differently according to the rotation angle, and the displacement of the object to be measured is detected based on the light incident position on the light position detection element, so the rotation angle can be accurately measured regardless of the size of the angle detection range. Can be detected, the two-axis configuration is easy, and the light source has a long life. There is an effect that it is.

【0071】また以上のように、請求項2記載の発明に
よれば、被測定体に取り付けられるかその一部である回
転軸と、この回転軸に取り付けられて一体に回転し、側
周部が光学拡散面とされた回転板と、この回転板の上記
光学拡散面に光を照射する光源と、上記回転板の上記光
学拡散面からの反射光を集光する集光光学系と、この集
光光学系の略集光位置に配置された光位置検出素子とを
備え、上記回転板は上記集光光学系と上記側周部の光反
射位置との距離が上記回転軸の回転角度に応じて異なる
ように形成され、上記回転軸の回転角度と上記回転板の
半径の関係を、上記被測定体の回転角度に応じて決定
し、上記光位置検出素子上の光入射位置に基いて上記被
測定体のを検出するようにしたので、角度検出範囲の大
小にかかわらず精度良く回転角度を検出でき、両軸構成
が容易、且つ、小型で安価であり、しかも光源が長寿命
の装置を得ることができるという効果がある。
As described above, according to the second aspect of the present invention, the rotary shaft that is attached to the object to be measured or is a part of the rotary shaft and the rotary shaft that is attached to the rotary shaft and rotates integrally with the rotary shaft. A rotating plate having an optical diffusing surface, a light source for irradiating the optical diffusing surface of the rotating plate with light, and a condensing optical system for condensing reflected light from the optical diffusing surface of the rotating plate, The rotating plate is provided with a light position detecting element arranged substantially at a light collecting position of the light collecting optical system, and a distance between the light collecting position of the light collecting optical system and the light reflecting position of the side peripheral portion is equal to a rotation angle of the rotating shaft. According to the rotation angle of the rotary shaft and the radius of the rotary plate is determined according to the rotation angle of the DUT, based on the light incident position on the optical position detection element. Since the above-mentioned object to be measured is detected, accuracy is ensured regardless of the size of the angle detection range. Ku can detect the rotation angle, easy both axis configuration, and a small, inexpensive, yet there is an effect that the light source can be obtained a device lifetime.

【0072】また以上のように、請求項3記載の発明に
よれば、被測定体に取り付けられるかその一部である往
復軸と、この往復軸に取り付けられて一体に移動し、側
辺部が光学拡散面とされた往復板と、この往復板の上記
光学拡散面に光を照射する光源と、上記往復板の上記光
学拡散面からの反射光を集光する集光光学系と、この集
光光学系の略集光位置に配置された光位置検出素子とを
備え、上記往復板は上記集光光学系と上記側辺部の光反
射位置との距離が上記往復軸のストロークによって異な
るように形成され、上記光位置検出素子上の光入射位置
に基いて上記被測定体の変位を検出するようにしたの
で、ストローク検出範囲の大小にかかわらず精度良くス
トローク変位を検出でき、両軸構成が容易、且つ、小型
で、光源が長寿命の装置を得ることができるという効果
がある。
As described above, according to the third aspect of the invention, the reciprocating shaft attached to or part of the object to be measured, and the reciprocating shaft attached to the reciprocating shaft, move integrally with the reciprocating shaft. A reciprocating plate as an optical diffusing surface, a light source for irradiating the optical diffusing surface of the reciprocating plate with light, and a condensing optical system for condensing the reflected light from the optical diffusing surface of the reciprocating plate, The reciprocating plate has a distance between the light condensing optical system and the light reflection position of the side portion of the reciprocating plate, depending on the stroke of the reciprocating shaft. Since it is configured to detect the displacement of the measured object based on the light incident position on the optical position detection element, the stroke displacement can be accurately detected regardless of the size of the stroke detection range. Easy configuration, small size, and long life of light source There is an effect that can be obtained location.

【0073】また以上のように、請求項4記載の発明に
よれば、被測定体に取り付けられるかその一部である往
復軸と、この往復軸に取り付けられて一体に移動し、側
辺部が光学拡散面とされた往復板と、この往復板の上記
光学拡散面に光を照射する光源と、上記往復板の上記光
学拡散面からの反射光を集光する集光光学系と、この集
光光学系の略集光位置に配置された光位置検出素子とを
備え、上記往復板は上記集光光学系と上記側辺部の光反
射位置との距離が上記往復軸のストロークによって異な
るように形成され、上記往復軸のストローク変位と上記
往復板の側辺部の関係を、上記被測定体のストロークに
応じて決定し、上記光位置検出素子上の光入射位置に基
いて上記被測定体の変位を検出するようにしたので、ス
トローク検出範囲の大小にかかわらず精度良くストロー
ク変位を検出でき、両軸構成が容易、且つ、小型で安価
であり、しかも光源が長寿命の装置を得ることができる
という効果がある。
As described above, according to the invention of claim 4, the reciprocating shaft attached to or part of the object to be measured and the reciprocating shaft attached to the reciprocating shaft to move integrally, the side portion. A reciprocating plate as an optical diffusing surface, a light source for irradiating the optical diffusing surface of the reciprocating plate with light, and a condensing optical system for condensing the reflected light from the optical diffusing surface of the reciprocating plate, The reciprocating plate has a distance between the light condensing optical system and the light reflection position of the side portion of the reciprocating plate, depending on the stroke of the reciprocating shaft. The relationship between the stroke displacement of the reciprocating shaft and the side portion of the reciprocating plate is determined according to the stroke of the object to be measured. Since the displacement of the measuring object is detected, the stroke detection range It can accurately detect the stroke displacement regardless, both axes configuration easier, and a small, inexpensive, yet light source there is an effect that it is possible to obtain a device of long lifetime.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による光学式変位検出装置の一実施例
を示す光学系の構造概略図である。
FIG. 1 is a schematic structural diagram of an optical system showing an embodiment of an optical displacement detection device according to the present invention.

【図2】この発明による光学式変位検出装置の他の実施
例を示す光学系の構造概略図である。
FIG. 2 is a schematic structural view of an optical system showing another embodiment of the optical displacement detection device according to the present invention.

【図3】この発明による光学式変位検出装置の更に他の
実施例を示す光学系の構造概略図である。
FIG. 3 is a schematic structural view of an optical system showing still another embodiment of the optical displacement detection device according to the present invention.

【図4】この発明による光学式変位検出装置の更に他の
実施例を示す光学系の構造概略図である。
FIG. 4 is a structural schematic view of an optical system showing still another embodiment of the optical displacement detection device according to the present invention.

【図5】この発明による光学式変位検出装置の更に他の
実施例を示す光学系の構造概略図である。
FIG. 5 is a structural schematic view of an optical system showing still another embodiment of the optical displacement detection device according to the present invention.

【図6】この発明による光学式変位検出装置の回転板の
回転角度と半径の関係を示す原理図である。
FIG. 6 is a principle diagram showing a relationship between a rotation angle and a radius of a rotary plate of the optical displacement detection device according to the present invention.

【図7】この発明による光学式変位検出装置の更に他の
実施例の光学系の構成を示す構造概略図である。
FIG. 7 is a structural schematic diagram showing a configuration of an optical system of still another embodiment of the optical displacement detection device according to the present invention.

【図8】この発明による光学式変位検出装置の更に他の
実施例の光学系の構成を示す構造概略図である。
FIG. 8 is a structural schematic diagram showing a configuration of an optical system of still another embodiment of the optical displacement detection device according to the present invention.

【図9】この発明による光学式変位検出装置の更に他の
実施例の光学系の構成を示す構造概略図である。
FIG. 9 is a structural schematic view showing a configuration of an optical system of still another embodiment of the optical displacement detection device according to the present invention.

【図10】この発明による光学式変位検出装置の更に他
の実施例の光学系の構成を示す構造概略図である。
FIG. 10 is a structural schematic diagram showing the configuration of an optical system of still another embodiment of the optical displacement detection device according to the present invention.

【図11】この発明による光学式変位検出装置の更に他
の実施例の往復板のストロークと往復軸との距離の関係
を示す原理図である。
FIG. 11 is a principle diagram showing the relationship between the stroke of the reciprocating plate and the distance between the reciprocating shaft and the optical displacement detecting apparatus according to another embodiment of the present invention.

【図12】従来の光学式変位検出装置を示す構成図であ
る。
FIG. 12 is a configuration diagram showing a conventional optical displacement detection device.

【図13】従来の光学式変位検出装置の光位置検出素子
を示す断面図である。
FIG. 13 is a cross-sectional view showing an optical position detection element of a conventional optical displacement detection device.

【図14】従来の他の光学式回転角度検出装置の構成図
及び上視図である。
FIG. 14 is a configuration diagram and a top view of another conventional optical rotation angle detection device.

【符号の説明】[Explanation of symbols]

1 回転軸 3 光源 5 光位置検出素子 43 コリメータレンズ 45 コンデンサレンズ 40、53、54 回転板 61 往復軸 62、64、65a及び65b 往復板 DESCRIPTION OF SYMBOLS 1 rotating shaft 3 light source 5 optical position detecting element 43 collimator lens 45 condenser lens 40, 53, 54 rotating plate 61 reciprocating shaft 62, 64, 65a and 65b reciprocating plate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月6日[Submission date] September 6, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】先ず、図12を参照して特開昭61−24
6620号公報において開示されている従来の光学式変
位検出装置について説明する。図において、1は図示し
ない被測定体としての回転物体に接続されている回転
軸、2はこの回転軸1に挿通されて取り付けられ、この
回転軸1を回転軸として回転する回転スリット板、2a
はこの回転スリット板2に螺旋状に形成され、回転スリ
ット板2の回転に応じてその半径が変化する螺旋状スリ
ット、3は光源、4はこの光源3の光軸の範囲内、且
つ、回転スリット板2と互いに平行に配置される固定ス
リット板、4aはこの固定スリット板4に回転スリット
板2に形成され螺旋状スリット2aと交差するように
形成された固定スリット、5は光源3から出射され、回
転スリット板2の螺旋状スリット2a及び固定スリット
板4の固定スリット4aを介して供給される光を受光す
るため、その受光軸が回転スリット板2の半径方向とな
るように配置された光位置検出素子、6及び8はこの光
位置検出素子5の検出電流出力用の検出電極、7は図示
しない電源回路からのバイアス用電圧を光位置検出素子
5に供給するためのバイアス電圧印加用電極である。
First, referring to FIG. 12, Japanese Patent Laid-Open No. 61-24
A conventional optical displacement detection device disclosed in Japanese Patent No. 6620 will be described. In the figure, reference numeral 1 denotes a rotary shaft connected to a rotary object as an object to be measured (not shown), and 2 denotes a rotary slit plate which is inserted through and attached to the rotary shaft 1 and which rotates about the rotary shaft 1 as a rotary shaft 2a.
Is a spiral slit formed on the rotary slit plate 2 and its radius changes in accordance with the rotation of the rotary slit plate 2, 3 is a light source, and 4 is within the range of the optical axis of the light source 3 and is rotated. fixed slit plate disposed parallel to each other and the slit plate 2, 4a are formed fixed slits so as to intersect with the helical slit 2a formed in the stationary slit plate 4 twice rolling slit plate 2, 5 denotes a light source 3 Since the light emitted from the rotary slit plate 2 is received through the spiral slit 2a of the rotary slit plate 2 and the fixed slit 4a of the fixed slit plate 4, the light receiving axis is arranged in the radial direction of the rotary slit plate 2. The light position detecting elements 6, 6 and 8 are detection electrodes for outputting a detection current of the light position detecting element 5, and 7 is for supplying a bias voltage from a power supply circuit (not shown) to the light position detecting element 5. Bias is a voltage application electrode.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明に係
る光学式変位検出装置は、被測定体に取り付けられるか
その一部である回転軸と、この回転軸に取り付けられて
一体に回転し、側周部が光学拡散面とされた回転板と、
この回転板の上記光学拡散面に光を照射する光源と、上
記回転板の上記光学拡散面からの反射光を集光する集光
光学系と、この集光光学系の略集光位置に配置された光
位置検出素子とを備え、上記回転板は上記集光光学系と
上記側周部の光反射位置との距離が上記回転軸の回転角
度に応じて異なるように形成され、上記光位置検出素子
上の光入射位置に基いて上記被測定体の変位を検出する
ようにしたものである。
An optical displacement detecting device according to a first aspect of the present invention includes a rotary shaft which is attached to a part to be measured or is a part thereof, and a rotary shaft which is attached to the rotary shaft and integrally rotates. Then, with a rotating plate whose side peripheral portion is an optical diffusion surface,
A light source that irradiates the optical diffusion surface of the rotating plate with light, a condensing optical system that condenses the reflected light from the optical diffusion surface of the rotating plate, and the light condensing optical system is arranged at a substantially condensing position. has been a light position detecting element, the rotating plate distance between the light reflection position of the condensing optical system and the side peripheral portion is formed so as to be different according to the rotation angle of the rotary shaft, the light The displacement of the object to be measured is detected based on the light incident position on the position detecting element.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】また請求項2記載の発明に係る光学式変位
検出装置は、被測定体に取り付けられるかその一部であ
る回転軸と、この回転軸に取り付けられて一体に回転
し、側周部が光学拡散面とされた回転板と、この回転板
の上記光学拡散面に光を照射する光源と、上記回転板の
上記光学拡散面からの反射光を集光する集光光学系と、
この集光光学系の略集光位置に配置された光位置検出素
子とを備え、上記回転板は上記集光光学系と上記側周部
の光反射位置との距離が上記回転軸の回転角度に応じて
異なるように形成され、上記回転軸の回転角度と上記回
転板の半径の関係を、上記被測定体の回転角度に応じて
決定し、上記光位置検出素子上の光入射位置に基いて上
記被測定体の変位を検出するようにしたものである。
According to a second aspect of the present invention, there is provided an optical displacement detecting device, which is attached to the object to be measured or is a part thereof, and a rotating shaft which is attached to the rotating shaft and integrally rotates to form a side peripheral portion. A rotating plate having an optical diffusing surface, a light source for irradiating the optical diffusing surface of the rotating plate with light, and a condensing optical system for condensing the reflected light from the optical diffusing surface of the rotating plate,
The rotating plate is provided with a light position detecting element arranged at a substantially condensing position of the condensing optical system, and the rotating plate has a distance between the condensing optical system and a light reflecting position of the side peripheral portion is a rotation angle of the rotating shaft. The relationship between the rotation angle of the rotary shaft and the radius of the rotary plate is determined according to the rotation angle of the measured object, and the relationship is determined based on the light incident position on the light position detection element. In addition, the displacement of the object to be measured is detected.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【作用】請求項1記載の発明においては、回転板の光学
拡散面からの反射光を集光する集光光学系の略集光位置
に配置された光位置検出素子上の光入射位置により、三
角測距の原理に基いて、被測定体の回転角度を検出す
。これにより、角度検出範囲の大小にかかわらず精度
良く回転角度を検出でき、両軸構成が容易、且つ、小型
で、光源が長寿命の装置を得ることができる。
According to the first aspect of the present invention, the light incident position on the light position detecting element arranged at the substantially condensing position of the condensing optical system for condensing the reflected light from the optical diffusion surface of the rotating plate The rotation angle of the object to be measured is detected based on the principle of triangulation . This ensures that can accurately detect the rotation angle regardless of the magnitude of the angle detection range, easy both axes configuration and compact, the light source can be obtained a device lifetime.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】実施例3.また、図2Bに示すように、ケ
ース30に回転板40の光学拡散面に対して45度の角
度の平面反射鏡48を支持固定するようにしても良い。
この場合、コリメータレンズ43及び絞り部材42を透
過した光源3からの光が平面反射板48で90度偏向さ
れ、回転板40の光学拡散面にその偏向光が照射され、
回転板40の光学拡散面で反射した光が平面反射板48
で再び90度に偏向され、その偏向光がコンデンサレン
ズ45により光位置検出素子5の受光面上に入射され
る。この場合も上述と同様に、検出角度範囲が狭くても
精度良く検出できると共に、最大検出角度範囲をほぼ2
πとでき、更に小径の受光面の光位置検出素子であって
も精度良く検出できるので、装置を小径の小型なものに
できると共に、両軸構成とすることができ、光源を長寿
命化することができる。
Example 3. Further, as shown in FIG. 2B, a flat reflecting mirror 48 having an angle of 45 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed to the case 30.
In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is deflected by 90 degrees by the flat reflecting plate 48, and the deflected light is irradiated on the optical diffusion surface of the rotating plate 40.
Light reflected by the optical diffusion surface of the rotating plate 40 is reflected by the flat reflecting plate 48.
Is again deflected by 90 degrees, and the deflected light is incident on the light receiving surface of the optical position detecting element 5 by the condenser lens 45. In this case as well, similar to the above, even if the detection angle range is narrow, it is possible to detect with high accuracy, and the maximum detection angle range is approximately 2
Since it can be set to π, and even the light position detection element of the light receiving surface having a small diameter can be detected with high accuracy, the device can be made small in size and small in size, and can have a biaxial structure, thus extending the life of the light source. be able to.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】実施例4.また、図2Cに示すように、ケ
ース30の表面にメッキ、蒸着等で回転板40の光学拡
散面に対して45度の角度の鏡面30aを形成しても良
い。この場合、コリメータレンズ43及び絞り部材42
を透過した光源3からの光が鏡面30aで90度偏向さ
れ、回転板40の光学拡散面にその偏向光が照射され、
回転板40の光学拡散面で反射した光が鏡面30aで再
び90度に偏向され、その偏向光がコンデンサレンズ4
5により光位置検出素子5の受光面上に入射される。こ
の場合も上述と同様に、検出角度範囲が狭くても精度良
く検出できると共に、最大検出角度範囲をほぼ2πとで
き、更に小径の受光面の光位置検出素子であっても精度
良く検出できるので、装置を小径の小型なものにできる
と共に、両軸構成とすることができ、光源を長寿命化す
ることができる。
Example 4. Further, as shown in FIG. 2C, a mirror surface 30a having an angle of 45 degrees with respect to the optical diffusion surface of the rotary plate 40 may be formed on the surface of the case 30 by plating, vapor deposition or the like. In this case, the collimator lens 43 and the diaphragm member 42
The light from the light source 3 that has passed through is reflected by the mirror surface 30a by 90 degrees, and the optical diffusion surface of the rotating plate 40 is irradiated with the deflected light.
The light reflected by the optical diffusion surface of the rotating plate 40 is again deflected by 90 degrees on the mirror surface 30a, and the deflected light is condensed by the condenser lens 4
The light is incident on the light receiving surface of the optical position detecting element 5 by the light source 5. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】実施例6.また、図3Bに示すように、ケ
ース30に回転板40の光学拡散面に対して90度の狭
角をなす2つの平面反射鏡50及び51を支持固定して
も良い。この場合、コリメータレンズ43及び絞り部材
42を透過した光源3からの光が平面反射鏡51及び5
0で順次90度ずつ合計180度偏向され、回転板40
の光学拡散面にその偏向光が照射され、回転板40の光
学拡散面で反射した光が平面反射鏡50及び51順次9
0度ずつ合計180度偏向され、その偏向光がコンデン
サレンズ45により光位置検出素子5の受光面上に入射
される。この場合も上述と同様に、検出角度範囲が狭く
ても精度良く検出できると共に、最大検出角度範囲をほ
ぼ2πとでき、更に小径の受光面の光位置検出素子であ
っても精度良く検出できるので、装置を小径の小型なも
のにできると共に、両軸構成とすることができ、光源を
長寿命化することができる。
Example 6. Further, as shown in FIG. 3B, two flat reflecting mirrors 50 and 51 forming a narrow angle of 90 degrees with respect to the optical diffusion surface of the rotating plate 40 may be supported and fixed to the case 30. In this case, the light from the light source 3 which has passed through the collimator lens 43 and the diaphragm member 42 is reflected by the plane reflecting mirrors 51 and 5.
At 0, it is sequentially deflected by 90 degrees, for a total of 180 degrees.
The deflected light is applied to the optical diffusing surface of the rotating plate 40, and the light reflected by the optical diffusing surface of the rotary plate 40 is sequentially reflected by the plane reflecting mirrors 50 and 51.
The light is deflected by 0 ° for a total of 180 °, and the deflected light is incident on the light receiving surface of the optical position detection element 5 by the condenser lens 45. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】実施例7.また、図3Cに示すように、ケ
ース30の表面にメッキ、蒸着等で回転板40の光学拡
散面に対して90度の狭角をなす2つの鏡面30a及び
30bを形成するようにしても良い。この場合、コリメ
ータレンズ43及び絞り部材42を透過した光源3から
の光が鏡面30b及び30aで順次90度ずつ合計18
0度偏向され、回転板40の光学拡散面にその偏向光が
照射され、回転板40の光学拡散面で反射した光が鏡面
30a及び30b順次90度ずつ合計180度偏向さ
れ、その偏向光がコンデンサレンズ45により光位置検
出素子5の受光面上に入射される。この場合も上述と同
様に、検出角度範囲が狭くても精度良く検出できると共
に、最大検出角度範囲をほぼ2πとでき、更に小径の受
光面の光位置検出素子であっても精度良く検出できるの
で、装置を小径の小型なものにできると共に、両軸構成
とすることができ、光源を長寿命化することができる。
Example 7. Further, as shown in FIG. 3C, two mirror surfaces 30a and 30b may be formed on the surface of the case 30 by plating, vapor deposition, or the like, forming a narrow angle of 90 degrees with respect to the optical diffusion surface of the rotating plate 40. . In this case, the light from the light source 3 that has passed through the collimator lens 43 and the diaphragm member 42 is sequentially reflected on the mirror surfaces 30b and 30a by 90 degrees, for a total of 18 degrees.
The deflected light is deflected by 0 degrees, and the deflected light is applied to the optical diffusion surface of the rotating plate 40. The light reflected by the optical diffusion surface of the rotating plate 40 is deflected by 90 degrees in order by 90 degrees in total for a total of 180 degrees. The light is incident on the light receiving surface of the optical position detecting element 5 by the condenser lens 45. In this case as well, similar to the above, it is possible to detect with high accuracy even if the detection angle range is narrow, the maximum detection angle range can be set to approximately 2π, and even a light position detection element having a light receiving surface with a small diameter can be accurately detected. The device can have a small diameter and a small size, and can have a biaxial structure, so that the life of the light source can be extended.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0050】ここで、上記コリメータレンズ43及びコ
ンデンサレンズ45は例えばポリメチルメタアクリレー
ト(PMMA)、ポリカーボネイト(PC)等の光学プ
ラスチックで成形したプラスチック成形品を用いればコ
ストを削減することができる。次に動作について説明す
る。図7において光源3から照射された光はコリメータ
レンズ43、絞り42を透過して所定径の平行光束とな
って往復板62の外辺部分に入射し、この外辺部分の光
学拡散面で反射される。そしてこの反射光はコンデンサ
レンズ45によって光位置検出素子5の受光面上に集束
する。ここで往復軸61が往復すると、図7Aにおいて
2点鎖線で示すように往復板62が同様に往復し、これ
によって光位置検出素子5上に集束したスポット光が光
位置検出素子5上を移動する。従って、光位置検出素子
5の光入射位置は往復板62、すなわち、往復板62の
ストローク変位と等しくなり、図12〜図14を参照し
て説明した従来装置と同様に光位置検出素子5の検出電
極から検出電流I1及びI2が得られ、例えばこの検出
電流I1及びI2を従来装置と同様の検出回路で検出す
れば光入射位置Xに相当するストロークZを得ること
ができる。
Here, the collimator lens 43 and the condenser lens 45 can be manufactured at a reduced cost by using a plastic molded product molded from an optical plastic such as polymethylmethacrylate (PMMA) or polycarbonate (PC). Next, the operation will be described. In FIG. 7, the light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light flux of a predetermined diameter, enters the outer peripheral portion of the reciprocating plate 62, and is reflected by the optical diffusion surface of the outer peripheral portion. To be done. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the reciprocating shaft 61 reciprocates here, the reciprocating plate 62 also reciprocates as shown by a chain double-dashed line in FIG. 7A, whereby the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. To do. Therefore, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 62, that is, the stroke displacement of the reciprocating plate 62, and the light position detecting element 5 is moved in the same manner as the conventional device described with reference to FIGS. The detection currents I1 and I2 are obtained from the detection electrodes. For example, if the detection currents I1 and I2 are detected by a detection circuit similar to the conventional device, the stroke V Z corresponding to the light incident position X can be obtained.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0052】実施例12.上記実施例11においては往
復板62の外辺部分を光学拡散面としたが、図8に示す
ように、その内辺部分を光学拡散面とした往復板63を
用いるようにしても良い。この場合は図に示すように、
光源3から照射された光はコリメータレンズ43、絞り
42を透過して所定径の平行光束となって往復板63の
内辺部分に入射し、この内辺部分の光学拡散面で反射さ
れる。そしてこの反射光はコンデンサレンズ45によっ
て光位置検出素子5の受光面上に集束する。ここで往復
軸61が往復すると、往復板63が同様に往復し、これ
によって光位置検出素子5上に集束したスポット光が光
位置検出素子5上を移動する。従って、光位置検出素子
5の光入射位置は往復板63、すなわち、往復板63の
ストローク変位と等しくなり、図12〜図14を参照し
て説明した従来装置と同様に光位置検出素子5の検出電
極から検出電流I1及びI2が得られ、例えばこの検出
電流I1及びI2を従来装置と同様の検出回路で検出す
れば光入射位置Xに相当するストロークVZを得ること
ができる。
Example 12 Although the outer side portion of the reciprocating plate 62 is the optical diffusion surface in the eleventh embodiment, a reciprocating plate 63 having the inner side portion thereof as the optical diffusion surface may be used as shown in FIG. In this case, as shown in the figure,
The light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light flux of a predetermined diameter, enters the inner side portion of the reciprocating plate 63, and is reflected by the optical diffusion surface of the inner side portion. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. When the reciprocating shaft 61 reciprocates here, the reciprocating plate 63 also reciprocates, so that the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. Accordingly, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 63, that is, the stroke displacement of the reciprocating plate 63, and the light position detecting element 5 is moved in the same manner as in the conventional device described with reference to FIGS. The detection currents I1 and I2 are obtained from the detection electrodes. For example, if the detection currents I1 and I2 are detected by a detection circuit similar to the conventional device, a stroke VZ corresponding to the light incident position X can be obtained.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0055[Correction target item name] 0055

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0055】一方、光源3から照射された光はコリメー
タレンズ43、絞り42を透過して所定径の平行光束と
なって往復板64の外辺部分に入射し、この外辺部分の
光学拡散面で反射される。そしてこの反射光はコンデン
サレンズ45によって光位置検出素子5の受光面上に集
束する。ここで往復軸61が往復すると、往復板64が
同様に往復し、これによって光位置検出素子5上に集束
したスポット光が光位置検出素子5上を移動する。従っ
て、光位置検出素子5の光入射位置は往復板64、すな
わち、往復板64のストローク変位と等しくなり、図1
2〜図14を参照して説明した従来装置と同様に光位置
検出素子5の検出電極から検出電流I1及びI2が得ら
れ、例えばこの検出電流I1及びI2を従来装置と同様
の検出回路で検出すれば光入射位置Xに相当するストロ
ークZを得ることができる。
On the other hand, the light emitted from the light source 3 passes through the collimator lens 43 and the diaphragm 42, becomes a parallel light beam of a predetermined diameter, and enters the outer peripheral portion of the reciprocating plate 64, and the optical diffusion surface of this outer peripheral portion. Is reflected by. Then, this reflected light is focused on the light receiving surface of the light position detecting element 5 by the condenser lens 45. Here, when the reciprocating shaft 61 reciprocates, the reciprocating plate 64 reciprocates in the same manner, whereby the spot light focused on the optical position detecting element 5 moves on the optical position detecting element 5. Therefore, the light incident position of the light position detecting element 5 becomes equal to the reciprocating plate 64, that is, the stroke displacement of the reciprocating plate 64.
2 to 14, detection currents I1 and I2 are obtained from the detection electrodes of the optical position detecting element 5 as in the conventional device described with reference to FIGS. 2 to 14, and the detection currents I1 and I2 are detected by the same detection circuit as in the conventional device. If you do, the strobe corresponding to the light incident position X
It can be obtained over click V Z.

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0059[Correction target item name] 0059

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0059】従って、光位置検出素子5の光入射位置は
往復板65a及び65b、すなわち、往復板65a及び
65bの各ストローク変位と等しくなり、図12〜図1
4を参照して説明した従来装置と同様に光位置検出素子
5の検出電極から検出電流I1及びI2が得られ、例え
ばこの検出電流I1及びI2を従来装置と同様の検出回
路で検出すれば光入射位置Xに相当するストロークZ
を得ることができる。この場合、小径の受光面の光位置
検出素子であっても精度良く検出できるので、装置を小
径の小型なものにできると共に、両軸構成とすることが
でき、光源を長寿命化することができる。また、上記実
施例2〜実施例7において説明した90度、180度偏
向を行うための構成を適用することもできる。さらに
は、2枚の往復板65a及び65bを用いる場合、往復
板65a及び65bの内1枚に凹凸を設け、パルス状の
出力を得られるようにしても良い。この場合パルス数を
カウントすれば相対的変位を検出でき、しかも他の1枚
は上述と同様ストロークに応じて往復軸61からの距離
の変化を持たせておけば、2つの検出部から得られる信
号に基いて精度の高い検出を行うことができる。また、
内辺及び外辺部分を利用した1枚の往復板65を用いて
もこれは可能である。
Therefore, the light incident position of the light position detecting element 5 becomes equal to the stroke displacement of the reciprocating plates 65a and 65b, that is, the reciprocating plates 65a and 65b, and FIGS.
The detection currents I1 and I2 are obtained from the detection electrodes of the optical position detecting element 5 as in the conventional device described with reference to FIG. 4, and if the detection currents I1 and I2 are detected by the same detection circuit as in the conventional device, the light is detected. Stroke V Z corresponding to incident position X
Can be obtained. In this case, even the light position detecting element of the light receiving surface having a small diameter can be detected with high accuracy, so that the device can be made small in diameter and small in size, and can have a biaxial structure, and the light source can have a long life. it can. Further, the configuration for performing the 90-degree and 180-degree deflection described in the above-described second to seventh embodiments can be applied. Further, when the two reciprocating plates 65a and 65b are used, one of the reciprocating plates 65a and 65b may be provided with irregularities so that a pulsed output can be obtained. In this case, the relative displacement can be detected by counting the number of pulses, and the other one can be obtained from the two detectors if the distance from the reciprocating shaft 61 is changed in accordance with the stroke as described above. Highly accurate detection can be performed based on the signal. Also,
This is also possible by using a single reciprocating plate 65 that uses the inner and outer edges.

【手続補正15】[Procedure Amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0068[Correction target item name] 0068

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0068】上記(9)式を利用して、往復板62の往
復軸61からの距離yを決定する。これによって出力V
Zとストローク変位Zの関係は図11Bに示すようにリ
ニアとなり、ストロークの検出を精度良く行うことがで
きる。
The distance y of the reciprocating plate 62 from the reciprocating shaft 61 is determined using the above equation (9). This gives the output V
The relationship between Z and stroke displacement Z is linear as shown in FIG. 11B, and stroke detection can be performed accurately.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定体に取り付けられるかその一部で
ある回転軸と、 この回転軸に取り付けられて一体に回転し、側周部が光
学拡散面とされた回転板と、 この回転板の上記光学拡散面に光を照射する光源と、 上記回転板の上記光学拡散面からの反射光を集光する集
光光学系と、 この集光光学系の略集光位置に配置された光位置検出素
子とを備え、 上記回転板は上記集光光学系と上記側周部の光反射位置
との間の距離が上記回転軸の回転角度に応じて異なるよ
うに形成され、上記光位置検出素子上の光入射位置に基
いて上記被測定体の変位を検出するようにしたことを特
徴とする光学式変位検出装置。
1. A rotary shaft attached to or part of an object to be measured, a rotary plate attached to the rotary shaft and integrally rotated, and a side peripheral portion of which serves as an optical diffusion surface, and the rotary plate. A light source for irradiating the optical diffusing surface with light, a condensing optical system for condensing the reflected light from the optical diffusing surface of the rotating plate, and a light arranged at a substantially condensing position of the condensing optical system. A position detecting element, and the rotating plate is formed such that the distance between the condensing optical system and the light reflecting position of the side peripheral portion varies depending on the rotation angle of the rotating shaft. An optical displacement detection device characterized in that the displacement of the object to be measured is detected based on the light incident position on the element.
【請求項2】 被測定体に取り付けられるかその一部で
ある回転軸と、 この回転軸に取り付けられて一体に回転し、側周部が光
学拡散面とされた回転板と、 この回転板の上記光学拡散面に光を照射する光源と、 上記回転板の上記光学拡散面からの反射光を集光する集
光光学系と、 この集光光学系の略集光位置に配置された光位置検出素
子とを備え、 上記回転板は上記集光光学系と上記側周部の光反射位置
との距離が上記回転軸の回転角度に応じて異なるように
形成され、上記回転軸の回転角度と上記回転板の半径の
関係を、上記被測定体の回転角度に応じて決定し、上記
光位置検出素子上の光入射位置に基いて上記被測定体の
を検出するようにしたことを特徴とする光学式変位検出
装置。
2. A rotary shaft which is attached to or a part of a measured object, a rotary plate which is attached to the rotary shaft and rotates integrally, and a side peripheral portion of which serves as an optical diffusion surface, and the rotary plate. A light source for irradiating the optical diffusing surface with light, a condensing optical system for condensing the reflected light from the optical diffusing surface of the rotating plate, and a light arranged at a substantially condensing position of the condensing optical system. A position detecting element is provided, and the rotating plate is formed such that the distance between the condensing optical system and the light reflection position of the side peripheral portion varies depending on the rotation angle of the rotation shaft, and the rotation angle of the rotation shaft. The relationship between the radius of the rotary plate and the radius of the rotary plate is determined according to the rotation angle of the measured object, and the measured object is detected based on the light incident position on the optical position detection element. Optical displacement detection device.
【請求項3】 被測定体に取り付けられるかその一部で
ある往復軸と、 この往復軸に取り付けられて一体に移動し、側辺部が光
学拡散面とされた往復板と、 この往復板の上記光学拡散面に光を照射する光源と、 上記往復板の上記光学拡散面からの反射光を集光する集
光光学系と、 この集光光学系の略集光位置に配置された光位置検出素
子とを備え、 上記往復板は上記集光光学系と上記側辺部の光反射位置
との距離が上記往復軸のストロークによって異なるよう
に形成され、上記光位置検出素子上の光入射位置に基い
て上記被測定体の変位を検出するようにしたことを特徴
とする光学式変位検出装置。
3. A reciprocating shaft which is attached to or a part of an object to be measured, a reciprocating plate which is attached to this reciprocating shaft and moves integrally, and whose side portion is an optical diffusion surface, and this reciprocating plate. A light source for irradiating the optical diffusing surface with light, a condensing optical system for condensing the reflected light from the optical diffusing surface of the reciprocating plate, and a light arranged at a substantially condensing position of the condensing optical system. A position detecting element, the reciprocating plate is formed such that the distance between the condensing optical system and the light reflecting position of the side portion varies depending on the stroke of the reciprocating axis, and the light incident on the light position detecting element An optical displacement detection device characterized in that the displacement of the object to be measured is detected based on the position.
【請求項4】 被測定体に取り付けられるかその一部で
ある往復軸と、 この往復軸に取り付けられて一体に移動し、側辺部が光
学拡散面とされた往復板と、 この往復板の上記光学拡散面に光を照射する光源と、 上記往復板の上記光学拡散面からの反射光を集光する集
光光学系と、 この集光光学系の略集光位置に配置された光位置検出素
子とを備え、 上記往復板は上記集光光学系と上記側辺部の光反射位置
との距離が上記往復軸のストロークによって異なるよう
に形成され、上記往復軸のストローク変位と上記往復板
の側辺部の関係を、上記被測定体のストロークに応じて
決定し、上記光位置検出素子上の光入射位置に基いて上
記被測定体の変位を検出するようにしたことを特徴とす
る光学式変位検出装置。
4. A reciprocating shaft which is attached to or a part of a body to be measured, a reciprocating plate which is attached to the reciprocating shaft and moves integrally, and a side portion of which serves as an optical diffusion surface, and the reciprocating plate. A light source for irradiating the optical diffusing surface with light, a condensing optical system for condensing the reflected light from the optical diffusing surface of the reciprocating plate, and a light arranged at a substantially condensing position of the condensing optical system. The reciprocating plate is formed such that the distance between the condensing optical system and the light reflection position of the side portion varies depending on the stroke of the reciprocating shaft. The relationship between the side portions of the plate is determined according to the stroke of the measured object, and the displacement of the measured object is detected based on the light incident position on the optical position detection element. Optical displacement detection device.
JP5050923A 1993-03-11 1993-03-11 Optical displacement detector Expired - Lifetime JP3034718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5050923A JP3034718B2 (en) 1993-03-11 1993-03-11 Optical displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5050923A JP3034718B2 (en) 1993-03-11 1993-03-11 Optical displacement detector

Publications (2)

Publication Number Publication Date
JPH06265331A true JPH06265331A (en) 1994-09-20
JP3034718B2 JP3034718B2 (en) 2000-04-17

Family

ID=12872327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5050923A Expired - Lifetime JP3034718B2 (en) 1993-03-11 1993-03-11 Optical displacement detector

Country Status (1)

Country Link
JP (1) JP3034718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218876A (en) * 2006-02-20 2007-08-30 Nhk Spring Co Ltd Metal member, position detector, drive unit, object detector, and working method for metal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218876A (en) * 2006-02-20 2007-08-30 Nhk Spring Co Ltd Metal member, position detector, drive unit, object detector, and working method for metal member

Also Published As

Publication number Publication date
JP3034718B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
US7358865B2 (en) Optical encoder and apparatus using optical encoder
EP1295090B1 (en) A position detector for a scanning device
US7330278B2 (en) Optical displacement measurement device
JP3056346B2 (en) Optical rotation angle detector
JPH06265331A (en) Optical displacement detector
JP2551277B2 (en) Optical rotation angle detector
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
JPH0726821B2 (en) Optical surface contour measuring device
JP2000266567A (en) Rotary encoder
JP2551276B2 (en) Optical position detector
JP3374941B2 (en) Transparent plate thickness measuring device
JP2005172704A (en) Photodetection device and optical system
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPH0255907A (en) Shape recognition device
JP3195655B2 (en) Optical displacement detector
JP2003097924A (en) Shape measuring system and method using the same
JP2007046964A (en) Level sensor
JPH09203625A (en) Rotation position detector
JPH02155252A (en) Positioning device for wafer
JPH0511451Y2 (en)
SU1479821A2 (en) Apparatus for monitoring linear dimensions
JPS6264904A (en) Apparatus for measuring shape
JPS63249940A (en) Position detector for objective lens of optical pickup
JPS606821A (en) Level detector