JPH06265198A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06265198A
JPH06265198A JP5091479A JP9147993A JPH06265198A JP H06265198 A JPH06265198 A JP H06265198A JP 5091479 A JP5091479 A JP 5091479A JP 9147993 A JP9147993 A JP 9147993A JP H06265198 A JPH06265198 A JP H06265198A
Authority
JP
Japan
Prior art keywords
compressor
temperature
heat exchanger
frequency
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5091479A
Other languages
Japanese (ja)
Other versions
JP3187198B2 (en
Inventor
Takayuki Kanbe
崇幸 神戸
Toru Kubo
徹 久保
Yoshinobu Fujita
義信 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09147993A priority Critical patent/JP3187198B2/en
Publication of JPH06265198A publication Critical patent/JPH06265198A/en
Application granted granted Critical
Publication of JP3187198B2 publication Critical patent/JP3187198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent over pressure and freezing of an indoor heat exchanger and enhance the reliability of a compressor and the comfort of air-conditioning as well. CONSTITUTION:When the temperature of an indoor heat exchange 9 abnormally rises during heating operation, and the temperature of the indoor heat exchanger 9 abnormally drops during cooling operation, an outdoor controller 16 performs delicate controls based on the difference TcD between the detected value Tc of condenser temperature and the condenser set temperature Tcs and its change amount DELTATcD, or the difference TeD between the detected evaporator temperature Te and the evaporator set temperature and its change amount DELTATeD before the instruction frequency F of a compressor 3 is forcedly controlled stepwise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンプレッサの運転周波
数を可変とした空気調和機の保護と制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to protection and control of an air conditioner in which the operating frequency of a compressor is variable.

【0002】[0002]

【従来の技術】従来、この種の空気調和機は室内機によ
り空調負荷に基づいたコンプレッサの運転周波数を設定
し、これを指令周波数として室外機に与え、コンプレッ
サを負荷追従運転している。
2. Description of the Related Art Conventionally, in this type of air conditioner, an operating frequency of a compressor is set based on an air conditioning load by an indoor unit, and this is given to an outdoor unit as a command frequency to perform load follow operation of the compressor.

【0003】そして、暖房運転時に凝縮器として作用す
る室内熱交換器の温度(以下コンデンサ温度Tcとい
う)が異常に昇温すると、その室内熱交換器が過圧状態
になるので、その過圧を未然に防止するために、温度セ
ンサにより検出されたコンデンサ温度検出値Tcが例え
ば図6に示すように所要の設定値(例えば55℃)Tc
を超えたときは、室内機から室外機に与える指令周波数
を、所定時間(例えば3分毎)に所定周波数ずつ段階的
(例えば14段階)、かつ強制的に低減させている。ま
た、このために、コンデンサ温度検出値Tcが低下して
Bゾーンに入ると、その時点の運転周波数を保持させて
コンプレッサを運転させる。その結果、コンデンサ温度
Tcがさらに低下して、例えば約51℃以下に低下して
Cゾーンに入ったときには、再び空調負荷に対応する周
波数でコンプレッサを負荷追従運転するようになってい
る。
If the temperature of the indoor heat exchanger acting as a condenser during heating operation (hereinafter referred to as "condenser temperature Tc") rises abnormally, the indoor heat exchanger will be in an overpressure state. In order to prevent it, the capacitor temperature detection value Tc detected by the temperature sensor is set to a required set value (for example, 55 ° C.) Tc as shown in FIG. 6, for example.
When it exceeds, the command frequency given from the indoor unit to the outdoor unit is stepwise (for example, 14 steps) and forcibly reduced by a predetermined frequency for a predetermined time (for example, every 3 minutes). Further, for this reason, when the capacitor temperature detection value Tc decreases and enters the B zone, the operating frequency at that time is held and the compressor is operated. As a result, when the condenser temperature Tc further decreases, for example, falls below about 51 ° C. and enters the C zone, the compressor is made to perform the load following operation again at the frequency corresponding to the air conditioning load.

【0004】また、冷房運転時に蒸発器として作用する
室内熱交換器の温度(以下エバポレータ温度Teとい
う)が異常に降温すると、その室内熱交換器に着霜が発
生して凍結する場合があるので、その凍結を未然に防止
するために、室内熱交温度センサにより検出されたエバ
ポレータ温度検出値Teが例えば図6(B)に示すよう
に所要の設定値Tes(例えば2℃)以下に低下したと
きは、室内機から室外機に与える指令周波数を、所定時
間(例えば3分毎)に所定周波数ずつ段階的かつ強制的
に上昇させている。また、このために、エバポレータ温
度検出値Teが上昇してBゾーンに入ると、その時点の
運転周波数を保持させてコンプレッサを継続運転させ
る。その結果、エバポレータ温度Teがさらに上昇し
て、例えば約4℃以上に昇温してCゾーンに入ったとき
には、再び空調負荷に対応する周波数でコンプレッサを
負荷追従運転するようになっている。
Further, if the temperature of the indoor heat exchanger acting as an evaporator during cooling operation (hereinafter referred to as the evaporator temperature Te) is abnormally lowered, frost may be formed on the indoor heat exchanger and the indoor heat exchanger may be frozen. In order to prevent the freezing, the evaporator temperature detection value Te detected by the indoor heat exchange temperature sensor has fallen below a required set value Tes (for example, 2 ° C.) as shown in FIG. 6 (B), for example. At this time, the command frequency given from the indoor unit to the outdoor unit is forcibly and stepwisely increased by a predetermined frequency for a predetermined time (for example, every 3 minutes). Further, for this reason, when the evaporator temperature detected value Te rises and enters the B zone, the operating frequency at that time is held and the compressor is continuously operated. As a result, when the evaporator temperature Te further rises and rises to, for example, about 4 ° C. or higher and enters the zone C, the compressor is made to follow the load at the frequency corresponding to the air conditioning load again.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の運転周波数の制御方法では、暖房運転時に、
コンデンサ温度Tcが設定値Tcsを超えると、直ちに
Aゾーンに入って、コンプレッサの運転周波数を段階的
かつ強制的に低減するので、このような運転周波数制御
のオンオフ(開始、終了)が頻繁に発生して、コンデン
サ温度TcがCゾーン→Aゾーン→Bゾーン→Cゾーン
へと繰返し変動する。このために、コンプレッサの回転
数ないし圧力変動が頻繁に発生する上に、その運転周波
数の1段階の制御幅が例えば10Hz程度で比較的大幅
であるので、運転周波数のハンチング量が大きい。
However, in such a conventional operating frequency control method, during the heating operation,
When the capacitor temperature Tc exceeds the set value Tcs, the zone A is immediately entered to gradually and forcibly reduce the operating frequency of the compressor, so that such operating frequency control is frequently turned on and off (start, end). Then, the capacitor temperature Tc repeatedly fluctuates in the C zone → A zone → B zone → C zone. For this reason, the number of revolutions or pressure of the compressor frequently changes, and the one-step control width of the operating frequency is relatively large, for example, about 10 Hz, so that the hunting amount of the operating frequency is large.

【0006】これとほぼ同様に、冷房運転時のエバポレ
ータ温度Teも頻繁に変動するので、コンプレッサの回
転数ないし圧力が頻繁に変動し、コンプレッサの運転周
波数のハンチング量も大きい。
Almost similarly, since the evaporator temperature Te during the cooling operation also frequently changes, the rotational speed or pressure of the compressor also frequently changes and the hunting amount of the operating frequency of the compressor is large.

【0007】また、このような運転周波数の制御に対し
てコンデンサ温度Tcとエバポレータ温度Teの応答が
遅いので、コンデンサ温度Tcとエバポレータ温度Te
を設定値で一定に保持し難という課題がある。
Further, since the response of the condenser temperature Tc and the evaporator temperature Te is slow with respect to such control of the operating frequency, the condenser temperature Tc and the evaporator temperature Te are slow.
However, there is a problem that it is difficult to keep constant at the set value.

【0008】このために、コンプレッサの負担が増大し
て信頼性が低下する上に、室内熱交換器の温度変化幅が
大きいので、この室内熱交換器で熱交換されて室内へ吹
き出される吹出風の温度変動が大きく、快適性が低下す
るという課題がある。
For this reason, the load on the compressor is increased, the reliability is lowered, and the temperature change width of the indoor heat exchanger is large. Therefore, heat is exchanged by the indoor heat exchanger and blown out into the room. There is a problem that comfort of the wind is reduced due to large fluctuations in temperature of the wind.

【0009】そこで本発明はこのような事情を考慮して
なされたもので、その目的は、コンプレッサの運転周波
数を、コンデンサ温度とエバポレータ温度に基づいて、
段階的かつ強制的に制御する前に、きめ細かく制御する
ことにより、この運転周波数のハンチングを低減してコ
ンプレッサに対する信頼性を高めると共に、吹出温度の
変動を低減して快適性を高めることができる空気調和機
を提供することにある。
Therefore, the present invention has been made in consideration of such circumstances, and an object thereof is to determine the operating frequency of the compressor based on the capacitor temperature and the evaporator temperature.
Fine control before stepwise and compulsory control reduces this operating frequency hunting and increases reliability of the compressor, while reducing fluctuations in outlet temperature to improve comfort. To provide a harmony machine.

【0010】[0010]

【課題を解決するための手段】本発明は前記課題を解決
するために次のように構成される。
The present invention is configured as follows in order to solve the above-mentioned problems.

【0011】本願の請求項1に記載の発明(以下、第1
の発明という)は、室内熱交換器と、これを内蔵する室
内機と、空調負荷に基づく指令周波数により、コンプレ
ッサの運転周波数を制御する室外機と、この室外機に内
蔵される室外熱交換器と、前記室内熱交換器および室外
熱交換器の一方が凝縮器として運転されるときの当該熱
交換器の温度を検出する温度センサと、を有する空気調
和機において、前記指令周波数を、前記温度センサの検
出値に基づいて強制的かつ段階的に低減する前に、前記
コンプレッサの運転周波数を、前記温度センサの検出値
とその設定値との差、および前記検出値の変化量に基づ
いて補正し、この補正後の運転周波数によりコンプレッ
サを運転させる運転周波数制御手段を設けたことを特徴
とする。
The invention according to claim 1 of the present application (hereinafter, referred to as the first
Invention), an indoor heat exchanger, an indoor unit incorporating the indoor heat exchanger, an outdoor unit for controlling the operating frequency of the compressor by a command frequency based on the air conditioning load, and an outdoor heat exchanger incorporated in the outdoor unit. And a temperature sensor that detects the temperature of the heat exchanger when one of the indoor heat exchanger and the outdoor heat exchanger is operated as a condenser, in the air conditioner, the command frequency, the temperature Before forcibly and stepwise reducing based on the detected value of the sensor, the operating frequency of the compressor is corrected based on the difference between the detected value of the temperature sensor and its set value and the change amount of the detected value. However, an operating frequency control means for operating the compressor at the corrected operating frequency is provided.

【0012】また、本願の請求項2に記載の発明(以
下、第2の発明という)は、運転周波数制御手段は、空
調負荷に基づく指令周波数を上限として制御する手段を
有する。
In the invention according to claim 2 of the present application (hereinafter referred to as the second invention), the operating frequency control means has means for controlling with the command frequency based on the air conditioning load as an upper limit.

【0013】さらに、本願の請求項3に記載の発明(以
下、第3の発明という)は、室内熱交換器と、これを内
蔵する室内機と、空調負荷に基づく指令周波数により、
コンプレッサの運転周波数を制御する室外機と、この室
外機に内蔵される室外熱交換器と、前記室内熱交換器お
よび室外熱交換器の一方が蒸発器として運転されるとき
の当該熱交換器の温度を検出する温度センサと、を有す
る空気調和機において、前記指令周波数を、前記温度セ
ンサの検出値に基づいて強制的かつ段階的に低減する前
に、前記コンプレッサの運転周波数を、前記温度センサ
の検出値とその設定値との差、および前記検出値の変化
量に基づいて補正し、この補正後の運転周波数によりコ
ンプレッサを運転させる運転周波数制御手段を設けたこ
とを特徴とする。
Further, the invention according to claim 3 of the present application (hereinafter, referred to as the third invention) includes: an indoor heat exchanger; an indoor unit incorporating the indoor heat exchanger; and a command frequency based on an air conditioning load.
An outdoor unit for controlling the operating frequency of the compressor, an outdoor heat exchanger built in this outdoor unit, and one of the indoor heat exchanger and the outdoor heat exchanger when the heat exchanger is operated as an evaporator. In an air conditioner having a temperature sensor that detects a temperature, the operating frequency of the compressor is set to the temperature sensor before the command frequency is forcibly and stepwise reduced based on the detection value of the temperature sensor. The operating frequency control means is provided for performing correction based on the difference between the detected value and the set value thereof and the amount of change in the detected value, and operating the compressor at the corrected operating frequency.

【0014】[0014]

【作用】[Action]

〈第1の発明〉暖房運転時は、温度センサの検出値、つ
まりコンデンサ温度の検出値に基づいて、コンプレッサ
の指令周波数を強制的かつ段階的に制御する前に、コン
プレッサの運転周波数を、運転周波数制御手段により、
コンデンサ温度の検出値と、コンデンサ温度の設定値と
の差と、コンデンサ温度の変化量と、その温度変化方向
とにより補正し、この補正周波数によりコンプレッサを
運転する。
<First Invention> During heating operation, the operating frequency of the compressor is set to the operating frequency before the command frequency of the compressor is forcibly and stepwise controlled based on the detected value of the temperature sensor, that is, the detected value of the capacitor temperature. By the frequency control means,
Correction is made by the difference between the detected value of the capacitor temperature and the set value of the capacitor temperature, the amount of change in the capacitor temperature, and the direction of the temperature change, and the compressor is operated at this corrected frequency.

【0015】したがって、本発明によれば、コンプレッ
サの指令周波数を、強制的かつ段階的に低減させる前
に、前記コンデンサ温度等に基づいてきめ細かく制御す
るので、指令周波数の強制的かつ段階的低減による運転
周波数制御に入る回数を低減して、その運転周波数のハ
ンチング量を低減することができる。このために、コン
プレッサの圧力変動を縮小してコンプレッサの負担を軽
減することにより信頼性を高めることができる。また、
コンデンサ温度を設定値でほぼ一定に保持できるので、
吹出温度を安定させることにより、快適性を高めること
ができる。
Therefore, according to the present invention, the command frequency of the compressor is finely controlled based on the temperature of the capacitor and the like before the command frequency is forcibly and stepwise reduced. The number of times of entering the operating frequency control can be reduced, and the hunting amount of the operating frequency can be reduced. Therefore, it is possible to improve reliability by reducing the pressure fluctuation of the compressor and reducing the load on the compressor. Also,
Since the capacitor temperature can be kept almost constant at the set value,
Comfort can be improved by stabilizing the blowing temperature.

【0016】〈第2の発明〉空調負荷に基づく指令周波
数の方が補正周波数よりも低いときは、この指令周波数
によりコンプレッサを運転しても、コンデンサ温度の異
常昇温の可能性が無いので、コンプレッサをこの指令周
波数により運転し、負荷追従運転を行なう。
<Second Invention> When the command frequency based on the air conditioning load is lower than the correction frequency, even if the compressor is operated at this command frequency, there is no possibility of abnormal temperature rise of the capacitor temperature. The compressor is operated at this command frequency to perform load following operation.

【0017】〈第3の発明〉冷房運転時は、温度センサ
の検出値、つまりエバポレータ温度の検出値に基づい
て、コンプレッサの指令周波数を強制的かつ段階的に制
御する前に、コンプレッサの運転周波数を、運転周波数
制御手段により、エバポレータ温度の検出値と、エバポ
レータ温度の設定値との差と、エバポレータ温度の変化
量と、その温度変化方向とにより補正し、この補正周波
数によりコンプレッサを運転する。
<Third invention> During the cooling operation, the operating frequency of the compressor is controlled before the command frequency of the compressor is forcibly and stepwise controlled based on the detected value of the temperature sensor, that is, the detected value of the evaporator temperature. Is corrected by the operating frequency control means based on the difference between the detected value of the evaporator temperature and the set value of the evaporator temperature, the amount of change in the evaporator temperature, and the direction of temperature change thereof, and the compressor is operated at this corrected frequency.

【0018】したがって、本発明によれば、コンプレッ
サの指令周波数を、強制的かつ段階的に制御させる前
に、前記エバポレータ温度等に基づいてきめ細かく制御
するので、この指令周波数の強制的かつ段階的低減によ
る運転周波数制御に入る回数を低減して、その運転周波
数のハンチング量を低減することができる。このため
に、コンプレッサの圧力変動を縮小してコンプレッサの
負担を軽減することにより信頼性を高めることができ
る。また、エバポレータ温度を設定値でほぼ一定に保持
できるので、吹出温度を安定させることにより、快適性
を高めることができる。
Therefore, according to the present invention, the command frequency of the compressor is finely controlled based on the evaporator temperature or the like before the command frequency is forcibly and stepwise controlled, so that the command frequency is forcibly and stepwise reduced. It is possible to reduce the number of times of entering the operating frequency control by and reduce the hunting amount of the operating frequency. Therefore, it is possible to improve reliability by reducing the pressure fluctuation of the compressor and reducing the load on the compressor. Further, since the evaporator temperature can be kept substantially constant at the set value, the comfort can be improved by stabilizing the blowout temperature.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本願第1〜第3の発明を含む一実施
例の構成図であり、図において、空気調和機1は、イン
バータ2からの指令周波数Fにより回転数が制御される
コンプレッサ3、四方弁4、室外ファン5を有する室外
熱交換器6、膨張弁7、室内ファン8を有する室内熱交
換器9を冷媒配管10により順次かつ環状に接続して冷
媒を可逆的に循環させる冷凍サイクルを構成している。
この冷凍サイクルは四方弁4の切換操作により、冷媒
を、図中実線矢印方向に循環させることにより冷房運転
され、図中破線矢印方向に循環させることにより暖房運
転される。
FIG. 1 is a block diagram of an embodiment including the first to third inventions of the present application. In the figure, an air conditioner 1 has a compressor 3 whose rotation speed is controlled by a command frequency F from an inverter 2. , A four-way valve 4, an outdoor heat exchanger 6 having an outdoor fan 5, an expansion valve 7, an indoor heat exchanger 9 having an indoor fan 8 are sequentially and annularly connected by a refrigerant pipe 10 to circulate the refrigerant reversibly It constitutes a cycle.
In this refrigeration cycle, by switching the four-way valve 4, the refrigerant is circulated in the direction of the solid line arrow for cooling operation, and circulated in the direction of the broken line arrow for heating operation.

【0021】そして、室内熱交換器9には室温Taを検
出する室温センサ11と、室内熱交換器9の温度、つま
り、暖房運転時はコンデンサ温度Tcであり、冷房運転
時はエバポレータ温度Teをそれぞれ検出する室内熱交
温度センサ12とを設け、これら両センサ11,12を
例えばマイクロプロセッサ等より成る室内制御器13に
接続している。
The indoor heat exchanger 9 has a room temperature sensor 11 for detecting the room temperature Ta and the temperature of the indoor heat exchanger 9, that is, the condenser temperature Tc during the heating operation and the evaporator temperature Te during the cooling operation. An indoor heat exchange temperature sensor 12 for detecting each is provided, and both sensors 11 and 12 are connected to an indoor controller 13 composed of, for example, a microprocessor.

【0022】室内制御器13は室内ファン8や室内熱交
換器9等と共に室内機キャビネット14内に内蔵され、
室外機キャビネット15内のマイクロプロセッサ等より
成る室外制御器16に、暖房運転時のコンデンサ温度T
c、または冷房運転時のエバポレータ温度Teと指令周
波数Fとを図中一点鎖線で示す信号線を通してシリアル
に送信する通信手段を有する。
The indoor controller 13 is built in the indoor unit cabinet 14 together with the indoor fan 8, the indoor heat exchanger 9, etc.
An outdoor controller 16 including a microprocessor in the outdoor unit cabinet 15 is provided with a condenser temperature T during heating operation.
c, or a communication means for serially transmitting the evaporator temperature Te and the command frequency F during the cooling operation through a signal line indicated by a chain line in the figure.

【0023】また、室内制御器13は、暖房運転時に、
コンデンサ温度Tcに基づいて、コンプレッサ3の指令
周波数を強制的かつ段階的に制御する前に、きめ細かく
制御する一方、冷房運転時に、エバポレータ温度Teに
基づいて、コンプレッサ3の指令周波数を強制的かつ段
階的に制御する前に、きめ細かく制御してコンプレッサ
3の指令周波数の強制的かつ段階的制御に入る回数を低
減せしめる手段を有し、そのために、図2で示す制御プ
ログラムを実行するものである。
In addition, the indoor controller 13 is
Before performing the forced and stepwise control of the command frequency of the compressor 3 on the basis of the condenser temperature Tc, finely control the command frequency of the compressor 3, and at the time of cooling operation, forcibly and step the command frequency of the compressor 3 on the basis of the evaporator temperature Te. 2) to execute the control program shown in FIG. 2 for the purpose of reducing the number of forced and stepwise control of the command frequency of the compressor 3 by performing fine control.

【0024】次に、この制御プログラムを説明するが、
図2中S1〜S7はこのフローチャートの各ステップを
示す。なお、図1〜図4中、( )内には冷房運転時に
おける室内熱交温度であるエバポレータ温度Teや所要
の数式等を示している。
Next, this control program will be explained.
In FIG. 2, S1 to S7 indicate each step of this flowchart. It should be noted that, in FIGS. 1 to 4, in (), an evaporator temperature Te which is an indoor heat exchange temperature during a cooling operation, required mathematical expressions and the like are shown.

【0025】室内制御器13は、暖房運転時、まずS1
で、図3に示すように室外制御器16からコンデンサ温
度Tc(冷房運転時にはエバポレータ温度Te)のデー
タ要求が有るか否か判断し、データ要求が有るときは、
S2で室内熱交温度センサ12からコンデンサ温度の検
出値Tc(同、エバポレータ温度検出値Te)を読み込
み、S3で室外制御器16へ送信する。
During the heating operation, the indoor controller 13 first sets S1.
Then, as shown in FIG. 3, it is determined whether or not there is a data request for the condenser temperature Tc (evaporator temperature Te during the cooling operation) from the outdoor controller 16, and when there is a data request,
In S2, the detected value Tc of the capacitor temperature (same as the evaporator temperature detected value Te) is read from the indoor heat exchange temperature sensor 12, and is transmitted to the outdoor controller 16 in S3.

【0026】一方、S1でコンデンサ温度検出値Tc
(同、エバポレータ温度検出値Te)のデータ要求が無
い場合は、S4で室温センサ11から室温Taを読み込
むと共に、S5で室温設定温度Tsを読み込み、S6
で、これら両温度Ta,Tsの差[Ta−Ts]に基づ
く空調負荷に相当する指令周波数Fを設定し、これをS
7で室外制御器16へ送信する。室外制御器16は図3
にも示すようにインバータ2へ指令周波数Fを与え、空
調負荷に基づく指令周波数Fによりコンプレッサ3を負
荷追従運転する。
On the other hand, in S1, the capacitor temperature detection value Tc
If there is no data request for the same (evaporator temperature detection value Te), the room temperature Ta is read from the room temperature sensor 11 in S4, the room temperature set temperature Ts is read in S5, and S6 is read.
Then, the command frequency F corresponding to the air conditioning load based on the difference [Ta-Ts] between these two temperatures Ta and Ts is set, and this is set to S
In step 7, it is transmitted to the outdoor controller 16. The outdoor controller 16 is shown in FIG.
As also shown, the command frequency F is applied to the inverter 2, and the compressor 3 is operated to follow the load by the command frequency F based on the air conditioning load.

【0027】一方、室外制御器16は、インバータ2、
コンプレッサ3、四方弁4、室外ファン5および室外熱
交換器6等と共に、室外機キャビネット15内に内蔵さ
れて、図中一点鎖線で示す信号線を通して室内制御器1
3、インバータ2および四方弁4にそれぞれ接続され、
コンプレッサ3の運転周波数を制御する運転周波数制御
手段を有する。
On the other hand, the outdoor controller 16 includes an inverter 2,
The indoor controller 1 is built in the outdoor unit cabinet 15 together with the compressor 3, the four-way valve 4, the outdoor fan 5, the outdoor heat exchanger 6, and the like, and through a signal line indicated by a chain line in the figure.
3, connected to the inverter 2 and the four-way valve 4, respectively,
It has an operating frequency control means for controlling the operating frequency of the compressor 3.

【0028】室外制御器16は、図4で示す制御プログ
ラムを内蔵しており、この制御プログラムを実行するこ
とにより、暖房運転時の室内熱交換器9の温度、つまり
コンデンサ温度Tcが異常に昇温して過圧状態になるの
を未然に防止すると共に、冷房運転時の室内熱交換器9
の温度、つまりエバポレータ温度Teが異常に低下して
室内熱交換器9が凍結するのを防止するものであり、次
にこの制御プログラムを説明するが、図4中、S11〜
S29はこのフローチャートの各ステップを示し、
( )内には冷房運転の場合を示している。
The outdoor controller 16 incorporates the control program shown in FIG. 4, and by executing this control program, the temperature of the indoor heat exchanger 9 during heating operation, that is, the capacitor temperature Tc rises abnormally. In addition to preventing heating and overpressure, the indoor heat exchanger 9 during cooling operation
This prevents the indoor heat exchanger 9 from freezing due to an abnormally low temperature, that is, the evaporator temperature Te. This control program will be described next.
S29 shows each step of this flowchart,
In (), the case of cooling operation is shown.

【0029】つまり、室外制御器16は、まず、S11
で、例えば1分程度をカウントするタイマTをスタート
させ、S12で室内制御器13からの指令周波数Fを受
信し、S13で、その指令周波数Fを記憶する。
That is, the outdoor controller 16 first sets S11.
Then, for example, a timer T for counting about 1 minute is started, the command frequency F is received from the indoor controller 13 in S12, and the command frequency F is stored in S13.

【0030】次に、S14でタイマTが例えば1分間を
カウントアップした後に、S15で、室内制御器13に
対して暖房運転時はコンデンサ温度の検出値Tc(冷房
運転時はエバポレータ温度検出値Te)を要求し、この
Tc(Te)をS16で受信してから、S17で記憶
し、S18で、このコンデンサ温度検出値Tc(エバポ
レータ温度検出値Te)が図5(A),(B)で示す4
つのゾーンA0 ,B1 ,B2 ,C0 のいずれに属するか
判別する。
Next, after the timer T counts up, for example, one minute in S14, the detected value Tc of the condenser temperature during the heating operation is detected for the indoor controller 13 in S15 (the evaporator temperature detection value Te during the cooling operation). ) Is requested, and this Tc (Te) is received in S16, then stored in S17, and in S18, this capacitor temperature detection value Tc (evaporator temperature detection value Te) is shown in FIGS. Showing 4
It is determined which one of the zones A0, B1, B2 and C0 belongs.

【0031】コンデンサ温度検出値Tcが例えば48℃
の所要値Tc1 以下のときと、エバポレータ温度検出値
Teが例えば9℃(Te1 )を超えるときは、それぞれ
C0ゾーンに属するので、S19でインバータ2からコ
ンプレッサ3に与えられる指令周波数Fによりコンプレ
ッサ3を運転させる。つまり、このC0 ゾーンでは負荷
追従運転が行なわれる。また、S20で、このときの指
令周波数Fを現行運転周波数H0 としてから再びS11
に戻り、以下繰り返す。
The capacitor temperature detection value Tc is, for example, 48 ° C.
When the evaporator temperature detected value Te exceeds, for example, 9 ° C. (Te1), the compressor 3 is controlled by the command frequency F given to the compressor 3 from the inverter 2 in S19. Drive That is, the load following operation is performed in this C0 zone. Further, in S20, the command frequency F at this time is set to the current operating frequency H0, and then, again in S11.
Return to and repeat below.

【0032】しかし、S18でコンデンサ温度検出値T
cと、エバポレータ温度検出値TeがB1 ,B2 ゾーン
にそれぞれ属するときは、一定時間毎にS21〜S15
の演算を行なう。つまり、S21でコンデンサ温度検出
値Tcとその設定値Tcsとの偏差TcD[Tcs−T
c]を求める。同様に冷房運転時には、エバポレータ温
度検出値Teと、その設定値Tesとの偏差TeD[T
e−Tes]を求める。次のS12でこの今回の偏差T
cD(TeD)とその前回の偏差Tc0 (Te0 )との
変化量ΔTcD、つまりΔTcD=TcD−Tc0 (Δ
TeD=TeD−Te0 )を求め、S23で今回の偏差
TcD(TeD)を前回の偏差Tc0 と(Te0 )とし
て記憶する。
However, in S18, the capacitor temperature detection value T
c and the detected temperature Te of the evaporator Te belong to the B1 and B2 zones, respectively, S21 to S15 at regular intervals.
Is calculated. That is, in S21, the deviation TcD [Tcs-T] between the capacitor temperature detection value Tc and its set value Tcs.
c] is calculated. Similarly, during the cooling operation, the deviation TeD [T] between the evaporator temperature detection value Te and its set value Tes
e-Tes]. This deviation T at the next S12
Change amount ΔTcD between cD (TeD) and the previous deviation Tc0 (Te0), that is, ΔTcD = TcD−Tc0 (Δ
TeD = TeD-Te0) is obtained, and the current deviation TcD (TeD) is stored as the previous deviations Tc0 and (Te0) in S23.

【0033】そして、S24で暖房運転時の指令周波数
Fの補正値ΔHzを次の(1)式により求める。
Then, in S24, the correction value ΔHz of the command frequency F during the heating operation is obtained by the following equation (1).

【0034】[0034]

【数1】 [Equation 1]

【0035】また、冷房運転時には指令周波数Fの補正
値ΔHzeを次の(2)式により求める。
Further, during the cooling operation, the correction value ΔHze of the command frequency F is obtained by the following equation (2).

【0036】[0036]

【数2】 [Equation 2]

【0037】次に、S25でコンプレッサ3の現在の運
転周波数H0 に補正値ΔHzを(ΔHze)を、その正
負に従って加え、または差し引くことにより補正し、こ
れからコンプレッサ3を運転しようとする補正周波数H
を求め、S26で、この補正周波数Hがインバータ2か
ら出力される空調負荷に基づく指令周波数Fよりも高い
か否か判断し、補正周波数Hの方が指令周波数Fよりも
高いとき、つまり、指令周波数Fの方が補正周波数Hよ
りも低いときは、この指令周波数Fでコンプレッサ3を
運転してもコンデンサ温度Tcが異常に上昇するおそれ
がないので、この指令周波数Fでコンプレッサ3を運転
する。
Next, in S25, the correction value ΔHz (ΔHze) is added to or subtracted from the current operating frequency H0 of the compressor 3 in accordance with its positive or negative value to correct, and the corrected frequency H at which the compressor 3 is to be operated is corrected.
Then, in S26, it is determined whether or not the correction frequency H is higher than the command frequency F based on the air conditioning load output from the inverter 2, and when the correction frequency H is higher than the command frequency F, that is, the command When the frequency F is lower than the correction frequency H, there is no possibility that the capacitor temperature Tc will rise abnormally even if the compressor 3 is operated at this command frequency F, so the compressor 3 is operated at this command frequency F.

【0038】一方、S26でH>Fが不成立のときは、
S27でF=HとしてからS19へ進み、補正周波数H
でコンプレッサ3を運転する。
On the other hand, when H> F is not established in S26,
After setting F = H in S27, the process proceeds to S19, where the correction frequency H
The compressor 3 is operated.

【0039】一方、S18でコンデンサ温度検出値Tc
(エバポレータ温度検出値Te)がA0 ゾーンに属する
と判断したときは、S28で、インバータ2からコンプ
レッサ3に与えられる指令周波数Fを所定時間[例えば
3分間]毎に、所定周波数(例えば10Hz)ずつ例え
ば14段階に亘ってステップ状に強制的に低減(上昇)
させていき、S29で現行周波数H0 の方が空調負荷に
基づく指令周波数Fよりも低く(高く)なったときに
は、S19へ再び戻って室内制御器13からの指令周波
数Fによりコンプレッサ3を運転する。
On the other hand, in S18, the capacitor temperature detection value Tc is detected.
When it is determined that the (evaporator temperature detection value Te) belongs to the A0 zone, in S28, the command frequency F given from the inverter 2 to the compressor 3 is incremented by a predetermined frequency (for example, 10 Hz) every predetermined time [for example, 3 minutes]. For example, forcibly reduced (increased) in steps over 14 stages
When the current frequency H0 becomes lower (higher) than the command frequency F based on the air conditioning load in S29, the process returns to S19 and the compressor 3 is operated by the command frequency F from the indoor controller 13.

【0040】したがって本実施例によれば、コンプレッ
サ3の運転周波数を、強制的かつ段階的に低減(上昇)
させる前に、コンデンサ温度検出値Tc(エバポレータ
温度検出値Te)と同設定値Tcs(Tes)との差
と、コンデンサ温度検出値Tc(エバポレータ温度検出
値Te)の傾きにより、きめ細かい制御幅で制御するの
で、コンデンサ温度検出値Tc、またはエバポレータ温
度検出値TeがA0 ゾーンへ入ってコンプレッサ3の運
転周波数を強制的かつ段階的に低下(上昇)させる制御
を回避することができる。
Therefore, according to this embodiment, the operating frequency of the compressor 3 is forcibly and stepwise reduced (increased).
Before the control, the difference between the capacitor temperature detection value Tc (evaporator temperature detection value Te) and the same set value Tcs (Tes) and the slope of the capacitor temperature detection value Tc (evaporator temperature detection value Te) control with a fine control range. Therefore, it is possible to avoid the control in which the detected capacitor temperature Tc or the detected evaporator temperature Te enters the A0 zone to forcibly and stepwise decrease (increase) the operating frequency of the compressor 3.

【0041】このために、かかる運転周波数のハンチン
グ量を低減ないし防止して、コンデンサ温度を同設定値
Tcsで一定に保持することができると共に、エバポレ
ータ温度を同設定値Tesで一定に保持することができ
る。このために、冷,暖房両運転時に吹出温度の変動幅
を縮小して快適性を高めることができる。
Therefore, the hunting amount of the operating frequency can be reduced or prevented, the capacitor temperature can be kept constant at the same set value Tcs, and the evaporator temperature can be kept constant at the same set value Tes. You can For this reason, it is possible to reduce the fluctuation range of the blowout temperature during both the cooling and heating operations to enhance comfort.

【0042】また、B1 ,B2 ゾーンにおける指令周波
数Fの制御幅を、室外制御器16の有する最小分解能
(例えば0.6Hz)できめ細かく制御するので、コン
プレッサ3の圧力変動幅を縮小してコンプレッサ3の負
担を軽減することができ、信頼性を高めることができ
る。
Further, since the control width of the command frequency F in the B1 and B2 zones is finely controlled by the minimum resolution (for example, 0.6 Hz) of the outdoor controller 16, the pressure fluctuation width of the compressor 3 is reduced and the compressor 3 is reduced. It is possible to reduce the burden on the user and increase the reliability.

【0043】また、負荷調整に基づく指令周波数Fの方
が現行周波数H0 よりも低いときはこの指令周波数Fに
よりコンプレッサ3を運転しても、コンデンサ温度Tc
が異常に昇温する可能性が低いので、この指令周波数F
によりコンプレッサ3を運転して負荷追従運転を行なう
ことができる。
Further, when the command frequency F based on the load adjustment is lower than the current frequency H0, even if the compressor 3 is operated by this command frequency F, the capacitor temperature Tc
Is unlikely to rise abnormally, this command frequency F
Thus, the compressor 3 can be operated to perform load following operation.

【0044】[0044]

【発明の効果】以上説明したように本願第1の発明は、
暖房運転時、コンプレッサの負荷調整に基づく指令周波
数を、強制的かつ段階的に低減する前に、コンデンサ温
度検出値と同設定値との差、その変化量に基づいてきめ
細かく制御するので、指令周波数を強制的かつ段階的に
低減させる制御を行なうのを低減することができる。
As described above, the first invention of the present application is
During the heating operation, the command frequency based on the load adjustment of the compressor is finely controlled based on the difference between the detected capacitor temperature value and the set value and the amount of change before the compulsory and stepwise reduction. It is possible to reduce the control for forcibly and gradually reducing.

【0045】このために、暖房運転時におけるコンプレ
ッサの指令周波数のハンチング量を縮小してコンプレッ
サの圧力変動幅を縮小することができるので、コンプレ
ッサの負担を軽減して信頼性を高めることができると共
に、コンデンサ温度を設定値に保持することができるの
で、吹出温度の変動を縮小して快適性を高めることがで
きる。
Therefore, the hunting amount of the command frequency of the compressor during the heating operation can be reduced to reduce the pressure fluctuation range of the compressor, so that the burden on the compressor can be reduced and the reliability can be improved. Since the condenser temperature can be maintained at the set value, it is possible to reduce fluctuations in the outlet temperature and improve comfort.

【0046】また、本願第2の発明は、負荷調整に基づ
く指令周波数の方が補正周波数よりも低いときは、コン
デンサ温度の異常上昇のおそれが低いので、コンプレッ
サを指令周波数により運転することにより、負荷追従運
転を行なうことができる。
Further, according to the second aspect of the present invention, when the command frequency based on the load adjustment is lower than the correction frequency, the risk of an abnormal rise in the capacitor temperature is low, so that the compressor is operated at the command frequency. Load following operation can be performed.

【0047】さらに、本願第3の発明は、冷房運転時、
コンプレッサの負荷調整に基づく指令周波数を、強制的
かつ段階的に高める前に、エバポレータ温度検出値と同
設定値との差、その変化量に基づいてきめ細かく制御す
るので、指令周波数を強制的かつ段階的に高める制御を
行なうのを低減することができる。
Further, according to the third invention of the present application, during cooling operation,
Before the command frequency based on the load adjustment of the compressor is forcibly and stepwise increased, the command frequency is forcibly and stepwise controlled because it is finely controlled based on the difference between the evaporator temperature detection value and the set value and the amount of change. Therefore, it is possible to reduce the amount of control for increasing the level.

【0048】このために、冷房運転時においても、コン
プレッサの指令周波数のハンチング量を縮小してコンプ
レッサの圧力変動幅を縮小することができるので、コン
プレッサの負担を軽減して信頼性を高めることができる
と共に、エバポレータ温度を設定値に保持することがで
きるので、吹出温度の変動を縮小して快適性を高めるこ
とができる。
Therefore, even during the cooling operation, the hunting amount of the command frequency of the compressor can be reduced to reduce the pressure fluctuation range of the compressor, so that the burden on the compressor can be reduced and the reliability can be improved. At the same time, the evaporator temperature can be maintained at the set value, so that fluctuations in the outlet temperature can be reduced and comfort can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願第1〜第3の発明を含む空気調和機の一実
施例の構成図。
FIG. 1 is a configuration diagram of an embodiment of an air conditioner including the first to third inventions of the present application.

【図2】図1で示す室内制御器の制御プログラムのフロ
ーチャート。
FIG. 2 is a flowchart of a control program for the indoor controller shown in FIG.

【図3】図1で示す実施例の信号の流れを示すブロック
図。
FIG. 3 is a block diagram showing a signal flow of the embodiment shown in FIG.

【図4】図1で示す室外制御器の制御プログラムのフロ
ーチャート。
FIG. 4 is a flowchart of a control program for the outdoor controller shown in FIG.

【図5】(A)は図1で示す室外制御器による暖房運転
時の室内熱交温度に対する制御ゾーンを示すグラフ、
(B)は同、冷房運転時の室内熱交温度に対する制御ゾ
ーンを示すグラフ。
5A is a graph showing a control zone with respect to an indoor heat exchange temperature during heating operation by the outdoor controller shown in FIG.
FIG. 3B is a graph showing a control zone with respect to the indoor heat exchange temperature during the cooling operation.

【図6】(A)は従来の周波数制御方法による暖房運転
時の室内熱交温度に対する制御ゾーンを示すグラフ、
(B)は同、冷房運転時の室内熱交温度に対する制御ゾ
ーンを示すグラフ。
FIG. 6A is a graph showing a control zone with respect to an indoor heat exchange temperature during heating operation by a conventional frequency control method,
FIG. 3B is a graph showing a control zone with respect to the indoor heat exchange temperature during the cooling operation.

【符号の説明】[Explanation of symbols]

1 空気調和機 2 インバータ 3 コンプレッサ 4 四方弁 5 室外ファン 6 室外熱交換器 7 膨張弁 8 室内ファン 9 室内熱交換器 10 冷媒配管 11 室温センサ 12 室温熱交温度センサ 13 室内制御器 14 室内機キャビネット 15 室外機キャビネット 16 室外制御器 1 air conditioner 2 inverter 3 compressor 4 four-way valve 5 outdoor fan 6 outdoor heat exchanger 7 expansion valve 8 indoor fan 9 indoor heat exchanger 10 refrigerant pipe 11 room temperature sensor 12 room temperature heat exchange temperature sensor 13 indoor controller 14 indoor unit cabinet 15 Outdoor unit cabinet 16 Outdoor controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室内熱交換器と、これを内蔵する室内機
と、空調負荷に基づく指令周波数により、コンプレッサ
の運転周波数を制御する室外機と、この室外機に内蔵さ
れる室外熱交換器と、前記室内熱交換器および室外熱交
換器の一方が凝縮器として運転されるときの当該熱交換
器の温度を検出する温度センサと、を有する空気調和機
において、前記指令周波数を、前記温度センサの検出値
に基づいて強制的かつ段階的に低減する前に、前記コン
プレッサの運転周波数を、前記温度センサの検出値とそ
の設定値との差、および前記検出値の変化量に基づいて
補正し、この補正後の運転周波数によりコンプレッサを
運転させる運転周波数制御手段を設けたことを特徴とす
る空気調和機。
1. An indoor heat exchanger, an indoor unit incorporating the indoor heat exchanger, an outdoor unit controlling the operating frequency of a compressor by a command frequency based on an air conditioning load, and an outdoor heat exchanger incorporated in the outdoor unit. A temperature sensor that detects the temperature of the heat exchanger when one of the indoor heat exchanger and the outdoor heat exchanger is operated as a condenser, in the air conditioner, Before forcibly and stepwise reducing based on the detected value of, the operating frequency of the compressor is corrected based on the difference between the detected value of the temperature sensor and its set value, and the amount of change in the detected value. An air conditioner characterized by comprising operating frequency control means for operating the compressor at the corrected operating frequency.
【請求項2】 運転周波数制御手段は、空調負荷に基づ
く指令周波数を上限として制御する手段を有する請求項
1記載の空気調和機。
2. The air conditioner according to claim 1, wherein the operating frequency control means has means for controlling with a command frequency based on an air conditioning load as an upper limit.
【請求項3】 室内熱交換器と、これを内蔵する室内機
と、空調負荷に基づく指令周波数により、コンプレッサ
の運転周波数を制御する室外機と、この室外機に内蔵さ
れる室外熱交換器と、前記室内熱交換器および室外熱交
換器の一方が蒸発器として運転されるときの当該熱交換
器の温度を検出する温度センサと、を有する空気調和機
において、前記指令周波数を、前記温度センサの検出値
に基づいて強制的かつ段階的に低減する前に、前記コン
プレッサの運転周波数を、前記温度センサの検出値とそ
の設定値との差、および前記検出値の変化量に基づいて
補正し、この補正後の運転周波数によりコンプレッサを
運転させる運転周波数制御手段を設けたことを特徴とす
る空気調和機。
3. An indoor heat exchanger, an indoor unit incorporating the indoor heat exchanger, an outdoor unit controlling the operating frequency of the compressor by a command frequency based on an air conditioning load, and an outdoor heat exchanger incorporated in the outdoor unit. A temperature sensor that detects the temperature of the heat exchanger when one of the indoor heat exchanger and the outdoor heat exchanger is operated as an evaporator, Before forcibly and stepwise reducing based on the detected value of, the operating frequency of the compressor is corrected based on the difference between the detected value of the temperature sensor and its set value, and the amount of change in the detected value. An air conditioner characterized by comprising operating frequency control means for operating the compressor at the corrected operating frequency.
JP09147993A 1993-01-14 1993-04-19 Air conditioner Expired - Fee Related JP3187198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09147993A JP3187198B2 (en) 1993-01-14 1993-04-19 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-5127 1993-01-14
JP512793 1993-01-14
JP09147993A JP3187198B2 (en) 1993-01-14 1993-04-19 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06265198A true JPH06265198A (en) 1994-09-20
JP3187198B2 JP3187198B2 (en) 2001-07-11

Family

ID=26339030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09147993A Expired - Fee Related JP3187198B2 (en) 1993-01-14 1993-04-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP3187198B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214797A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Refrigerating cycle device
CN103292419A (en) * 2013-05-30 2013-09-11 四川长虹电器股份有限公司 Device and method for preventing refrigerants from gathering
JP2013245896A (en) * 2012-05-28 2013-12-09 Aisin Seiki Co Ltd Air conditioning device
CN111622936A (en) * 2020-04-25 2020-09-04 壹格建筑科技(上海)有限公司 Method, apparatus and computer readable storage medium for compressor overload protection
CN112524748A (en) * 2020-12-09 2021-03-19 珠海格力电器股份有限公司 Air conditioner operation control method, device, equipment and storage medium
CN113531827A (en) * 2021-06-30 2021-10-22 苏州英维克温控技术有限公司 Variable frequency air conditioner control method and device, electronic equipment and medium
CN114234412A (en) * 2021-11-26 2022-03-25 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214797A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Refrigerating cycle device
JP2013245896A (en) * 2012-05-28 2013-12-09 Aisin Seiki Co Ltd Air conditioning device
CN103292419A (en) * 2013-05-30 2013-09-11 四川长虹电器股份有限公司 Device and method for preventing refrigerants from gathering
CN103292419B (en) * 2013-05-30 2016-06-22 四川长虹电器股份有限公司 A kind of apparatus and method preventing coolant from assembling
CN111622936A (en) * 2020-04-25 2020-09-04 壹格建筑科技(上海)有限公司 Method, apparatus and computer readable storage medium for compressor overload protection
CN112524748A (en) * 2020-12-09 2021-03-19 珠海格力电器股份有限公司 Air conditioner operation control method, device, equipment and storage medium
CN113531827A (en) * 2021-06-30 2021-10-22 苏州英维克温控技术有限公司 Variable frequency air conditioner control method and device, electronic equipment and medium
CN114234412A (en) * 2021-11-26 2022-03-25 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JP3187198B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
JP3167372B2 (en) Air conditioner
JP2723339B2 (en) Heat pump heating equipment
JP2913235B2 (en) Air conditioner
JPH1151500A (en) Heat pump type air-conditioner
JPH06265198A (en) Air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JP4264266B2 (en) Air conditioner
JPH0886487A (en) Operating method of air conditioner
JPH08166174A (en) Air conditioner
JPH07120049A (en) Air conditioner
JP3110593B2 (en) Control device for air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
JP3651536B2 (en) Control method of air conditioner
JPS6277538A (en) Derfosting device of air conditioner
JPH0599472A (en) Controlling method of air-conditioning machine
JPH10246543A (en) Controlling method for air conditioner
JPH109647A (en) Control method of air conditioning apparatus
JPH11132605A (en) Air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
JPH10153336A (en) Method for controlling air-conditioner
JP3303303B2 (en) Annual cooling control device for air conditioner
JPS6191438A (en) Method of controlling defrosting of heat pump type air conditioner
JPH02140547A (en) Controlling method for defrosting of air conditioner
JP2902665B2 (en) Air conditioner
JPH0518618A (en) Method of controlling operation of air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees