JPH06265184A - Carrying equipment of solid-liquid mixture fluid - Google Patents

Carrying equipment of solid-liquid mixture fluid

Info

Publication number
JPH06265184A
JPH06265184A JP16835093A JP16835093A JPH06265184A JP H06265184 A JPH06265184 A JP H06265184A JP 16835093 A JP16835093 A JP 16835093A JP 16835093 A JP16835093 A JP 16835093A JP H06265184 A JPH06265184 A JP H06265184A
Authority
JP
Japan
Prior art keywords
liquid
ipf
solid
heat source
mixed fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16835093A
Other languages
Japanese (ja)
Other versions
JP3345105B2 (en
Inventor
Yukio Hamaoka
幸夫 浜岡
Mitsuru Yamamoto
充 山本
Taiji Ono
泰司 大野
Junichi Aizawa
旬一 相沢
Takuji Yokoyama
卓史 横山
Yamato Morikawa
大和 森川
Masahiro Miyawaki
正博 宮脇
Takeshi Fujimoto
健 藤本
Tomohiro Kuriyama
知広 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd, Kansai Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Nikken Sekkei Ltd
Priority to JP16835093A priority Critical patent/JP3345105B2/en
Publication of JPH06265184A publication Critical patent/JPH06265184A/en
Application granted granted Critical
Publication of JP3345105B2 publication Critical patent/JP3345105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enable precise draining of a liquid by providing latent heat substance mixing filling factor (IPF) regulators on the suction side of a mixture fluid carrying pump and by providing a liquid drain pipe connecting liquid drain ports of the IPF regulators and a heat source storage part together. CONSTITUTION:IPF regulators 3A and 3B provided with liquid drain ports for a solid-liquid fluid of a latent heat substance such as ice and a liquid such as water are provided on a carrying pipeline 7 between an outlet of a heat source storage part 1 and a suction port of a carrying pump 2, while a liquid drain pipeline 16 connecting the liquid drain ports of the IPF regulators 3A and 3B and the heat source storage part 1 together is provided. In this case, the liquid drain pipeline 16 is provided with a pump 5 for making it possible to make the amount of drain variable. As to the IPF regulators 3A and 3B, besides, pipelines are separated into two, upper and lower pipelines, the upper- side separated pipeline is provided continuous to the carrying pipeline 7 and the opposite sides of the lower-side separated pipeline are closed up, while this pipeline is made to function as a liquid drain part for regulation of IPF. According to this constitution, precise draining of the liquid can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地域冷房等において、
熱源貯溜部に蓄積された冷熱を、氷等の潜熱物質と水等
の液体との固液混合流体により搬送する固液混合流体の
搬送装置に関する。
BACKGROUND OF THE INVENTION The present invention is applicable to district cooling, etc.
The present invention relates to a solid-liquid mixed fluid conveying device that conveys cold heat accumulated in a heat source reservoir by a solid-liquid mixed fluid of a latent heat substance such as ice and a liquid such as water.

【0002】[0002]

【従来の技術】地域冷房等において、熱源貯溜部に蓄積
されている冷熱を、負荷部に搬送する場合、単一の流体
を用いて顕熱を搬送する方法が提供されている。一方近
年は、前記顕熱と併せて潜熱を利用して冷熱を搬送する
方式、即ち冷熱の移送を固液二相の混合流体(例えば氷
とブラインの固液混合流体)によって行う方式が多く採
用されるようになった。かかる冷暖房システムにあって
は、固液混合流体中の潜熱物質混合充填率(以下“IP
F”と称する)を、負荷の変動又は前記熱源貯溜部内の
IPFの変動に応じて調整して、固液混合流体を前記負
荷に供給する必要がある。
2. Description of the Related Art In district cooling and the like, there is provided a method of transporting sensible heat using a single fluid when transporting cold heat accumulated in a heat source reservoir to a load. On the other hand, in recent years, a method of transferring cold heat by utilizing latent heat in addition to the sensible heat, that is, a method of transferring cold heat by a solid-liquid two-phase mixed fluid (for example, a solid-liquid mixed fluid of ice and brine) is often adopted. Came to be. In such an air conditioning system, the latent heat substance mixture filling rate (hereinafter referred to as "IP
(Referred to as “F”) in accordance with the fluctuation of the load or the fluctuation of the IPF in the heat source reservoir to supply the solid-liquid mixed fluid to the load.

【0003】図4に、前記固液混合流体搬送システムの
従来例を示す。図において1は氷と水との固液混合流体
が収容される熱源貯溜部即ち氷槽であり、該貯氷槽1内
の固液混合流体は、搬送主管7に設けられた搬送ポンプ
2により加圧、吐出され、吐出側に設けられたIPF調
整器14に導入され、ここで一部の水が抜き出され、水
抜き配管16を経て貯氷槽1に戻される。貯氷槽1に戻
される水の流量はIPF調整器14の下流に設けられた
質量流量計6の密度値の検出により調節される。そして
IPF制御の一例を数値により説明すると、所要の供給
流量をQm3 /minとし、所要のIPFが30%であ
るとして、貯氷槽1内の固液混合流体即ち氷水のIPF
が10%であるときは、貯氷槽1の氷水流量3Qが搬送
ポンプ2により4kg/cm2 ・Gの圧力に加圧されて
搬送主管7に送り出され、IPF調整器14により2Q
の水流量が水抜き配管16を経て貯氷槽1に戻され、こ
れによりIPFを30%に調節された氷水流量Qが地域
導管8を経て負荷9に供給され冷熱を供給する。なお、
8aは戻り導管、15は水抜き流量を制御する自動調整
弁である。
FIG. 4 shows a conventional example of the solid-liquid mixed fluid transfer system. In the figure, reference numeral 1 is a heat source reservoir, that is, an ice tank in which a solid-liquid mixed fluid of ice and water is stored. The solid-liquid mixed fluid in the ice storage tank 1 is added by a transfer pump 2 provided in a transfer main pipe 7. It is discharged under pressure and introduced into the IPF adjuster 14 provided on the discharge side, where a part of the water is extracted and returned to the ice storage tank 1 through the water removal pipe 16. The flow rate of water returned to the ice storage tank 1 is adjusted by detecting the density value of the mass flowmeter 6 provided downstream of the IPF adjuster 14. An example of the IPF control will be described numerically. If the required supply flow rate is Qm 3 / min and the required IPF is 30%, the solid-liquid mixed fluid in the ice storage tank 1, that is, the IPF of the ice water.
Is 10%, the ice water flow rate 3Q in the ice storage tank 1 is pressurized by the transfer pump 2 to a pressure of 4 kg / cm 2 · G and is sent out to the main transfer pipe 7, and the IPF adjuster 14 outputs 2Q.
The water flow rate is returned to the ice storage tank 1 through the drainage pipe 16, whereby the ice water flow rate Q with the IPF adjusted to 30% is supplied to the load 9 via the regional conduit 8 to supply cold heat. In addition,
Reference numeral 8a is a return conduit, and 15 is an automatic adjusting valve for controlling the drainage flow rate.

【0004】そして前記IPF調整器14は例えば図5
に示すように、搬送主管7と連設される内管141の周
囲に外管142を囲繞し、そして前記内管141を口径
0.5mm程度の孔14bが穿設されたパンチングメタ
ル製の管141で形成すると共に、前記外管142の両
端を閉塞すると共にその間に水抜き配管16を設け、I
PF調整用の液抜き部として機能させる。そしてかかる
構成により貯氷槽1からの固液混合流体が前記調整器1
4内に導入され、該パンチングメタルの孔14bから水
のみが抜き取られて外管142の水出口Cから水抜き配
管16を経て貯氷槽1に戻されることにより、IPFが
調整される。
The IPF adjuster 14 is shown in FIG.
As shown in FIG. 5, a pipe made of punching metal is provided in which an outer pipe 142 is surrounded by an inner pipe 141 which is continuously provided with the main transport pipe 7, and the inner pipe 141 is provided with a hole 14b having a diameter of about 0.5 mm. 141, and both ends of the outer pipe 142 are closed and a drainage pipe 16 is provided between them.
It functions as a drainage part for PF adjustment. With such a configuration, the solid-liquid mixed fluid from the ice storage tank 1 is transferred to the regulator 1
4, the IPF is adjusted by extracting only water from the hole 14b of the punching metal and returning it from the water outlet C of the outer pipe 142 to the ice storage tank 1 through the water drainage pipe 16.

【0005】[0005]

【発明が解決しようとする課題】しかしながらかかる従
来システムにおいては、搬送ポンプ2の吐出側にIPF
調整器14が設けられているので、水抜き配管16を経
て貯氷槽1に戻される水抜き流量をも負荷9への供給圧
力(3〜4kg/cm2 ・G)まで余分に加圧すること
になり、無駄な動力を搬送ポンプ2にかけることにな
る。
However, in such a conventional system, the IPF is provided on the discharge side of the carrier pump 2.
Since the regulator 14 is provided, the drainage flow rate returned to the ice storage tank 1 through the drainage pipe 16 is also increased to the supply pressure (3 to 4 kg / cm 2 · G) to the load 9. Therefore, useless power is applied to the transfer pump 2.

【0006】例えば、図6は、Q0 を固液混合流体即ち
氷水入口流量、Q1 を水抜き流量、Q2 を搬送氷水流量
とし、IPF0,IPF1及びIPF2を夫々Q0 ,Q
1 及びQ2 のIPF値として、IPF0=13.4%の
ときにおけるQ1 /Q0 と搬送氷水のIPF増加量との
関係を実験結果によりグラフ化したものである。(な
お、図中IPF1=0%とは抜き取られた水中に氷が含
まれていない場合の曲線を表わす)。同図から分かるよ
うに、Q1 /Q0 の値が0.4以上になると、水抜き配
管16側への氷の流出が多くなるため、氷の流出量に相
当するだけ、水抜き流量を余分に増加しなければならな
い。このため、搬送ポンプ2の容量を、少なくとも前記
水抜き量の増加分だけ増加しなければならず、固液混合
流体の搬送動力が増加する。
For example, in FIG. 6, Q0 is a solid-liquid mixed fluid, that is, ice water inlet flow rate, Q1 is water drainage flow rate, Q2 is carrier ice water flow rate, and IPF0, IPF1 and IPF2 are Q0 and QF, respectively.
As the IPF values of 1 and Q2, the relationship between Q1 / Q0 and the amount of increase in IPF of the carrier ice water when IPF0 = 13.4% is graphed by the experimental results. (Note that IPF1 = 0% in the figure represents a curve when ice is not included in the extracted water). As can be seen from the figure, when the value of Q1 / Q0 becomes 0.4 or more, the outflow of ice increases to the side of the drainage pipe 16, so that the drainage flow rate is increased by an amount equivalent to the outflow amount of ice. Must increase. For this reason, the capacity of the transfer pump 2 must be increased by at least the amount of increase in the water drainage amount, and the transfer power of the solid-liquid mixed fluid increases.

【0007】又前記IPF調整器14は混合流体が通過
する内管141をパンチングメタルにより形成されてい
るために、該パンチングメタル筒(内管)に流入してき
た氷水は該メタル筒141内を通過する間水が外管14
2側に抜けてIPFが高められて流出する。従ってパン
チングメタル141の出口に近いほどIPFは高くなる
ために調整器14出口側では氷の粒塊が停滞しやすく、
該調整器14内に氷水を連続的に通過させると、IPF
調整器14内で混合流体(氷水)側における閉塞も発生
し易くなる。これは、パンチングメタル筒141の氷水
通過の際に生じる圧損が直管の場合に比して6倍前後と
大きい為であると思慮される。本発明はかかる従来技術
の欠点に鑑み、搬送ポンプ動力の浪費を防止してシステ
ムの効率を向上せしめるとともに、IPF調整器の配管
系の閉塞の発生を防止する混合流体搬送装置を提供する
事を目的とする。
Further, since the inner pipe 141 through which the mixed fluid passes is formed of punching metal in the IPF regulator 14, the ice water flowing into the punching metal cylinder (inner pipe) passes through the metal cylinder 141. The outer tube 14
It goes out to the 2 side, IPF is raised, and it flows out. Therefore, the closer to the outlet of the punching metal 141, the higher the IPF, so that the ice agglomerate is likely to stagnate on the outlet side of the regulator 14,
When ice water is continuously passed through the adjuster 14, the IPF
Blockage on the mixed fluid (ice water) side easily occurs in the adjuster 14. It is considered that this is because the pressure loss that occurs when the punching metal cylinder 141 passes through the ice water is about 6 times as large as that in the case of the straight pipe. In view of the above-mentioned drawbacks of the prior art, the present invention provides a mixed fluid transfer device that prevents waste of the transfer pump power and improves the efficiency of the system, and that also prevents clogging of the piping system of the IPF regulator. To aim.

【0008】[0008]

【課題を解決するための手段】本発明は、前記熱源貯溜
部出口と前記搬送ポンプ吸込口との間の搬送管路上に前
記固液混合流体の液体抜き口を具えたIPF調整器を設
けるとともに、前記IPF調整器の液体抜き口と前記熱
源貯溜部とを接続する液体抜き管路を設けたことを特徴
とする。この場合、液体抜き管路にはポンプを設け、抜
き量を可変可能に構成するのが良い。又前記IPF調整
器は、前記搬送管路に直列に複数個配置するのが好まし
い。又前記IPF調整器は、該調整器を構成する管路を
平板状の液分離板を介して上下2つに分離し、上側分離
管路を搬送管路に連設し、又下側分離管路側の両端を閉
塞すると共に液体抜き口を設け、IPF調整用の液抜き
部として機能させて構成するのが良い。
According to the present invention, an IPF adjuster having a liquid outlet for the solid-liquid mixed fluid is provided on a transfer conduit between the heat source reservoir outlet and the transfer pump suction port. And a liquid drain pipe line connecting the liquid drain port of the IPF adjuster and the heat source reservoir. In this case, it is preferable that a pump be provided in the liquid drain pipe so that the drain amount can be changed. Further, it is preferable that a plurality of the IPF adjusters are arranged in series in the transfer pipeline. Further, the IPF adjuster separates the conduits constituting the adjuster into two parts vertically through a flat liquid separation plate, and the upper separation conduit is connected to the transfer conduit and the lower separation pipe is connected. It is preferable that both ends on the road side are closed and a liquid drain port is provided to function as a liquid drain portion for IPF adjustment.

【0009】[0009]

【作用】本発明によれば混合流体を搬送する搬送ポンプ
の吸込側にIPF調整器を設けたので、負荷側の要求冷
熱量に対応した混合流体量分のみを搬送ポンプで搬送す
れば済み、言換えれば液体抜き管路に抽出される液体の
分に相当する量のポンプ動力が不要となる。従って、従
来の装置に較べ、ポンプ動力の節減が達成される。又I
PF調整器を構成する管路を平板状の液分離板を介して
上下2つに分離し、上側分離管路を搬送管路に連設し、
又下側分離管路側を液抜き部として機能させた為に、氷
水通過の際に生じる圧損を大幅に低減でき、これにより
IPF調整器の配管系の閉塞を有効に防止出来る。即
ち、氷は水より比重が軽いために、前記上側分離管路内
では氷が上方に浮遊した状態で搬送させることになる。
そして上側分離管路の上側には管路の内壁のみが存在
し、パンチメタル(液分離板)は底側にのみ存在するた
めに、氷がパンチングメタルに接触することなく従って
圧損も生じることはない。
According to the present invention, since the IPF regulator is provided on the suction side of the transfer pump for transferring the mixed fluid, only the mixed fluid amount corresponding to the required cold heat amount on the load side needs to be transferred by the transfer pump. In other words, the amount of pump power corresponding to the amount of the liquid extracted in the liquid drain pipe is unnecessary. Therefore, a reduction in pump power is achieved as compared to conventional devices. See I
The pipeline that constitutes the PF adjuster is separated into two upper and lower via a flat liquid separation plate, and the upper separation pipeline is connected to the transport pipeline,
Further, since the lower separation pipe side is made to function as a liquid draining portion, the pressure loss that occurs when ice water passes can be greatly reduced, and thus the blockage of the pipe system of the IPF regulator can be effectively prevented. That is, since the specific gravity of ice is lighter than that of water, the ice is transported in a state of floating upward in the upper separation pipeline.
Since only the inner wall of the pipeline exists on the upper side of the upper separation pipeline, and the punch metal (liquid separation plate) exists only on the bottom side, ice does not contact the punching metal and therefore pressure loss is not caused. Absent.

【0010】又液分離板下方の液抜き部として機能する
下側分離管路側の両端は閉塞され、言換えれば水滞留部
より水抜きを行なう為に、水抜きが容易で且つ精度良い
水抜きを行なうことが出来る。
Further, both ends on the side of the lower separation pipe, which functions as a liquid draining portion below the liquid separating plate, are closed. In other words, since water is drained from the water retention portion, draining is easy and accurate. Can be done.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例について
詳細に説明する。但し、この実施例に記載されている構
成要素の形状、数値、仕様、相対配置等、特に特定的な
記載がない限りは、この発明の範囲をそれのみに限定す
る趣旨でなく、単なる説明例に過ぎないものである。本
発明の実施例に係る固液混合流体搬送装置について説明
する。図1は本発明の第1実施例を示す系統図であり、
図において1は氷と水との混合流体(氷水)が収容され
る熱源貯溜部即ち貯氷槽、7は搬送管路、2は搬送ポン
プで、前記熱源貯溜部1出口と前記搬送ポンプ2吸込口
との間の搬送管路上に前記氷水の水抜き口を具えた複数
の第1、第2のIPF調整器3A、3Bを直列して設け
るとともに、前記IPF調整器3A、3Bの水抜き口に
夫々水抜き枝管11,12が引き出され、貯氷槽1に接
続される水抜き配管16に合流している。5は水抜き配
管路16に設けられた水抜き用ポンプで、水抜き量を任
意に制御可能に構成している。尚、6は質量流量計、8
は戻り導管、9は冷熱負荷である。
Embodiments of the present invention will now be described in detail with reference to the drawings. However, unless otherwise specified, the shape, numerical values, specifications, relative arrangement, etc. of the constituent elements described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It is nothing more than a thing. A solid-liquid mixed fluid transfer device according to an embodiment of the present invention will be described. FIG. 1 is a system diagram showing a first embodiment of the present invention,
In the figure, 1 is a heat source reservoir or an ice storage tank for storing a mixed fluid of ice and water (ice water), 7 is a transfer pipeline, 2 is a transfer pump, and the heat source storage part 1 outlet and the transfer pump 2 suction port are shown. A plurality of first and second IPF regulators 3A and 3B having the water drainage ports of the ice water are provided in series on the transport pipe between the IPF regulators 3A and 3B. The drainage branch pipes 11 and 12 are drawn out, respectively, and join the drainage pipe 16 connected to the ice storage tank 1. Reference numeral 5 denotes a water draining pump provided in the water draining pipe 16, which is configured so that the water draining amount can be controlled arbitrarily. In addition, 6 is a mass flow meter, 8
Is a return conduit and 9 is a cold load.

【0012】前記IPF調整器3A、3B(以下総称し
て3という)の構成を図3に基づいて説明するに、前記
IPF調整器3を構成する管路50は、前記搬送管路7
より太径に構成され、その軸方向両端を漏斗部59を介
して連設している。そして前記管路50は平板状のパン
チメタル55を介して上下2つに分離され、該パンチメ
タル55の両端側に前記管路50と同径の半円状盲蓋5
6を取り付ける。この結果前記パンチメタル55上側の
分離管路50Aが搬送管路7に連設し、又パンチメタル
55下側の分離管路50B側の両端は閉塞される。そし
て該分離管路50Bの底側に水抜き口57を設け、該水
抜き口57に枝管11、12を連設する。
The structure of the IPF adjusters 3A and 3B (hereinafter collectively referred to as "3") will be described with reference to FIG. 3. The conduit 50 forming the IPF adjuster 3 is the transfer conduit 7.
It has a larger diameter, and its axial ends are connected in series via a funnel portion 59. The conduit 50 is divided into two parts, a top plate and a bottom plate, through a punch metal 55 having a flat plate shape.
Attach 6. As a result, the separation conduit 50A above the punch metal 55 is connected to the transfer conduit 7, and both ends of the separation conduit 50B below the punch metal 55 are closed. A water drain port 57 is provided on the bottom side of the separation pipeline 50B, and the branch pipes 11 and 12 are connected to the water drain port 57.

【0013】次にかかる実施例の動作を簡単に説明する
に、前記貯氷槽1内の氷水は、搬送管路7に設けられた
第1のIPF調整器3A、第2のIPF調整器3Bを経
て搬送ポンプ2に吸入され、該ポンプ2にて例えば4k
g/cm2 ・Gの圧力に加圧され質量流量計6を経て地
域導管8に搬送される。地域導管8には多数の冷熱負荷
9が連結されている。これらの冷熱負荷9に冷熱を与え
た氷水は水となって貯氷槽1に戻される。そして貯氷槽
1への氷の供給は、夜間の安い電力を使用して不図示の
製氷機120を運転し製氷することにより行なわれる。
尚、この実施例においては、第1、第2のIPF調整器
3A、3Bを搬送管路7に直列に2個配設したが、該I
PF調整器3A、3Bを1個設けることも、また3個以
上直列に設けることも本発明の範囲に含まれる。
To briefly explain the operation of this embodiment, the ice water in the ice storage tank 1 is stored in the first IPF adjuster 3A and the second IPF adjuster 3B provided in the transfer pipe line 7. After that, it is sucked into the transfer pump 2 and, for example, 4 k
It is pressurized to a pressure of g / cm @ 2 .G and conveyed to the regional conduit 8 via the mass flow meter 6. A large number of cold heat loads 9 are connected to the regional conduit 8. The ice water that gives cold heat to the cold load 9 becomes water and is returned to the ice storage tank 1. Then, the ice is supplied to the ice storage tank 1 by operating the ice making machine 120 (not shown) to make ice by using cheap electric power at night.
In this embodiment, two first and second IPF adjusters 3A and 3B are arranged in series in the conveying pipe line 7.
It is within the scope of the present invention to provide one PF adjuster 3A, 3B or three or more PF adjusters in series.

【0014】次に、本発明に係るIPFの調整方法及び
これによる搬送動力の低減の一例を図7に基づいて説明
する。今、貯氷槽1内のIPFが10%であり、これを
30%まで高め、供給圧力4kg/cm2 ・Gで供給流
量Qm3 /minを冷熱負荷9に供給する必要があるも
のとする。ポンプの理論動力の一般式は、流量をQ0m3
/min、ポンプ前後の差圧をΔPkg/cm2 とす
ると W=1.63Q0 ΔP(kW) で表わすことができる。
Next, an IPF adjusting method according to the present invention and an example of the reduction of the carrying power by the method will be described with reference to FIG. Now, it is assumed that the IPF in the ice storage tank 1 is 10%, and it is necessary to raise this to 30% and supply the supply flow rate Qm 3 / min to the cold heat load 9 at the supply pressure 4 kg / cm 2 · G. The general formula for the theoretical power of a pump is Q0m 3
/ Min, and the differential pressure before and after the pump is ΔPkg / cm 2 , it can be expressed as W = 1.63Q 0 ΔP (kW).

【0015】前記の必要条件を満たすためには、貯氷槽
1から3Q量の氷水を取り出し、水抜きポンプ5の回転
数を制御してIPF調整器3A、3BでそれぞれQ量の
水を抜き、2Q量の水を貯氷槽1に戻す。なお、水抜き
量は質量流量計6の密度値から算出される。一方、搬送
ポンプ2はQ量の氷水を4kg/cm2 ・Gに加圧し、
これを地域導管8へ搬送する。ポンプの理論動力W1
は、水抜きポンプ5と搬送ポンプ2とを合計して W1=1.63(2Q×1+Q×4)=9.78Q となる。
In order to satisfy the above-mentioned requirements, 3Q amount of ice water is taken out from the ice storage tank 1, the number of rotations of the water draining pump 5 is controlled, and QF amount of water is drained by the IPF regulators 3A and 3B, respectively. Return 2Q of water to the ice storage tank 1. The water drainage amount is calculated from the density value of the mass flowmeter 6. On the other hand, the transport pump 2 pressurizes Q amount of ice water to 4 kg / cm 2 · G,
This is transported to the regional conduit 8. Pump theoretical power W1
Is the sum of the water draining pump 5 and the transport pump 2 and W1 = 1.63 (2Q × 1 + Q × 4) = 9.78Q.

【0016】これに対し、図4に示す従来のものにおけ
るポンプの理論動力W2を図8に示すように前記と同一
条件下で計算すると W2=1.63×3Q×4=19.56Q したがって、本発明と従来のものとの理論ポンプ動力を
比較すると、 W1/W2=1/2 すなわち、本発明は従来のものに比べて混合水の搬送動
力を半減することが可能となる。
On the other hand, when the theoretical power W2 of the conventional pump shown in FIG. 4 is calculated under the same conditions as described above as shown in FIG. 8, W2 = 1.63 × 3Q × 4 = 19.56Q Comparing the theoretical pump powers of the present invention and the conventional one, W1 / W2 = 1/2, that is, the present invention makes it possible to halve the transport power of the mixed water as compared with the conventional one.

【0017】また、前記のように、IPF調整器3A及
び3Bから同時に水抜きを行なうことにより、上側分離
管路50に流れる水抜き側への氷の流出も少なく、しか
も該調整器3A、3Bの氷水側における流路の閉塞も発
生する事はない。
Further, as described above, by simultaneously draining water from the IPF regulators 3A and 3B, the outflow of ice to the draining side flowing through the upper separation pipeline 50 is small, and the regulators 3A, 3B are also provided. There is no blockage of the flow path on the ice water side.

【0018】前記実施例においては、氷水を用いる地域
冷房の場合について説明したが、温度の上下により水と
固体との状態変化を生ずるような蓄熱材をカプセル等に
入れて潜熱物質として用い、これと水との固液混合流体
を用いて地域空調を行なう場合について次の実施例によ
り説明する。IPF調整器に利用可能な蓄熱材として、
蓄熱時に固形化(スラリー状、ゲル状も含め)する蓄熱
材を安全性及び耐腐食性等から搬送できるカプセル(例
えば20mm以下の球状カプセル)中に充填したものが
用いられる。このような蓄熱材を表1に、また該蓄熱剤
が冷却または加熱の用途に用いられた場合の状態を表2
によって示す。
In the above embodiment, the case of district cooling using ice water was explained, but a heat storage material which causes a state change between water and solid depending on the temperature rise and fall is used as a latent heat substance by putting it in a capsule or the like. A case of performing regional air conditioning using a solid-liquid mixed fluid of water and water will be described with reference to the following embodiments. As a heat storage material that can be used in the IPF regulator,
A capsule (for example, a spherical capsule having a diameter of 20 mm or less) filled with a heat storage material that solidifies (including slurry and gel) at the time of heat storage can be used for safety and corrosion resistance. Table 1 shows such a heat storage material, and Table 2 shows the state when the heat storage agent is used for cooling or heating.
Shown by.

【0019】図2は、本発明の実施例に係る固液混合流
体の搬送装置として、前記のようなカプセルを用いる地
域空気調和システムの実施例を示すものである。図にお
いて、9は加熱または冷却の負荷(冷熱負荷)、21は
熱源貯溜部、22及び23はIPF調整器、24は搬送
管路、25は搬送ポンプ、26は液抜き配管、27は液
抜き専用ポンプ、28は自動調整弁、29は質量流量
計、30は地域導管、31は循環ポンプ、32は自動調
整弁、33はカプセル回収兼蓄熱器、34は該カプセル
回収兼蓄熱器33のパンチングメタル、35はヒートポ
ンプ装置、36ないし40及び46はそれぞれ流通管、
41ないし45はそれぞれ自動調整弁である。前記ヒー
トポンプ装置35は冷房運転のときは冷却器として、ま
た暖房運転のときは加熱器として切換え使用する。
FIG. 2 shows an embodiment of a regional air conditioning system using the above-mentioned capsules as a solid-liquid mixed fluid carrier according to an embodiment of the present invention. In the figure, 9 is a heating or cooling load (cold heat load), 21 is a heat source reservoir, 22 and 23 are IPF regulators, 24 is a transfer pipeline, 25 is a transfer pump, 26 is a drain pipe, and 27 is a drain. Dedicated pump, 28 is an automatic adjustment valve, 29 is a mass flow meter, 30 is a regional conduit, 31 is a circulation pump, 32 is an automatic adjustment valve, 33 is a capsule recovery and regenerator, and 34 is punching of the capsule recovery and regenerator 33. Metal, 35 is a heat pump device, 36 to 40 and 46 are flow pipes,
Reference numerals 41 to 45 are automatic adjusting valves. The heat pump device 35 is switched and used as a cooler during the cooling operation and as a heater during the heating operation.

【0020】先ず、安価な夜間電力を利用してヒートポ
ンプ装置35を運転し蓄熱(蓄冷)運転をする場合、自
動調整弁32を閉とし、熱源貯溜部21内の液温が蓄熱
温度に近いとき、自動調整弁41,45を開とし、自動
調整弁42,43,44を閉とし、循環ポンプ31を運
転する。熱源貯溜部21内の水は流通管36,37を通
りカプセル回収兼蓄熱器33に入り、次いで流通管38
を通りヒートポンプ装置35に入りここで加熱された
後、流通管39,40を通って熱源貯溜部21に戻り、
この循環を繰返す。この循環によりカプセル回収兼蓄熱
器33内のカプセル中に封入された蓄熱材に対し熱(冷
熱)が与えられる。
First, when the heat pump device 35 is operated by using inexpensive nighttime electric power to perform heat storage (cold storage) operation, when the automatic adjustment valve 32 is closed and the liquid temperature in the heat source storage portion 21 is close to the heat storage temperature. The automatic adjustment valves 41 and 45 are opened, the automatic adjustment valves 42, 43 and 44 are closed, and the circulation pump 31 is operated. The water in the heat source reservoir 21 enters the capsule recovery / accumulator 33 through the distribution pipes 36 and 37, and then the distribution pipe 38.
After passing through the heat pump device 35 and being heated here, the heat source device is returned to the heat source reservoir 21 through the flow pipes 39 and 40,
This cycle is repeated. By this circulation, heat (cold heat) is given to the heat storage material enclosed in the capsule in the capsule recovery and heat storage unit 33.

【0021】カプセル回収兼蓄熱器33における水の出
口温度または水の出入口温度差を検出してこの蓄熱が終
了するに至ったときは、自動調整弁42,43を開と
し、自動調整弁41,44,45を閉として、循環ポン
プ31を運転する。熱源貯溜部21の水は流通管36を
経て自動調整弁43を通りカプセル回収兼蓄熱器33に
流入し、該蓄熱器内のカプセルを伴って流通管46を経
て熱源貯溜部21に戻り、該貯溜部内にカプセルを蓄積
する。
When the outlet temperature of water or the inlet / outlet temperature difference of water in the capsule collection and heat storage unit 33 is detected and the heat storage is completed, the automatic adjusting valves 42 and 43 are opened and the automatic adjusting valves 41 and 41 are opened. The circulation pump 31 is operated with 44 and 45 closed. The water in the heat source reservoir 21 passes through the flow pipe 36, the automatic adjustment valve 43, and flows into the capsule recovery and regenerator 33, and returns to the heat source reservoir 21 through the flow pipe 46 together with the capsules in the regenerator. Accumulate capsules in the reservoir.

【0022】空調負荷時の運転は次のように行なう。自
動調整弁32を開とする。搬送ポンプ25を運転して熱
源貯溜部21内のカプセルと水との固液混合流体をIP
F調整器22,23に導入し、液抜き専用ポンプ27を
運転することにより、水が適当量だけ抜き出されて熱源
貯溜部21へ戻される。水を抜く流量は、質量流量計2
9の密度値を検知して液抜き専用ポンプ27の回転数を
制御するか、液抜き専用ポンプ27の回転数は一定にし
自動調整弁28を制御することにより決定される。
The operation under an air conditioning load is performed as follows. The automatic adjustment valve 32 is opened. The transfer pump 25 is operated to set the solid-liquid mixed fluid of the capsule and water in the heat source reservoir 21 to IP.
By introducing it into the F regulators 22 and 23 and operating the pump 27 for exclusive use of liquid removal, an appropriate amount of water is extracted and returned to the heat source reservoir 21. The flow rate for draining water is the mass flow meter 2
It is determined by detecting the density value of 9 and controlling the number of rotations of the pump 27 for exclusive use of liquid removal, or by making the number of rotations of the pump 27 for exclusive use of liquid removal constant and controlling the automatic adjustment valve 28.

【0023】このようにして、所要のIPFに調整され
た固液混合流体は、地域導管30に搬送され負荷9に熱
の授受を行なうことにより、空調を遂行する。自動調整
弁41,42,43が閉、自動調整弁44または45が
開となると、熱授受後の固液混合流体はカプセル回収兼
蓄熱器33を流通し、次いで流通管40を経て熱源貯溜
部21へと戻る。このため固液混合流体中の潜熱使用済
カプセルは、カプセル回収兼蓄熱器33内に、カプセル
の径よりも小さな目開きのパンチングメタル34により
捕捉されて収容される。
In this way, the solid-liquid mixed fluid adjusted to the required IPF is transferred to the regional conduit 30 to transfer heat to and from the load 9, thereby performing air conditioning. When the automatic adjustment valves 41, 42, 43 are closed and the automatic adjustment valves 44 or 45 are opened, the solid-liquid mixed fluid after the heat transfer passes through the capsule recovery and regenerator 33, and then the heat source reservoir through the flow pipe 40. Return to 21. Therefore, the latent heat used capsule in the solid-liquid mixed fluid is captured and accommodated in the capsule collection and heat storage unit 33 by the punching metal 34 having an opening smaller than the diameter of the capsule.

【0024】前記固液混合流体のカプセル回収兼蓄熱器
33から熱源貯溜部21への返流は、2つの経路があ
る。すなわち、固液混合流体の温度が蓄熱温度とほぼ等
しいときは自動調整弁44を経て熱源貯溜部21へ返流
され、固液混合流体が顕熱まで利用され、その温度が熱
源貯溜部21の蓄熱温度と温度差のあるときは、固液混
合流体は自動調整弁45を経てヒートポンプ装置35に
入り、ここで冷却または加熱されてほぼ蓄熱温度とされ
た後、熱源貯溜部21へ返流される。
There are two routes for returning the solid-liquid mixed fluid from the capsule collecting and regenerator 33 to the heat source reservoir 21. That is, when the temperature of the solid-liquid mixed fluid is substantially equal to the heat storage temperature, the solid-liquid mixed fluid is returned to the heat source reservoir 21 through the automatic adjustment valve 44, the solid-liquid mixed fluid is used until sensible heat, and the temperature of the heat source reservoir 21 is used. When there is a temperature difference with the heat storage temperature, the solid-liquid mixed fluid enters the heat pump device 35 via the automatic adjustment valve 45, is cooled or heated here to a heat storage temperature, and is then returned to the heat source reservoir 21. It

【0025】空調装置が全負荷運転をするときは、前記
の夜間運転方式と追いかけ運転方式とを併用するのが一
般的な方式である。したがって、最大負荷時には、前記
の蓄熱運転も必要となるので、カプセル回収兼蓄熱器3
3数基を並列に設置し、パッチ式でヒートポンプ装置3
5からの冷水または温水をカプセル回収を終えた容器へ
流し、蓄熱運転を行ない、その後に前記方式で蓄熱した
カプセルを熱源貯溜部21へ戻すようにする。
When the air conditioner operates at full load, it is a general method to use the night operation method and the chasing operation method together. Therefore, at the time of maximum load, the heat storage operation described above is also required, so that the capsule recovery and heat storage unit 3
3 units are installed in parallel and the heat pump device 3 is a patch type.
The cold water or the hot water from 5 is poured into the container where the capsules have been collected, the heat storage operation is performed, and then the capsules that have stored heat by the above method are returned to the heat source storage section 21.

【0026】尚、以上の実施例は地域冷房の場合である
が、本発明はこれに限定されることなく、暖房の場合も
含み、従って「負荷」には「冷却負荷」と「加熱負荷」
とを、「熱源貯溜部」には「貯氷槽」と「高熱源」をそ
れぞれ含む。
The above embodiment is for district cooling, but the present invention is not limited to this, and includes the case of heating. Therefore, "load" is "cooling load" and "heating load".
And "heat source reservoir" include "ice storage tank" and "high heat source", respectively.

【0027】[0027]

【発明の効果】以上記載した如く本発明によれば、固液
混合流体の搬送ポンプの吸込側にIPF調整器を設け、
該調整器において適当量の水(水)を抜いて熱源貯溜部
へ戻すようにしたから、従来のもののような搬送ポンプ
の吐出側にIPF調整器を設けたものに比べて搬送動力
を著しく節減することができる。
As described above, according to the present invention, an IPF regulator is provided on the suction side of a solid-liquid mixed fluid transfer pump,
Since an appropriate amount of water (water) is drained and returned to the heat source reservoir in the regulator, the transport power is significantly reduced compared to the conventional one in which the IPF regulator is provided on the discharge side of the transport pump. can do.

【0028】またIPF調整器は熱源貯溜部の近くに設
置することができるので該調整器から前記貯溜部に至る
水抜き配管での流れ抵抗は地域導管と比べて極めて小さ
く、したがって、水抜き専用ポンプを用いても、その加
圧は1kg/cm2 ・G程度でありそれによる搬送動力
の増加分はきわめて小さい。
Also, since the IPF regulator can be installed near the heat source reservoir, the flow resistance in the drainage pipe from the regulator to the reservoir is extremely small compared to the regional conduit, so it is dedicated to draining water. Even if a pump is used, the pressurization is about 1 kg / cm 2 · G, and the increase in transport power due to it is extremely small.

【0029】また従来のものにおいては、IPF調整器
において、水抜き流量/固液混合流体入口流量(入口と
は調整器の入口のことである)の値が0.4以上になる
と、水抜き側からの氷の流量が多くなり効率は低下し、
またIPF調整器の混合流体側での閉塞も起り易くなる
が、IPF調整器を直列に数基設置すれば、これによ
り、一基の調整器から抜かれる水の流量を所定の許容値
(40%)以下に抑えることができるので、IPFの値
を高めなければならない割合の大きいときであっても、
各個のIPF調整器の効率を低下するおそれはなく、し
かも安全で、確実で効率のよい装置の運転をすることが
できる。更に冷熱負荷の変動に応じて冷熱負荷部に搬送
される固液混合流体の流速を搬送ポンプの運転を調節す
ることによって制御するとともに、熱源貯溜部内の攪拌
機の運転を調節することにより、熱源貯溜部から流出す
る固液混合流体のIPFを制御することができるので、
前記制御を無段階に行なう場合に適しており、前記と同
様、効率の高い地域冷暖房運転ができる。
Further, in the conventional one, in the IPF regulator, when the value of the drainage flow rate / solid-liquid mixed fluid inlet flow rate (the inlet means the inlet of the regulator) becomes 0.4 or more, the drainage is performed. The flow of ice from the side increases and efficiency decreases,
Further, the IPF regulator is likely to be clogged on the mixed fluid side. However, if several IPF regulators are installed in series, the flow rate of water withdrawn from one regulator can be adjusted to a predetermined allowable value (40 %) Or less, it is possible to increase the IPF value even when the ratio is high.
There is no risk of reducing the efficiency of each IPF regulator, and the safe, reliable and efficient operation of the device can be performed. Furthermore, the flow rate of the solid-liquid mixed fluid conveyed to the cold heat load section according to the fluctuation of the cold heat load is controlled by adjusting the operation of the transfer pump, and the operation of the stirrer in the heat source reservoir section is adjusted to adjust the heat source reservoir. Since it is possible to control the IPF of the solid-liquid mixed fluid flowing out of the section,
It is suitable for performing the above-mentioned control steplessly, and can perform highly efficient district heating / cooling operation as in the above case.

【0030】又本発明はIPF調整器を構成する管路5
0を平板状の液分離板を介して上下2つに分離し、上側
分離管路50を搬送管路に連設し、又下側分離管路50
側を液抜き部として機能させた為に、氷水通過の際に生
じる圧損を大幅に低減でき、これによりIPF調整器の
配管系の閉塞を有効に防止出来る。更に液分離板下方の
液抜き部として機能する下側分離管路50側の両端は閉
塞され、言換えれば水滞留部より水抜きを行なう為に、
水抜きが容易で且つ精度良い水抜きを行なうことが出来
る。等の種々の著効を有す。
The present invention also provides a conduit 5 which constitutes an IPF regulator.
0 is divided into upper and lower parts through a plate-shaped liquid separation plate, the upper separation pipe line 50 is connected to the transfer pipe line, and the lower separation pipe line 50 is connected.
Since the side is made to function as a liquid draining portion, the pressure loss that occurs when ice water passes can be greatly reduced, and thus the blockage of the pipe system of the IPF regulator can be effectively prevented. Further, both ends of the lower separation pipe line 50 side which function as a liquid draining portion below the liquid separating plate are closed, in other words, in order to drain water from the water retention portion,
The water can be drained easily and accurately. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る固液混合流体搬送装
置の系統図。
FIG. 1 is a system diagram of a solid-liquid mixed fluid transfer device according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る固液混合流体搬送装
置の系統図。
FIG. 2 is a system diagram of a solid-liquid mixed fluid transfer device according to a second embodiment of the present invention.

【図3】前記実施例に適用されるIPF調整器の一例を
示し、(A)は全体透視図、(B)はパンチングメタル
の要部斜視図。
3A and 3B show an example of an IPF adjuster applied to the embodiment, FIG. 3A is an overall perspective view, and FIG. 3B is a perspective view of a main part of punching metal.

【図4】従来の搬送装置を示す系統図。FIG. 4 is a system diagram showing a conventional transfer device.

【図5】従来のIPF調整器の一例を示す断面略図。FIG. 5 is a schematic sectional view showing an example of a conventional IPF adjuster.

【図6】従来のIPF調整器の機能を示す線図。FIG. 6 is a diagram showing the function of a conventional IPF adjuster.

【図7】本発明2装置の作用説明図。FIG. 7 is an operation explanatory view of the device of the present invention 2;

【図8】従来例の作用説明図。FIG. 8 is an operation explanatory view of a conventional example.

【符号の説明】[Explanation of symbols]

1 熱源貯溜部としての貯氷槽 2 搬送ポンプ 3A、3B 潜熱物質充填率調整器(IPF調整器) 5 水抜きポンプ 7 搬送管路 8 地域導管 9 冷熱負荷 1a 固液混合流体取出口 1b 水抜き配管 51 金網またはパンチングメタル 52 攪拌機 1 Ice storage tank as heat source storage unit 2 Conveyor pumps 3A, 3B Latent heat substance filling rate regulator (IPF regulator) 5 Drainage pump 7 Conveying pipeline 8 Regional conduit 9 Cold heat load 1a Solid-liquid mixed fluid outlet 1b Drainage pipe 51 Wire mesh or punching metal 52 Stirrer

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜岡 幸夫 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 山本 充 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 大野 泰司 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 相沢 旬一 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 横山 卓史 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 森川 大和 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 宮脇 正博 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 藤本 健 大阪府大阪市中央区高麗橋4丁目6番2号 株式会社日建設計内 (72)発明者 栗山 知広 大阪府大阪市中央区高麗橋4丁目6番2号 株式会社日建設計内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Hamaoka 2-13-1 Botan, Koto-ku, Tokyo Stock company Maekawa Works (72) Inventor Mitsuru Yamamoto 2-13-1 Botan, Koto-ku, Tokyo Shares Company Maekawa Works (72) Inventor Taiji Ohno 2-13-1 Botan, Koto-ku, Tokyo Stock Company Maekawa Works (72) Inventor Junichi Aizawa 2-31 Botan, Koto-ku, Tokyo Stock Association Inside the company Maekawa Works (72) Inventor Takashi Yokoyama 2-13-1 Botan, Koto-ku, Tokyo Stock company Inside the company Maekawa Works (72) Yamato Morikawa 3-22 Nakanoshima 3-chome, Kita-ku, Osaka, Kansai Electric Power Company Incorporated (72) Inventor Masahiro Miyawaki 3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. (72) Inventor Ken Fujimoto 4 Koraibashi, Chuo-ku, Osaka-shi, Osaka Eye No. 6 No. 2, Inc. Nikken Sekkei in (72) inventor Tomohiro Kuriyama, Chuo-ku, Osaka-shi Kōraibashi 4-chome No. 6 No. 2, Inc. Nikken Sekkei in

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 貯氷槽等の熱源貯溜部内に収容された氷
等の潜熱物質と水等の液体との固液混合流体を、前記熱
源貯溜部と冷房または暖房その他の負荷とを接続する搬
送管路に搬送ポンプを設け、該搬送ポンプにより前記固
液混合流体を前記負荷側に搬送し、該負荷と熱交換した
後に該混合流体を前記熱源貯溜部側に戻すように構成し
た固液混合流体の搬送装置において、 前記熱源貯溜部出口と前記搬送ポンプ吸込口との間の搬
送管路上に前記固液混合流体の液体抜き口を具えた潜熱
物質混合充填率調整器(IPF調整器)を設けるととも
に、 前記IPF調整器の液体抜き口と前記熱源貯溜部とを接
続する液体抜き管路を設けたことを特徴とする固液混合
流体の搬送装置。
1. A carrier for connecting a solid-liquid mixed fluid of a latent heat substance such as ice and a liquid such as water stored in a heat source reservoir such as an ice storage tank, which connects the heat source reservoir with cooling or heating or other load. A solid-liquid mixture which is provided with a transfer pump in the pipe line, which transfers the solid-liquid mixed fluid to the load side by the transfer pump, and returns the mixed fluid to the heat source reservoir side after heat exchange with the load. In the fluid transport device, a latent heat substance mixture filling rate regulator (IPF regulator) having a liquid outlet for the solid-liquid mixed fluid is provided on a transport pipe between the heat source reservoir outlet and the transport pump suction port. A solid-liquid mixed fluid transporting device, characterized in that it is provided with a liquid drain pipe line that connects the liquid drain port of the IPF adjuster and the heat source reservoir.
【請求項2】 前記IPF調整器を構成する管路を平板
状の液分離板を介して上下2つに分離し、上側分離管路
を搬送管路に連設し、又下側分離管路側の両端を閉塞す
ると共に液体抜き口を設け、IPF調整用の液抜き部と
して機能させた事を特徴とする請求項1記載の固液混合
流体の搬送装置。
2. A pipe constituting the IPF adjuster is divided into upper and lower two via a flat liquid separation plate, an upper separation pipe is connected to a carrier pipe, and a lower separation pipe is provided. 2. The solid-liquid mixed fluid transporting device according to claim 1, wherein both ends of the liquid are closed and liquid outlets are provided to function as a liquid draining portion for IPF adjustment.
JP16835093A 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device Expired - Fee Related JP3345105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16835093A JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-179749 1992-07-07
JP17974992 1992-07-07
JP16835093A JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Publications (2)

Publication Number Publication Date
JPH06265184A true JPH06265184A (en) 1994-09-20
JP3345105B2 JP3345105B2 (en) 2002-11-18

Family

ID=26492083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16835093A Expired - Fee Related JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Country Status (1)

Country Link
JP (1) JP3345105B2 (en)

Also Published As

Publication number Publication date
JP3345105B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US5139549A (en) Apparatus and method for cooling using aqueous ice slurry
US20120159980A1 (en) Device for recovering heat from wastewater, thermal system including such a device, and method
US20230023068A1 (en) Feed water supplementary thermal exchange apparatus, system and method
JPH06265184A (en) Carrying equipment of solid-liquid mixture fluid
CN117067396A (en) Cement paste preparation device
CN107158731A (en) A kind of condensing reflux system
CN216924023U (en) Crude oil buffer tank control system
CN114198285B (en) Waste heat recovery system for air compressor
CN211177531U (en) Cold quick-witted control unit of carrier
CN211781376U (en) Thermal storage system for peak regulation of thermal power plant
CN210154402U (en) Waste heat recovery device
CN209370818U (en) Lubricating-oil Station
CN206910835U (en) A kind of condensing reflux system
CN207814896U (en) Lubricating-oil Station for high oil field water injection pump shaft watt lubrication
JP3302782B2 (en) Transfer control method for solid-liquid mixed fluid
CN208340147U (en) A kind of distillation system recovery tower tower bottom water cooler system
JP2960125B2 (en) How to replace gas cylinders
JP2579431Y2 (en) Outflow control device for mixed liquid conveyed to cooling load
JP3505733B2 (en) Ice storage method and ice storage pipe system in ice thermal storage system
CN210740506U (en) Heat exchange unit
CN113280546A (en) Snow making module system
CN108386892A (en) A kind of efficiently decontamination mixed heat exchanger and great temperature difference heat supply system
CN217843896U (en) Boiler slag water overflow water recovery and automatic water supply device
CN215693829U (en) Oil phase preparation equipment
CN217541116U (en) Parallel screw refrigerating unit of oil supply balance system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090830

LAPS Cancellation because of no payment of annual fees